fuzzy entropy for pythagorean fuzzy sets with application ...new fuzzy entropies for pythagorean...

15
Research Article Fuzzy Entropy for Pythagorean Fuzzy Sets with Application to Multicriterion Decision Making Miin-Shen Yang 1 and Zahid Hussain 1,2 1 Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li 32023, Taiwan 2 Department of Mathematics, Karakoram International University, Gilgit-Baltistan, Pakistan Correspondence should be addressed to Miin-Shen Yang; [email protected] Received 17 June 2018; Revised 1 October 2018; Accepted 16 October 2018; Published 1 November 2018 Academic Editor: Diego R. Amancio Copyright ยฉ 2018 Miin-Shen Yang and Zahid Hussain. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e concept of Pythagorean fuzzy sets (PFSs) was initially developed by Yager in 2013, which provides a novel way to model uncertainty and vagueness with high precision and accuracy compared to intuitionistic fuzzy sets (IFSs). e concept was concretely designed to represent uncertainty and vagueness in mathematical way and to furnish a formalized tool for tackling imprecision to real problems. In the present paper, we have used both probabilistic and nonprobabilistic types to calculate fuzzy entropy of PFSs. Firstly, a probabilistic-type entropy measure for PFSs is proposed and then axiomatic de๏ฌnitions and properties are established. Secondly, we utilize a nonprobabilistic-type with distances to construct new entropy measures for PFSs. en a minโ€“max operation to calculate entropy measures for PFSs is suggested. Some examples are also used to demonstrate suitability and reliability of the proposed methods, especially for choosing the best one/ones in structured linguistic variables. Furthermore, a new method based on the chosen entropies is presented for Pythagorean fuzzy multicriterion decision making to compute criteria weights with ranking of alternatives. A comparison analysis with the most recent and relevant Pythagorean fuzzy entropy is conducted to reveal the advantages of our developed methods. Finally, this method is applied for ranking China-Pakistan Economic Corridor (CPEC) projects. ese examples with applications demonstrate practical e๏ฌ€ectiveness of the proposed entropy measures. 1. Introduction e concept of fuzzy sets was ๏ฌrst proposed by Zadeh [1] in 1965. With a widely spread use in various ๏ฌelds, fuzzy sets not only provide broad opportunity to measure uncertainties in more powerful and logical way, but also give us a meaningful way to represent vague concepts in natural language. It is known that most systems based on โ€˜crisp set theoryโ€™ or โ€˜two- valued logicsโ€™ are somehow di๏ฌƒcult for handling imprecise and vague information. In this sense, fuzzy sets can be used to provide better solutions for more real world problems. Moreover, to treat more imprecise and vague information in daily life, various extensions of fuzzy sets are suggested by researchers, such as interval-valued fuzzy set [2], type-2 fuzzy sets [3], fuzzy multiset [4], intuitionistic fuzzy sets [5], hesitant fuzzy sets [6, 7], and Pythagorean fuzzy sets [8, 9]. Since fuzzy sets were based on membership values or degrees between 0 and 1, in real life setting it may not be always true that nonmembership degree is equal to (1- membership). erefore, to get more purposeful reliability and applicability, Atanassov [5] generalized the concept of โ€˜fuzzy set theoryโ€™ and proposed Intuitionistic fuzzy sets (IFSs) which include both membership degree and nonmembership degree and degree of nondeterminacy or uncertainty where degree of uncertainty = (1- (degree of membership + non- membership degree)). In IFSs, the pair of membership grades is denoted by (, ]) satisfying the condition of + ] โ‰ค1. Recently, Yager and Abbasov [8] and Yager [9] extended the condition + ] โ‰ค1 to 2 + ] 2 โ‰ค1 and then introduced a class of Pythagorean fuzzy sets (PFSs) whose membership values are ordered pairs (, ]) that ful๏ฌlls the required condition of 2 + ] 2 โ‰ค1 with di๏ฌ€erent aggregation operations and applications in multicriterion decision making. According to Yager and Abbasov [8] and Yager [9], the space of all intuitionistic membership values (IMVs) is also Pythagorean Hindawi Complexity Volume 2018, Article ID 2832839, 14 pages https://doi.org/10.1155/2018/2832839

Upload: others

Post on 16-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleFuzzy Entropy for Pythagorean Fuzzy Sets with Application toMulticriterion Decision Making

    Miin-Shen Yang 1 and Zahid Hussain1,2

    1Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li 32023, Taiwan2Department of Mathematics, Karakoram International University, Gilgit-Baltistan, Pakistan

    Correspondence should be addressed to Miin-Shen Yang; [email protected]

    Received 17 June 2018; Revised 1 October 2018; Accepted 16 October 2018; Published 1 November 2018

    Academic Editor: Diego R. Amancio

    Copyright ยฉ 2018 Miin-Shen Yang and Zahid Hussain. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work isproperly cited.

    The concept of Pythagorean fuzzy sets (PFSs) was initially developed by Yager in 2013, which provides a novel way to modeluncertainty and vaguenesswith high precision and accuracy compared to intuitionistic fuzzy sets (IFSs).The concept was concretelydesigned to represent uncertainty and vagueness in mathematical way and to furnish a formalized tool for tackling imprecision toreal problems. In the present paper, we have used both probabilistic and nonprobabilistic types to calculate fuzzy entropy of PFSs.Firstly, a probabilistic-type entropy measure for PFSs is proposed and then axiomatic definitions and properties are established.Secondly, we utilize a nonprobabilistic-typewith distances to construct new entropymeasures for PFSs.Then aminโ€“max operationto calculate entropy measures for PFSs is suggested. Some examples are also used to demonstrate suitability and reliability of theproposedmethods, especially for choosing the best one/ones in structured linguistic variables. Furthermore, a newmethod based onthe chosen entropies is presented for Pythagorean fuzzy multicriterion decision making to compute criteria weights with rankingof alternatives. A comparison analysis with the most recent and relevant Pythagorean fuzzy entropy is conducted to reveal theadvantages of our developed methods. Finally, this method is applied for ranking China-Pakistan Economic Corridor (CPEC)projects. These examples with applications demonstrate practical effectiveness of the proposed entropy measures.

    1. Introduction

    The concept of fuzzy sets was first proposed by Zadeh [1] in1965.With a widely spread use in various fields, fuzzy sets notonly provide broad opportunity to measure uncertainties inmore powerful and logical way, but also give us a meaningfulway to represent vague concepts in natural language. It isknown that most systems based on โ€˜crisp set theoryโ€™ or โ€˜two-valued logicsโ€™ are somehow difficult for handling impreciseand vague information. In this sense, fuzzy sets can be usedto provide better solutions for more real world problems.Moreover, to treat more imprecise and vague informationin daily life, various extensions of fuzzy sets are suggestedby researchers, such as interval-valued fuzzy set [2], type-2fuzzy sets [3], fuzzy multiset [4], intuitionistic fuzzy sets [5],hesitant fuzzy sets [6, 7], and Pythagorean fuzzy sets [8, 9].

    Since fuzzy sets were based on membership values ordegrees between 0 and 1, in real life setting it may not

    be always true that nonmembership degree is equal to (1-membership). Therefore, to get more purposeful reliabilityand applicability, Atanassov [5] generalized the concept ofโ€˜fuzzy set theoryโ€™ and proposed Intuitionistic fuzzy sets (IFSs)which include bothmembership degree and nonmembershipdegree and degree of nondeterminacy or uncertainty wheredegree of uncertainty = (1- (degree of membership + non-membership degree)). In IFSs, the pair ofmembership gradesis denoted by (๐œ‡, ]) satisfying the condition of ๐œ‡ + ] โ‰ค 1.Recently, Yager and Abbasov [8] and Yager [9] extended thecondition ๐œ‡+ ] โ‰ค 1 to ๐œ‡2 + ]2 โ‰ค 1 and then introduced a classof Pythagorean fuzzy sets (PFSs) whose membership valuesare ordered pairs (๐œ‡, ]) that fulfills the required conditionof ๐œ‡2 + ]2 โ‰ค 1 with different aggregation operations andapplications in multicriterion decision making. Accordingto Yager and Abbasov [8] and Yager [9], the space of allintuitionistic membership values (IMVs) is also Pythagorean

    HindawiComplexityVolume 2018, Article ID 2832839, 14 pageshttps://doi.org/10.1155/2018/2832839

    http://orcid.org/0000-0002-4907-3548https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/https://doi.org/10.1155/2018/2832839

  • 2 Complexity

    membership values (PMVs), but PMVs are not necessary tobe IMVs. For instance, for the situation when the numbers๐œ‡ = โˆš3/2 and ] = 1/2, we can use PFSs, but IFSs cannot beused since ๐œ‡ + ] > 1, but ๐œ‡2 + ]2 โ‰ค 1. PFSs are wider thanIFSs so that they can tackle more daily life problems underimprecision and uncertainty cases.

    More researchers are actively engaged in the devel-opment of PFSs properties. For example, Yager [10] gavePythagorean membership grades in multicriterion decisionmaking. Extensions of technique for order preference bysimilarity to an ideal solution (TOPSIS) to multiple criteriadecision making with Pythagorean and hesitant fuzzy setswere proposed by Zhang and Xu [11]. Zhang [12] considered anovel approach based on similarity measure for Pythagoreanfuzzy multicriteria group decision making. Pythagoreanfuzzy TODIM approach to multicriterion decision makingwas given by Ren et al. [13]. Pythagorean fuzzy Choquetintegral based MABAC method for multiple attribute groupdecisionmakingwas developed by Peng andYang [14]. Zhang[15] gave a hierarchical QUALIFLEX approach. Peng et al.[16] investigated Pythagorean fuzzy information measures.Zhang et al. [17] proposed generalized Pythagorean fuzzyBonferroni mean aggregation operators. Liang and Xu [18]extended TOPSIS to hesitant Pythagorean fuzzy sets. Peฬrez-Domฤฑฬnguez et al. [19] gave MOORA under Pythagoreanfuzzy sets. Recently, Pythagorean fuzzy LINMAP methodbased on the entropy for railway project investment deci-sion making was proposed by Xue et al. [20]. Zhang andMeng [21] proposed an approach to interval-valued hesitantfuzzy multiattribute group decision making based on thegeneralized Shapley-Choquet integral. Pythagorean fuzzy(R, S) โˆ’norm information measure for multicriteria decisionmaking problem was presented by Guleria and Bajaj [22].Furthermore, Yang and Hussain [23] proposed distance andsimilarity measures of hesitant fuzzy sets based on Hausdorffmetric with applications tomulticriteria decision making andclustering. Hussain and Yang [24] gave entropy for hesitantfuzzy sets based on Hausdorff metric with construction ofhesitant fuzzy TOPSIS.

    The entropy of fuzzy sets is a measure of fuzzinessbetween fuzzy sets. De Luca and Termini [25] first intro-duced the axiom construction for entropy of fuzzy setswith reference to Shannonโ€™s probability entropy. Yager [26]defined fuzziness measures of fuzzy sets in terms of a lackof distinction between the fuzzy set and its negation basedon Lp norm. Kosko [27] provided a measure of fuzzinessbetween fuzzy sets using a ratio of distance between the fuzzyset and its nearest set to the distance between the fuzzy setand its farthest set. Liu [28] gave some axiom definitionsof entropy and also defined a ๐œŽ-entropy. Pal and Pal [29]proposed exponential entropies. While Fan andMa [30] gavesome new fuzzy entropy formulas. Some extended entropymeasures for IFS were proposed by Burillo and Bustince [31],Szmidt and Kacprzyk [32], Szmidt and Baldwin [33], andHung and Yang [34].

    In this paper, we propose new entropies of PFS based onprobability-type, distance, Pythagorean index, and minโ€“maxoperation. We also extend the concept to ๐œŽ-entropy and

    then apply it to multicriteria decision making. This paper isorganized as follows. In Section 2, we review some definitionsof IFSs and PFSs. In Section 3, we propose several newentropies of PFSs and then construct an axiomatic definitionof entropy for PFSs. Based on the definition of entropy forPFSs, we find that the proposed nonprobabilistic entropies ofPFSs are ๐œŽ-entropy. In Section 4, we exhibit some examplesfor comparisons and also use structured linguistic variablesto validate our proposed methods. In Section 5, we constructa new Pythagorean fuzzy TOPSIS based on the proposedentropy measures. A comparison analysis of the proposedPythagorean fuzzy TOPSIS with the recently developedentropy of PFS [20] is shown. We then apply the proposedmethod tomulticriterion decisionmaking for rankingChina-Pakistan Economic Corridor projects. Finally, we state ourconclusion in Section 6.

    2. Intuitionistic and Pythagorean Fuzzy Sets

    In this section, we give a brief review for intuitionistic fuzzysets (IFSs) and Pythagorean fuzzy sets (PFSs).

    Definition 1. An intuitionistic fuzzy set (IFS) ๏ฟฝฬƒ๏ฟฝ in ๐‘‹ isdefined by Atanassov [5] with the following form:

    ๏ฟฝฬƒ๏ฟฝ = {(๐‘ฅ, ๐œ‡๏ฟฝฬƒ๏ฟฝ (๐‘ฅ) , ]๏ฟฝฬƒ๏ฟฝ (๐‘ฅ)) : ๐‘ฅ โˆˆ ๐‘‹} (1)where 0 โ‰ค ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) + ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค 1, โˆ€๐‘ฅ โˆˆ ๐‘‹, and the functions๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) : ๐‘‹ โ†’ [0, 1] denotes the degree of membershipof ๐‘ฅ in ๏ฟฝฬƒ๏ฟฝ and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) : ๐‘‹ โ†’ [0, 1] denotes the degreeof nonmembership of ๐‘ฅ in ๏ฟฝฬƒ๏ฟฝ. The degree of uncertainty(or intuitionistic index, or indeterminacy) of ๐‘ฅ to ๏ฟฝฬƒ๏ฟฝ isrepresented by ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1 โˆ’ (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) + ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)).

    For modeling daily life problems carrying imprecision,uncertainty, and vagueness more precisely and with highaccuracy than IFSs, Yager [9, 10] presented Pythagoreanfuzzy sets (PFSs), where PFSs are the generalizations ofIFSs. Yager [9, 10] also validated that IFSs are contained inPFSs. The concept of Pythagorean fuzzy set was originallydeveloped by Yager [8, 9], but the general mathematical formof Pythagorean fuzzy set was developed by Zhang and Xu[11].

    Definition 2 (Zhang and Xu [11]). A Pythagorean fuzzy set(PFS) ๏ฟฝฬƒ๏ฟฝ in ๐‘‹ proposed by Yager [8, 9] is mathematicallyformed as

    ๏ฟฝฬƒ๏ฟฝ = {โŸจ๐‘ฅ, ๐œ‡๏ฟฝฬƒ๏ฟฝ (๐‘ฅ) , ]๏ฟฝฬƒ๏ฟฝ (๐‘ฅ)โŸฉ : ๐‘ฅ โˆˆ ๐‘‹} (2)where the functions ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) : ๐‘‹ โ†’ [0, 1] represent the degreeof membership of ๐‘ฅ in ๏ฟฝฬƒ๏ฟฝ and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) : ๐‘‹ โ†’ [0, 1] representthe degree of nonmembership of ๐‘ฅ in ๏ฟฝฬƒ๏ฟฝ. For every ๐‘ฅ โˆˆ ๐‘‹, thefollowing condition should be satisfied:

    0 โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) + ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค 1. (3)

  • Complexity 3

    Definition 3 (Zhang and Xu [11]). For any PFS ๏ฟฝฬƒ๏ฟฝ in ๐‘‹, thevalue ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) is called Pythagorean index of the element ๐‘ฅ in ๏ฟฝฬƒ๏ฟฝwith

    ๐œ‹๏ฟฝฬƒ๏ฟฝ (๐‘ฅ) = โˆš1 โˆ’ {๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ) + ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ)}or ๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1 โˆ’ ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) . (4)

    In general, ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) is also called hesitancy (or indetermi-nacy) degree of the element ๐‘ฅ in ๏ฟฝฬƒ๏ฟฝ. It is obvious that 0 โ‰ค๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค 1, โˆ€๐‘ฅ โˆˆ ๐‘‹. It is worthy to note, for a PFS ๏ฟฝฬƒ๏ฟฝ, if๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0 then ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) + ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1, and if ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1 then

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0 and ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0. Similarly, if ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0 then๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)+๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1. If ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1 then ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0 and ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0.

    If ๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0 then ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) + ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1. If ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1 then๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0. For convenience, Zhang and Xu [11]

    denoted the pair (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) as Pythagorean fuzzy number(PFN), which is represented by ๐‘ = (๐œ‡๐‘, ]๐‘).

    Since PFSs are a generalized form of IFSs, we give thefollowing definition for PFSs.

    Definition 4. Let ๏ฟฝฬƒ๏ฟฝ be a PFS in ๐‘‹. ๏ฟฝฬƒ๏ฟฝ is called a completelyPythagorean if ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 0, โˆ€๐‘ฅ โˆˆ ๐‘‹.

    Peng et al. [16] suggested various mathematical opera-tions for PFSs as follows:

    Definition 5 (Peng et al. [16]). If ๏ฟฝฬƒ๏ฟฝ and ๐‘„ are two PFSs in ๐‘‹,then

    (i) ๏ฟฝฬƒ๏ฟฝ โ‰ค ๐‘„ if and only if โˆ€๐‘ฅ โˆˆ ๐‘‹, ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ);

    (ii) ๏ฟฝฬƒ๏ฟฝ = ๐‘„ if and only if โˆ€๐‘ฅ โˆˆ ๐‘‹, ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ);

    (iii) ๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„ = {โŸจ๐‘ฅ,max(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)),min(]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ))โŸฉ :๐‘ฅ โˆˆ ๐‘‹};

    (iv) ๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„ = {โŸจ๐‘ฅ,min(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)),max(]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ))โŸฉ :๐‘ฅ โˆˆ ๐‘‹};

    (v) ๏ฟฝฬƒ๏ฟฝ๐‘ = {โŸจ๐‘ฅ, ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)โŸฉ : ๐‘ฅ โˆˆ ๐‘‹}.

    We next define more operations of PFS in ๐‘‹, especiallyabout hedges of โ€œveryโ€, โ€œhighlyโ€, โ€œmore or lessโ€, โ€œconcentra-tionโ€, โ€œdilationโ€, and other terms that are needed to representlinguistic variables. We first define the n power (or exponent)of PFS as follows.

    Definition 6. Let ๏ฟฝฬƒ๏ฟฝ = {โŸจ๐‘ฅ, ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)โŸฉ : ๐‘ฅ โˆˆ ๐‘‹} be a PFS in๐‘‹. For any positive real number n, the n power (or exponent)of the PFS ๏ฟฝฬƒ๏ฟฝ, denoted by ๏ฟฝฬƒ๏ฟฝ๐‘›, is defined as

    ๏ฟฝฬƒ๏ฟฝ๐‘› = {โŸจ๐‘ฅ, (๐œ‡๏ฟฝฬƒ๏ฟฝ (๐‘ฅ))๐‘› , โˆš1 โˆ’ (1 โˆ’ ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ))๐‘›โŸฉ : ๐‘ฅ โˆˆ ๐‘‹} . (5)It can be easily verified that, for any positive real number n,0 โ‰ค [๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)]๐‘› + [โˆš1 โˆ’ (1 โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ))๐‘›] โ‰ค 1, โˆ€๐‘ฅ โˆˆ ๐‘‹.

    By using Definition 6, the concentration and dilation of aPFS ๏ฟฝฬƒ๏ฟฝ can be defined as follows.Definition 7. The concentration ๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ) of a PFS ๏ฟฝฬƒ๏ฟฝ in ๐‘‹ isdefined as

    ๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ) = {โŸจ๐‘ฅ, ๐œ‡๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ) (๐‘ฅ) , ]๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ) (๐‘ฅ)โŸฉ : ๐‘ฅ โˆˆ ๐‘‹} (6)where ๐œ‡๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ)(๐‘ฅ) = [๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)]2 and ]๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ)(๐‘ฅ) =โˆš1 โˆ’ [1 โˆ’ ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)]2.

    Definition 8. The dilation ๐ท๐ผ๐ฟ(๏ฟฝฬƒ๏ฟฝ) of a PFS ๏ฟฝฬƒ๏ฟฝ in ๐‘‹ is definedas

    ๐ท๐ผ๐ฟ (๏ฟฝฬƒ๏ฟฝ) = {โŸจ๐‘ฅ, ๐œ‡๐ท๐ผ๐ฟ(๏ฟฝฬƒ๏ฟฝ) (๐‘ฅ) , ]๐ท๐ผ๐ฟ(๏ฟฝฬƒ๏ฟฝ) (๐‘ฅ)โŸฉ : ๐‘ฅ โˆˆ ๐‘‹} (7)where ๐œ‡๐ท๐ผ๐ฟ(๏ฟฝฬƒ๏ฟฝ)(๐‘ฅ) = [๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)]1/2 and ]๐ท๐ผ๐ฟ(๏ฟฝฬƒ๏ฟฝ)(๐‘ฅ) =โˆš1 โˆ’ [1 โˆ’ ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)]1/2.

    In next section, we construct new entropy measures forPFSs based on probability-type, entropy induced by distance,Pythagorean index, and max-min operation. We also give anaxiomatic definition of entropy for PFSs.

    3. New Fuzzy Entropies forPythagorean Fuzzy Sets

    We first provide a definition of entropy for PFSs. De Lucaand Termini [25] gave the axiomatic definition of entropymeasure of fuzzy sets. Later on, Szmidt and Kacprzyk [32]extended it to entropy of IFS. Since PFSs developed by Yager[8, 9] are generalized forms of IFSs, we use similar notionsas IFSs to give a definition of entropy for PFSs. Assume that๐‘ƒ๐น๐‘†(๐‘‹) represents the set of all PFSs in X.Definition 9. A real function ๐ธ : ๐‘ƒ๐น๐‘†(๐‘‹) โ†’ [0, 1] is calledan entropy on ๐‘ƒ๐น๐‘†(๐‘‹) if E satisfies the following axioms:(A0) (๐‘๐‘œ๐‘›๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–V๐‘–๐‘ก๐‘ฆ) 0 โ‰ค ๐ธ(๏ฟฝฬƒ๏ฟฝ) โ‰ค 1;(A1) (๐‘€๐‘–๐‘›๐‘–๐‘š๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ) ๐ธ(๏ฟฝฬƒ๏ฟฝ) = 0, ๐‘–๐‘“๐‘“ ๏ฟฝฬƒ๏ฟฝ ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ÿ๐‘–๐‘ ๐‘ ๐‘ ๐‘’๐‘ก;(A2) (๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ) ๐ธ(๏ฟฝฬƒ๏ฟฝ) = 1, ๐‘–๐‘“๐‘“ ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹;(A3) (๐‘…๐‘’๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›) ๐ธ(๏ฟฝฬƒ๏ฟฝ) โ‰ค ๐ธ(๐‘„), ๐‘–๐‘“ ๏ฟฝฬƒ๏ฟฝ is crisper than ๐‘„,

    i.e., โˆ€๐‘ฅ โˆˆ ๐‘‹,๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) for ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) ๐‘œ๐‘Ÿ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) ๐‘“๐‘œ๐‘Ÿ ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ);

    (A4) (๐‘†๐‘ฆ๐‘š๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘) ๐ธ(๏ฟฝฬƒ๏ฟฝ) = ๐ธ(๏ฟฝฬƒ๏ฟฝ๐‘), where ๏ฟฝฬƒ๏ฟฝ๐‘ is the comple-ment of ๏ฟฝฬƒ๏ฟฝ;

    For probabilistic-type entropy, we need to omit the axiom(A0).On the other hand, becausewe take the three-parameter๐œ‡2๏ฟฝฬƒ๏ฟฝ, ]2๏ฟฝฬƒ๏ฟฝ, and ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝas a probability mass function ๐‘ = {๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ, ]2๏ฟฝฬƒ๏ฟฝ, ๐œ‹2๏ฟฝฬƒ๏ฟฝ},

    the probabilistic-type entropy ๐ธ(๏ฟฝฬƒ๏ฟฝ) should attain a unique

  • 4 Complexity

    maximum at ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1/โˆš3, โˆ€๐‘ฅ โˆˆ๐‘‹. Therefore, for probabilistic-type entropy, we replace theaxiom (๐ด2) with (๐ด2) and the axiom (๐ด3) with (๐ด3) asfollows:

    (A2) (๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ) ๐ธ(๏ฟฝฬƒ๏ฟฝ) attains a unique maximum at๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) = 1/โˆš3, โˆ€๐‘ฅ โˆˆ ๐‘‹.(A3) (๐‘…๐‘’๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›) ๐ธ(๏ฟฝฬƒ๏ฟฝ) โ‰ค ๐ธ(๐‘„), if ๏ฟฝฬƒ๏ฟฝ is crisper than ๐‘„, i.e.,,โˆ€๐‘ฅ โˆˆ ๐‘‹, ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)

    for max(๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) โ‰ค 1/โˆš3 and ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ),]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) for min(๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) โ‰ฅ 1/โˆš3.

    In addition to the five axioms (A0)โˆผ(A4) in Definition 9,if we add the following axiom (A5), E is called ๐œŽ- entropy:(A5) (๐‘‰๐‘Ž๐‘™๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›) ๐ธ(๏ฟฝฬƒ๏ฟฝ) + ๐ธ(๐‘„) = ๐ธ(๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„) + ๐ธ(๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„),๐‘–๐‘“ โˆ€๐‘ฅ โˆˆ ๐‘‹

    ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) for ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) or๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) for ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ).

    We present a property for the axiom (๐ด3) when ๏ฟฝฬƒ๏ฟฝ iscrisper than ๐‘„.Property 10. If ๏ฟฝฬƒ๏ฟฝ is crisper than ๐‘„ in the axiom (๐ด3), thenwe have the following inequality:

    (๐œ‡๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ 1โˆš3)2 + (]๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ 1โˆš3)

    2

    + (๐œ‹๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ 1โˆš3)2

    โ‰ฅ (๐œ‡๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ 1โˆš3)2 + (]๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘˜) โˆ’ 1โˆš3)

    2

    + (]๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘˜) โˆ’ 1โˆš3)2 , โˆ€๐‘ฅ๐‘–

    (8)

    Proof. If ๏ฟฝฬƒ๏ฟฝ is crisper than ๐‘„, then โˆ€๐‘ฅ๐‘–, ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ค ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) for max(๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) โ‰ค 1/โˆš3. Therefore,we have that ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3 โ‰ค ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3 โ‰ค 0 and]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3 โ‰ค ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3 โ‰ค 0 and so 1 โˆ’ ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ1 โˆ’ ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ ]2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ 1/3, i.e., ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ 1/3

    and ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3 โ‰ฅ ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3 โ‰ฅ 0. Thus, we have(๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3)2 โ‰ฅ (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3)2, (]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3)2 โ‰ฅ(]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3)2, and (๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3)2 โ‰ฅ (๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โˆ’ 1/โˆš3)2.This induces the inequality. Similarly, the part of ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) โ‰ฅ ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) for min(๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) โ‰ฅ 1/โˆš3 alsoinduces the inequality. Hence, we prove the property.

    Since PFSs are generalized form of IFSs, the distancesbetween PFSs need to be computed by considering allthe three components ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) and ๐œ‹2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) in PFSs.

    The well-known distance between PFSs is Euclidean dis-tance. Therefore, the inequality in Property 10 indicates thatthe Euclidean distance between (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) and(1/โˆš3, 1/โˆš3, 1/โˆš3) is larger than the Euclidean distancebetween (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) and (1/โˆš3, 1/โˆš3, 1/โˆš3). Thismanifests that (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)) is located more nearbyto (1/โˆš3, 1/โˆš3, 1/โˆš3) than that of (๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ), ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ)).From a geometrical perspective, the axiom (๐ด3) is rea-sonable and logical because the closer PFS to the uniquepoint (1/โˆš3, 1/โˆš3, 1/โˆš3)withmaximumentropy reflects thegreater entropy of that PFS.

    We next construct entropies for PFSs based on a probabil-ity-type. To formulate the probability-type of entropy forPFSs, we use the idea of entropy๐ป๐›พ(๐‘)of Havrda and Chara-vaฬt [35] to a probability mass function ๐‘ = {๐‘1, . . . , ๐‘๐‘˜} with

    ๐ป๐›พ (๐‘) ={{{{{{{{{{{

    1๐›พ โˆ’ 1 (1 โˆ’๐‘˜โˆ‘๐‘–=1

    ๐‘๐›พ๐‘– ) , ๐›พ ฬธ= 1 (๐›พ > 0)โˆ’ ๐‘˜โˆ‘๐‘–=1

    ๐‘๐‘– log๐‘๐‘–, ๐›พ = 1.(9)

    Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} be a finite universe of discourses.Thus, for a PFS ๏ฟฝฬƒ๏ฟฝ in๐‘‹, we propose the following probability-type entropy for the PFS ๏ฟฝฬƒ๏ฟฝ with

    ๐‘’๐›พ๐ป๐ถ (๏ฟฝฬƒ๏ฟฝ) ={{{{{{{{{

    1๐‘›๐‘›โˆ‘๐‘–=1

    1๐›พ โˆ’ 1 [1 โˆ’ ((๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))๐›พ + (]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))๐›พ + (๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))๐›พ)] , ๐›พ ฬธ= 1 (๐›พ > 0)1๐‘›๐‘›โˆ‘๐‘–=1

    โˆ’ (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) log ๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) + ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) log ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) + ๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) log๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–)) , ๐›พ = 1. (10)

    Apparently, one may ask a question: โ€œAre these pro-posed entropy measures for PFSs are suitable and accept-able?โ€ To answer this question, we present the followingtheorem.

    Theorem 11. Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} be a finite universeof discourses. The proposed probabilistic-type entropy ๐‘’๐›พ๐ป๐ถ fora PFS ๏ฟฝฬƒ๏ฟฝ satisfies the axioms (๐ด1), (๐ด2), (๐ด3), and (๐ด4) inDefinition 9.

    To prove the axioms (๐ด2) and (๐ด3) for Theorem 11, weneed Lemma 12.

    Lemma 12. Let ๐œ“๐›พ(๐‘ฅ), 0 < ๐‘ฅ < 1 be defined as๐œ“๐›พ (๐‘ฅ) = {{{

    1๐›พ โˆ’ 1 (๐‘ฅ โˆ’ ๐‘ฅ๐›พ) , ๐›พ ฬธ= 1 (๐›พ > 0)โˆ’๐‘ฅ log ๐‘ฅ, ๐›พ = 1. (11)Then ๐œ“๐›พ(๐‘ฅ) is a strictly concave function of ๐‘ฅ.

  • Complexity 5

    Proof. By twice differentiating ๐œ“๐›พ(๐‘ฅ), we get ๐œ“๐›พ (๐‘ฅ) =โˆ’๐›พ๐‘ฅ๐›พโˆ’2 < 0, for ๐›พ ฬธ= 1(๐›พ > 0).Then ๐œ“๐›พ(๐‘ฅ) is a strictly concavefunction of ๐‘ฅ. Similarly, we can show that ๐œ“๐›พ=1(๐‘ฅ) = ๐‘ฅ log ๐‘ฅis also a strictly concave function of ๐‘ฅ.Proof of Theorem 11. It is easy to check that ๐‘’๐›พ๐ป๐ถ satisfiesthe axioms (๐ด1) and (๐ด4). We need only to prove that ๐‘’๐›พ๐ป๐ถsatisfies the axioms (๐ด2) and (๐ด3). To prove ๐‘’๐›พ๐ป๐ถ for the case๐›พ ฬธ= 1(๐›พ > 0) that satisfies the axiom (๐ด2), we use Lagrangemultipliers for ๐‘’๐›พ๐ป๐ถ with ๐น(๐œ‡2๏ฟฝฬƒ๏ฟฝ, ]2๏ฟฝฬƒ๏ฟฝ, ๐œ‹2๏ฟฝฬƒ๏ฟฝ, ๐œ†) = (1/๐‘›)โˆ‘๐‘›๐‘–=1(1/(๐›พ โˆ’1))[1 โˆ’ ((๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))๐›พ + (]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))๐›พ + (๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))๐›พ)] +โˆ‘๐‘›๐‘–=1 ๐œ†๐‘–(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) +

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)+๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)โˆ’1). By taking the derivative of ๐น(๐œ‡2๏ฟฝฬƒ๏ฟฝ, ]2๏ฟฝฬƒ๏ฟฝ, ๐œ‹2๏ฟฝฬƒ๏ฟฝ, ๐œ†)

    with respect to ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), and ๐œ†๐‘–, we obtain๐œ•๐น๐œ•๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = โˆ’๐›พ(๐›พ โˆ’ 1) (๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))๐›พโˆ’1 + ๐œ†๐‘– ๐‘ ๐‘’๐‘ก 0,

    ๐œ•๐น๐œ•]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = โˆ’๐›พ(๐›พ โˆ’ 1) (]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))๐›พโˆ’1 + ๐œ†๐‘– ๐‘ ๐‘’๐‘ก 0,

    ๐œ•๐น๐œ•๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = โˆ’๐›พ(๐›พ โˆ’ 1) (๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))๐›พโˆ’1 + ๐œ†๐‘– ๐‘ ๐‘’๐‘ก 0,๐œ•๐น๐œ•๐œ†๐‘– = ๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) + ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) + ๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ 1 ๐‘ ๐‘’๐‘ก 0.

    (12)

    From above PDEs, we get (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))๐›พโˆ’1 = ๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ and then๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = (๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ)1/(๐›พโˆ’1); (]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))๐›พโˆ’1 = ๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ and

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = (๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ)1/(๐›พโˆ’1); (๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))๐›พโˆ’1 = ๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ and๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = (๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ)1/(๐›พโˆ’1); ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) + ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) + ๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1 and

    then (๐œ†๐‘–(๐›พ โˆ’ 1)/๐›พ)1/(๐›พโˆ’1) = 1/3. Thus, we have ๐œ†๐‘– = (๐›พ/(๐›พ โˆ’1))(1/3)๐›พโˆ’1. We obtain ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ((๐›พ/(๐›พ โˆ’ 1))(1/3)๐›พโˆ’1(๐›พ โˆ’1)/๐›พ)1/(๐›พโˆ’1), and then ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1/โˆš3. We also get ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) =1/โˆš3 and ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1/โˆš3. That is, ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) =1/โˆš3, โˆ€๐‘–. Similarly, we can show that the equation of ๐‘’๐›พ๐ป๐ถ for

    the case ๐›พ = 1 also obtains ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) =1/โˆš3, โˆ€๐‘–. By Lemma 12, we learn that the function ๐œ“๐›พ(๐‘ฅ)is a strictly concave function of ๐‘ฅ. We know that ๐‘’๐›พ๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ) =(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ“๐›พ(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))+๐œ“๐›พ(]2๏ฟฝฬƒ๏ฟฝ((๐‘ฅ๐‘–)))+๐œ“๐›พ(๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))) and so ๐‘’๐›พ๐ป๐ถis also a strictly concave function. Therefore, it is provedthat ๐‘’๐›พ๐ป๐ถ attains a unique maximum at ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) =๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1/โˆš3, โˆ€๐‘–. We next prove that the probabilistic-type entropy ๐‘’๐›พ๐ป๐ถ satisfies the axiom (๐ด3). If ๏ฟฝฬƒ๏ฟฝ is crisperthan๐‘„, we notice that ๏ฟฝฬƒ๏ฟฝ is far away from (1/โˆš3, 1/โˆš3, 1/โˆš3)compared to ๐‘„ according to Property 10. However, ๐‘’๐›พ๐ป๐ถ is astrictly concave function and ๐‘’๐›พ๐ป๐ถ attains a unique maximumat ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ๐œ‹๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1/โˆš3, โˆ€๐‘–. From here, weobtain ๐‘’๐›พ๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ) โ‰ค ๐‘’๐›พ๐ป๐ถ(๐‘„) if ๏ฟฝฬƒ๏ฟฝ is crisper than๐‘„.Thus, we provethe axiom (๐ด3).

    Concept to determine uncertainty from a fuzzy set andits complement was first given by Yager [26]. In this section,we first use the similar idea to measure uncertainty of PFSsin terms of the amount of distinction between a PFS ๏ฟฝฬƒ๏ฟฝand its complement ๏ฟฝฬƒ๏ฟฝ๐‘. However, various distance measures

    are made to express numerically the difference between twoobjects with high accuracy. Therefore, the distance betweentwo fuzzy sets plays a vital role in theoretical and practicalissues. Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} be a finite universe of dis-courses; we first define a Pythagorean normalized Euclidean(PNE) distance between two Pythagorean fuzzy sets ๏ฟฝฬƒ๏ฟฝ, ๐‘„ โˆˆ๐‘ƒ๐น๐‘†๐‘ (๐‘‹) as๐œ๐ธ (๏ฟฝฬƒ๏ฟฝ, ๐‘„) = [ 12๐‘›

    ๐‘›โˆ‘๐‘–=1

    ((๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))2

    + (]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘˜))2 + (๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ ๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))2)]

    1/2(13)

    We next propose fuzzy entropy induced by the PNE distance๐œ๐ธ between the PFS ๏ฟฝฬƒ๏ฟฝ and its complement ๏ฟฝฬƒ๏ฟฝ๐‘. Let ๏ฟฝฬƒ๏ฟฝ ={โŸจ๐‘ฅ๐‘–, ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)โŸฉ : ๐‘ฅ๐‘– โˆˆ ๐‘‹} be any Pythagorean fuzzyset on the universe of discourse ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} withits complement ๏ฟฝฬƒ๏ฟฝ๐‘ = {โŸจ๐‘ฅ, ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)โŸฉ : ๐‘ฅ๐‘– โˆˆ ๐‘‹}. ThePNE distance between PFSs ๏ฟฝฬƒ๏ฟฝ and ๏ฟฝฬƒ๏ฟฝ๐‘ will be ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) =[(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2]1/2. Thus, we define a newentropy ๐‘’๐ธ for the PFS ๏ฟฝฬƒ๏ฟฝ as

    ๐‘’๐ธ (๏ฟฝฬƒ๏ฟฝ) = 1 โˆ’ ๐œ๐ธ (๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘)= 1 โˆ’ โˆš 1๐‘›

    ๐‘›โˆ‘๐‘–=1

    (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))

    2 (14)

    Theorem 13. Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} be a finite universe ofdiscourse. The proposed entropy ๐‘’๐ธ for a PFS ๏ฟฝฬƒ๏ฟฝ satisfies theaxioms (A0)โˆผ(A5) in Definition 9, and so ๐‘’๐ธ is a ๐œŽ-entropy.Proof. We first prove the axiom (A0). Since the distance๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) is between 0 and 1, 0 โ‰ค 1 โˆ’ ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) โ‰ค 1, andthen 0 โ‰ค ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) โ‰ค 1. The axiom (A0) is satisfied. For theaxiom (A1), if ๏ฟฝฬƒ๏ฟฝ is crisp, i.e., ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 0, ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1

    or ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1, ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 0, โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹, then ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ,๏ฟฝฬƒ๏ฟฝ๐‘) = โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2 = 1. Thus, we obtain๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) = 1 โˆ’ 1 = 0. Conversely, if ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) = 0, then ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) =1 โˆ’ ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) = 1, i.e., โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2 = 1.

    Thus, ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1, ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 0 or ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 0, ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = 1

    and so ๏ฟฝฬƒ๏ฟฝ is crisp. Thus, the axiom (A1) is satisfied. Now,we prove the axiom (A2). ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹,

    implies that ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) = 0, ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) = 1. Conversely,๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) = 1 implies ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) = 0. Thus, we have that๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) = ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹. For the axiom (A3), since๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ฅ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) for ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)

    imply that ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), then we

    have the distance โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹,โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2 โ‰ฅโˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2. Again from the axiom(A3) of Definition 9, we have ๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ฅ ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and

  • 6 Complexity

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) for ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ฅ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) implies that

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), and then

    the distance โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹,โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2โ‰ฅ โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2. From inequalitiesโˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2 โ‰ฅ โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2and โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2 โ‰ฅโˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2, we have ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) โ‰ฅ ๐œ๐ป(๐‘„,๐‘„๐‘), and then 1 โˆ’ ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) โ‰ค 1 โˆ’ ๐œ๐ธ(๐‘„, ๐‘„๐‘). This concludesthat ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) โ‰ค ๐‘’๐ธ(๐‘„). In this way the axiom (A3) is proved.Next, we prove the axiom (A4). Since โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹, ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) =1 โˆ’ ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ, ๏ฟฝฬƒ๏ฟฝ๐‘) = 1 โˆ’ โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2 =1 โˆ’ โˆš(1/๐‘›)โˆ‘๐‘›๐‘–=1(]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–))2, 1 โˆ’ ๐œ๐ธ(๏ฟฝฬƒ๏ฟฝ๐‘, ๏ฟฝฬƒ๏ฟฝ) = ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ๐‘).Hence, the axiom (A4) is satisfied. Finally, for provingthe axiom (A5), let ๏ฟฝฬƒ๏ฟฝ and ๐‘„ be two PFSs. Then, wehave

    (i) ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ฅ ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) for ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹, or

    (ii) ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ฅ ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) for ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ฅ

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹.

    From (i), we have โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹, ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), then max(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and min(]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–),

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–). That is, (๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„) = (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐‘„

    which implies that ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„) = ๐‘’๐ธ(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐‘’๐ธ(๐‘„).Also, โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹, min(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and max(]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–),]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), then (๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„) = (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๏ฟฝฬƒ๏ฟฝ

    implies ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„) = ๐‘’๐ธ(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ). Hence,๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) + ๐‘’๐ธ(๐‘„) = ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„) + ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„). Again, from (ii),we have โˆ€๐‘ฅ๐‘– โˆˆ ๐‘‹, ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โ‰ค ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–). Then,max(๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and min(]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) =

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), and so (๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„) = (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๏ฟฝฬƒ๏ฟฝ which implies

    that ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„) = ๐‘’๐ธ(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ). Also, โˆ€๐‘ฅ๐‘– โˆˆ๐‘‹,min(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) and max(]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) =

    ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), then (๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„) = (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐‘„ implies that๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„) = ๐‘’๐ธ(๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)) = ๐‘’๐ธ(๐‘„). Hence, ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ) +๐‘’๐ธ(๐‘„) = ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆฉ ๐‘„) + ๐‘’๐ธ(๏ฟฝฬƒ๏ฟฝ โˆช ๐‘„). Thus, we complete the proof

    of Theorem 13.

    Burillo and Bustince [31] gave fuzzy entropy of intu-itionistic fuzzy sets by using intuitionistic index. Now, wemodify and extend the similar concept to construct the newentropy measure of PFSs by using Pythagorean index asfollows.

    Let ๏ฟฝฬƒ๏ฟฝ be a PFS on ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›}. We define anentropy ๐‘’๐‘ƒ๐ผ of ๏ฟฝฬƒ๏ฟฝ using Pythagorean index as

    ๐‘’๐‘ƒ๐ผ (๏ฟฝฬƒ๏ฟฝ) = 1๐‘›๐‘›โˆ‘๐‘˜=1

    (1 โˆ’ ๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘˜) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘˜))

    = 1๐‘›๐‘›โˆ‘๐‘˜=1

    ๐œ‹2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘˜)

    (15)

    Theorem 14. Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} be a finite universeof discourse. The proposed entropy ๐‘’๐‘ƒ๐ผ for the PFS ๏ฟฝฬƒ๏ฟฝ usingPythagorean index satisfies the axioms (A0)โˆผ(A4) and (A5) inDefinition 9, and so it is a ๐œŽ- entropy.Proof. Similar to Theorem 13.

    We next propose a new and simple method to calculatefuzzy entropy of PFSs by using the ratio of min and maxoperations. All three components (๐œ‡2

    ๏ฟฝฬƒ๏ฟฝ, ]2๏ฟฝฬƒ๏ฟฝ, ๐œ‹2๏ฟฝฬƒ๏ฟฝ) of a PFS ๏ฟฝฬƒ๏ฟฝ are

    given equal importance to make the results more authenticand reliable. The new entropy is easy to be computed. Let ๏ฟฝฬƒ๏ฟฝbe a PFS on๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›}, and we define a new entropyfor the PFS ๏ฟฝฬƒ๏ฟฝ as

    ๐‘’min/max (๏ฟฝฬƒ๏ฟฝ) = 1๐‘›๐‘›โˆ‘๐‘–=1

    min (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) , ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) , ๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ))

    max (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) , ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) , ๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ)) (16)

    Theorem 15. Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›} be a finite universe ofdiscourse. The proposed entropy ๐‘’min/max for a PFS ๏ฟฝฬƒ๏ฟฝ satisfiesthe axioms (A0)โˆผ(A4) and (A5) in Definition 9, and so it is a๐œŽ-entropy.Proof. Similar to Theorem 13.

    Recently, Xue at el. [20] developed the entropy ofPythagorean fuzzy sets based on the similarity part and thehesitancy part that reflect fuzziness and uncertainty features,respectively. They defined the following Pythagorean fuzzyentropy for a PFS in a finite universe of discourses ๐‘‹ ={๐‘ฅ1, ๐‘ฅ2, . . . , ๐‘ฅ๐‘›}. Let ๏ฟฝฬƒ๏ฟฝ = {โŸจ๐‘ฅ๐‘–, ๐œ‡๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–), ]๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–)โŸฉ : ๐‘ฅ๐‘– โˆˆ ๐‘‹} be aPFS in๐‘‹. The Pythagorean fuzzy entropy, ๐ธ๐‘‹๐‘ข๐‘’(๏ฟฝฬƒ๏ฟฝ), proposedby Xue at el. [20], is defined as

    ๐ธ๐‘‹๐‘ข๐‘’ (๏ฟฝฬƒ๏ฟฝ)= 1๐‘›๐‘›โˆ‘๐‘–=1

    [1 โˆ’ (๐œ‡2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) + ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–)) ๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) ] . (17)

    The entropy ๐ธ๐‘‹๐‘ข๐‘’(๏ฟฝฬƒ๏ฟฝ) will be compared and exhibited in nextsection.

    4. Examples and Comparisons

    In this section, we present simple examples to observebehaviors of our proposed fuzzy entropies for PFSs. To makeit mathematically sound and practically acceptable as well aschoose better entropy by comparative analysis, we give anexample involving linguistic hedges. By considering linguisticexample, we use various linguistic hedges like โ€œmore or lesslargeโ€, โ€œquite largeโ€ โ€œvery largeโ€, โ€œvery very largeโ€, etc. inthe problems under Pythagorean fuzzy environment to select

  • Complexity 7

    Table 1: Comparison of the degree of fuzziness with different entropy measures of PFSs.

    ๐‘ƒ๐น๐‘†๐‘  ๐‘’1๐ป๐ถ ๐‘’2๐ป๐ถ ๐‘’๐ธ ๐‘’๐‘ƒ๐ผ ๐‘’min/max๏ฟฝฬƒ๏ฟฝ 0.4378 0.2368 0.2576 0.0126 0.0146๐‘„ 0.8131 0.5310 0.5700 0.5041 0.0643๏ฟฝฬƒ๏ฟฝ 1.0363 0.6276 0.7225 0.3527 0.3999Table 2: Degree of fuzziness from entropies of different PFSs.

    PFSs ๐‘’1๐ป๐ถ ๐‘’2๐ป๐ถ ๐‘’๐ธ ๐‘’๐‘ƒ๐ผ ๐‘’min/max๏ฟฝฬƒ๏ฟฝ1/2 0.6407 0.3923 0.3490 0.2736 0.2013๏ฟฝฬƒ๏ฟฝ 0.6066 0.3762 0.3386 0.3100 0.0957๏ฟฝฬƒ๏ฟฝ3/2 0.5375 0.3311 0.2969 0.3053 0.0542๏ฟฝฬƒ๏ฟฝ2 0.4734 0.2908 0.2638 0.2947 0.0233๏ฟฝฬƒ๏ฟฝ5/2 0.4231 0.2625 0.2414 0.2843 0.0108๏ฟฝฬƒ๏ฟฝ3 0.3848 0.2425 0.2267 0.2763 0.0050better entropy. We check the performance and behaviors ofthe proposed entropy measures in the environment of PFSsby exhibiting its simple intuition as follows.

    Example 1. Let ๏ฟฝฬƒ๏ฟฝ, ๐‘„, and ๏ฟฝฬƒ๏ฟฝ be singleton element PFSs inthe universe of discourse ๐‘‹ = {๐‘ฅ1} defined as ๏ฟฝฬƒ๏ฟฝ ={โŸจ๐‘ฅ1, 0.93, 0.35, 0.1122โŸฉ}, ๐‘„ = {โŸจ๐‘ฅ1, 0.68, 0.18, 0.7100โŸฉ}, and๏ฟฝฬƒ๏ฟฝ = {โŸจ๐‘ฅ1, 0.68, 0.43, 0.5939โŸฉ}. The numerical simulationresults of entropy measures ๐‘’1๐ป๐ถ, ๐‘’2๐ป๐ถ, ๐‘’๐ธ, ๐‘’๐‘ƒ๐ผ, and ๐‘’min/max areshown in Table 1 for the purpose of numerical comparison.From Table 1, we can see the entropy measures of ๏ฟฝฬƒ๏ฟฝ almosthave larger entropy than ๏ฟฝฬƒ๏ฟฝ and๐‘„without any conflict, except๐‘’๐‘ƒ๐ผ.That is, the degree of uncertainty of ๏ฟฝฬƒ๏ฟฝ is greater than thatof ๏ฟฝฬƒ๏ฟฝ and๐‘„. Furthermore, the behavior and performance of allentropies are analogous to each other, except ๐‘’๐‘ƒ๐ผ. Apparently,all entropies ๐‘’1๐ป๐ถ, ๐‘’2๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max behavewell, except ๐‘’๐‘ƒ๐ผ.

    However, in Example 1, it seems to be difficult forchoosing appropriate entropy that may provide a better wayto decide the fuzziness of PFSs. To overcome it, we givean example with structured linguistic variables to furtheranalyze and compare these entropy measures in Pythagoreanfuzzy environment. Thus, the following example with lin-guistic hedges is presented to further check behaviors andperformance of the proposed entropy measures.

    Example 2. Let ๏ฟฝฬƒ๏ฟฝ be a PFS in a universe of discourse ๐‘‹ ={1, 3, 5, 7, 9} defined as ๏ฟฝฬƒ๏ฟฝ = {โŸจ1, 0.1, 0.8โŸฉ, โŸจ3, 0.4, 0.7โŸฉ,โŸจ5, 0.5, 0.3โŸฉ, โŸจ7, 0.9, 0.0โŸฉ, โŸจ9, 1.0, 00โŸฉ}. By Definitions 6, 7, and8 where the concentration and dilation of ๏ฟฝฬƒ๏ฟฝ are definedas Concentration: ๐ถ๐‘‚๐‘(๏ฟฝฬƒ๏ฟฝ) = ๏ฟฝฬƒ๏ฟฝ2, Dilation: ๐ท๐ผ๐ฟ(๏ฟฝฬƒ๏ฟฝ)1/2. Byconsidering the characterization of linguistic variables, weuse the PFS ๏ฟฝฬƒ๏ฟฝ to define the strength of the structural linguisticvariable๐‘ƒ in๐‘‹ = {1, 3, 5, 7, 9}. Using above defined operators,we consider the following:๏ฟฝฬƒ๏ฟฝ1/2 is regarded as โ€œMore or less LARGEโ€; ๏ฟฝฬƒ๏ฟฝ is

    regarded as โ€œLARGEโ€;๏ฟฝฬƒ๏ฟฝ3/2 is regarded as โ€œQuite LARGEโ€; ๏ฟฝฬƒ๏ฟฝ2 is regarded asโ€œVery LARGEโ€;

    ๏ฟฝฬƒ๏ฟฝ5/2 is regarded as โ€œQuite very LARGEโ€; ๏ฟฝฬƒ๏ฟฝ3 isregarded as โ€œVery very LARGEโ€.

    We use above linguistic hedges for PFSs to compare theentropy measures ๐‘’1๐ป๐ถ, ๐‘’2๐ป๐ถ, ๐‘’๐ธ, ๐‘’๐‘ƒ๐ผ, and ๐‘’min/max, respectively.From intuitive point of view, the following requirement of (18)for a good entropy measure should be followed:

    ๐‘’ (๏ฟฝฬƒ๏ฟฝ1/2) > ๐‘’ (๏ฟฝฬƒ๏ฟฝ) > ๐‘’ (๏ฟฝฬƒ๏ฟฝ3/2) > ๐‘’ (๏ฟฝฬƒ๏ฟฝ2) > ๐‘’ (๏ฟฝฬƒ๏ฟฝ5/2)> ๐‘’ (๏ฟฝฬƒ๏ฟฝ3) . (18)

    After calculating these entropy measures ๐‘’1๐ป๐ถ, ๐‘’2๐ป๐ถ, ๐‘’๐ธ, ๐‘’๐‘ƒ๐ผ,and ๐‘’min/max for these PFSs, the results are shown in Table 2.From Table 2, it can be seen that these entropy measures๐‘’1๐ป๐ถ, ๐‘’2๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max satisfy the requirement of (18), but๐‘’๐‘ƒ๐ผ fails to satisfy (18) that has ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ3/2) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ2) >๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ5/2) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ3) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ1/2). Therefore, we say that thebehaviors of ๐‘’1๐ป๐ถ, ๐‘’2๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max are good, but ๐‘’๐‘ƒ๐ผ is not.

    In order to make more comparisons of entropy measures,we shake the degree of uncertainty of the middle value โ€œ5โ€ in๐‘‹.We decrease the degree of uncertainty for the middle pointin X, and then we observe the amount of changes and also theimpact of entropymeasureswhen the degree of uncertainty ofthe middle value in X is decreasing. To observe how differentPFS โ€œLARGEโ€ in X affects entropy measures, we modify ๏ฟฝฬƒ๏ฟฝ as

    โ€œLARGEโ€ = ๏ฟฝฬƒ๏ฟฝ1 = {โŸจ1, 0.1, 0.8โŸฉ , โŸจ3, 0.4, 0.7โŸฉ ,โŸจ5, 0.6, 0.5โŸฉ , โŸจ7, 0.9, 0.0โŸฉ , โŸจ9, 1.0, 00โŸฉ} (19)

    Again, we use PFSs ๏ฟฝฬƒ๏ฟฝ1/21 , ๏ฟฝฬƒ๏ฟฝ1, ๏ฟฝฬƒ๏ฟฝ3/21 , ๏ฟฝฬƒ๏ฟฝ21 , ๏ฟฝฬƒ๏ฟฝ5/21 , and ๏ฟฝฬƒ๏ฟฝ31 with lin-guistic hedges to compare and observe behaviors of entropymeasures.The results of degree of fuzziness for different PFSsfrom entropy measures are shown in Table 3. From Table 3,we can see that these entropies ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max satisfythe requirement of (18), but ๐‘’2๐ป๐ถ and ๐‘’๐‘ƒ๐ผ could not fulfill therequirement of (18) with ๐‘’2๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ) > ๐‘’2๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ1/2) > ๐‘’2๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ3/2) >๐‘’2๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ2) > ๐‘’2๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ5/2) > ๐‘’2๐ป๐ถ(๏ฟฝฬƒ๏ฟฝ3) and ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ) > (๏ฟฝฬƒ๏ฟฝ3/2) >๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ1/2) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ2) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ5/2) > ๐‘’๐‘ƒ๐ผ(๏ฟฝฬƒ๏ฟฝ3). Therefore, the

  • 8 Complexity

    Table 3: Degree of fuzziness from entropies of different PFSs.

    PFSs ๐‘’1๐ป๐ถ ๐‘’2๐ป๐ถ ๐‘’๐ธ ๐‘’๐‘ƒ๐ผ ๐‘’min/max๏ฟฝฬƒ๏ฟฝ1/21 0.6569 0.3952 0.3473 0.2360 0.2276๏ฟฝฬƒ๏ฟฝ11 0.6554 0.4086 0.3406 0.2560 0.1966๏ฟฝฬƒ๏ฟฝ3/21 0.5997 0.3757 0.2944 0.2440 0.1201๏ฟฝฬƒ๏ฟฝ21 0.5351 0.3356 0.2526 0.2281 0.0662๏ฟฝฬƒ๏ฟฝ5/21 0.4753 0.2993 0.2209 0.2145 0.0329๏ฟฝฬƒ๏ฟฝ31 0.4233 0.2682 0.1976 0.2038 0.0171Table 4: Degree of fuzziness from entropies of different PFSs.

    PFSs ๐ธ๐‘‹๐‘ข๐‘’ ๐‘’1๐ป๐ถ ๐‘’๐ธ ๐‘’min/max๏ฟฝฬƒ๏ฟฝ 0.4718 0.7532 0.3603 0.1270๐‘„ 0.4718 0.6886 0.3066 0.0470๏ฟฝฬƒ๏ฟฝ 0.4718 0.7264 0.4241 0.1111

    performance of ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max is good, and ๐‘’2๐ป๐ถ is notgood, but ๐‘’๐‘ƒ๐ผ presents very poor.We see that a little change inuncertainty for the middle value in X did not affect entropies๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max, and it brings a slight change in ๐‘’2๐ป๐ถ, butit gives an absolute big effect for entropy ๐‘’๐‘ƒ๐ผ.

    In viewing the results from Tables 1, 2, and 3, we maysay that entropy measures ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max present betterperformance. On the other hand, from the viewpoint ofstructured linguistic variables, we see that entropy measures๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max are more suitable, reliable, and wellsuited in Pythagorean fuzzy environment for exhibiting thedegree of fuzziness of PFS. We, therefore, recommend theseentropies ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max in a subsequent applicationinvolving multicriteria decision making.

    In the following example, we conduct the comparisonanalysis of proposed entropies ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max with theentropy ๐ธ๐‘‹๐‘ข๐‘’(๏ฟฝฬƒ๏ฟฝ), developed by Xue at el. [20], to demonstratethe advantages of our developed entropies ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and๐‘’min/max.Example 3. Let ๏ฟฝฬƒ๏ฟฝ, ๐‘„, and ๏ฟฝฬƒ๏ฟฝ be PFSs in the singleton universeset๐‘‹ = {๐‘ฅ1} as

    ๏ฟฝฬƒ๏ฟฝ = {โŸจ๐‘ฅ1, 0.305, 856, 0.4174โŸฉ} ,๐‘„ = {โŸจ๐‘ฅ1, 0.1850, 0.8530, 0.4880โŸฉ} ,๏ฟฝฬƒ๏ฟฝ = {โŸจ๐‘ฅ1, 0.4130, 0.8640, 0.2880โŸฉ} .

    (20)

    The degrees of entropy for different PFSs between the pro-posed entropies ๐‘’1๐ป๐ถ, ๐‘’๐ธ, ๐‘’min/max and the entropy ๐ธ๐‘‹๐‘ข๐‘’(๏ฟฝฬƒ๏ฟฝ) byXue at el. [20] are shown in Table 4. As can be seen fromTable 4, we find that despite having three different PFSs, theentropy measure ๐ธ๐‘‹๐‘ข๐‘’ could not distinguish the PFSs ๏ฟฝฬƒ๏ฟฝ, ๐‘„,and ๏ฟฝฬƒ๏ฟฝ. However, the proposed entropy measures ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and๐‘’min/max can actually differentiate these different PFSs ๏ฟฝฬƒ๏ฟฝ, ๐‘„,and ๏ฟฝฬƒ๏ฟฝ.

    5. Pythagorean Fuzzy Multicriterion DecisionMaking Based on New Entropies

    In this section, we construct a new multicriterion decisionmaking method. Specifically, we extend the technique fororder preference by similarity to an ideal solution (TOPSIS)to multicriterion decision making, based on the proposedentropy measures for PFSs. Impreciseness and vagueness isa reality of daily life which requires close attentions in thematters of management and decision. In real life settingwith decision making process, information available is oftenuncertain, vague, or imprecise. PFSs are found to be a power-ful tool to solve decision making problems involving uncer-tain, vague, or imprecise information with high precision. Todisplay practical reasonability and validity, we apply our pro-posed new entropies ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max in a multicriteriadecision making problem, involving unknown informationabout criteria weights for alternatives in Pythagorean fuzzyenvironment.

    We formalize the problem in the form of decision matrixin which it lists various project alternatives. We assume thatthere arem project alternatives and wewant to compare themon n various criteria ๐ถ๐‘—, ๐‘— = 1, 2, . . . , ๐‘›. Suppose, for eachcriterion, we have an evaluation value. For instance, the firstproject on the first criterion has an evaluation ๐‘ฅ11. The firstproject on the second criterion has an evaluation ๐‘ฅ12, andthe first project on nth criterion has an evaluation ๐‘ฅ1๐‘›. Ourobjective is to have these evaluations on individual criteriaand come up with a consolidated value for the project 1 anddo something similar to the project 2 and so on. We thenultimately obtain a value for each of the projects. Finally, wecan rank the projects with selecting the best one among allprojects.

    Let ๐ด = {๐ด1, ๐ด2, . . . , ๐ด๐‘š} be the set of alternatives, andlet the set of criteria for the alternatives ๐ด ๐‘–, ๐‘– = 1, 2, . . . , ๐‘šbe represented by ๐ถ๐‘—, ๐‘— = 1, 2, . . . , ๐‘›. The aim is to choosethe best alternative out of the n alternatives. The constructionsteps for the new Pythagorean fuzzy TOPSIS based on theproposed entropy measures are as follows.

  • Complexity 9

    Step 1 (construction of Pythagorean fuzzy decision matrix).Consider that the alternative ๐ด ๐‘– acting on the criteria ๐ถ๐‘— isrepresented in terms of Pythagorean fuzzy value ๏ฟฝฬƒ๏ฟฝ๐‘–๐‘— = (๐œ‡๐‘–๐‘—, ]๐‘–๐‘—,๐œ‹๐‘–๐‘—)๐‘, ๐‘– = 1, 2, . . . , ๐‘š, ๐‘— = 1, 2, . . . , ๐‘›, where ๐œ‡๐‘–๐‘— denotes thedegree of fulfillment, ]๐‘–๐‘— represents the degree of not fulfill-ment, and ๐œ‹๐‘–๐‘— represents the degree of hesitancy against the

    alternative ๐ด ๐‘– to the criteria๐ถ๐‘— with the following conditions:0 โ‰ค ๐œ‡2๐‘–๐‘— โ‰ค 1, 0 โ‰ค ]2๐‘–๐‘— โ‰ค 1, 0 โ‰ค ๐œ‹2๐‘–๐‘— โ‰ค 1, and๐œ‡2๐‘–๐‘—+]2๐‘–๐‘—+๐œ‹2๐‘–๐‘— = 1.Thedecisionmatrix๐ท = (๏ฟฝฬƒ๏ฟฝ๐‘–๐‘—)๐‘šร—๐‘› is constructed to handle the prob-lems involving multicriterion decision making, where thedecision matrix ๐ท = (๏ฟฝฬƒ๏ฟฝ๐‘–๐‘—)๐‘šร—๐‘› can be constructed as follows:

    ๐ท = (๏ฟฝฬƒ๏ฟฝ๐‘–๐‘—)๐‘šร—๐‘› =๐ถ1๐ด1๐ด2...๐ด๐‘š

    [[[[[[[[

    (๐œ‡11, ]11, ๐œ‹11)๐‘(๐œ‡21, ]21, ๐œ‹21)๐‘...(๐œ‡๐‘š1, ]๐‘š1, ๐œ‹๐‘š1)๐‘

    ๐ถ2(๐œ‡12, ]12, ๐œ‹12)๐‘(๐œ‡22, ]22, ๐œ‹22)๐‘...(๐œ‡๐‘š2, ]๐‘š2, ๐œ‹๐‘š2)๐‘

    โ‹… โ‹… โ‹…โ‹… โ‹… โ‹…โ‹… โ‹… โ‹…...โ‹… โ‹… โ‹…

    ๐ถ๐‘›(๐œ‡1๐‘›, ]1๐‘›, ๐œ‹1๐‘›)๐‘(๐œ‡2๐‘›, ]2๐‘›, ๐œ‹2๐‘›)๐‘...(๐œ‡๐‘š๐‘›, ]๐‘š๐‘›, ๐œ‹๐‘š๐‘›)๐‘

    ]]]]]]]](21)

    Step 2 (determination of the weights of criteria). In this step,the crux to the problem is that weights to criteria have tobe identified. The weights or priorities can be obtained bydifferent ways. Suppose that the criteria information weightsare unknown and therefore, the weights ๐‘ค๐‘—, ๐‘— = 1, 2, 3, . . . , ๐‘›of criteria for Pythagorean fuzzy entropy measures can beobtained by using ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max, respectively. Supposethe weights of criteria ๐ถ๐‘—, ๐‘— = 1, 2, . . . , ๐‘› are ๐‘ค๐‘—, ๐‘— =1, 2, 3, . . . , ๐‘› with 0 โ‰ค ๐‘ค๐‘— โ‰ค 1 and โˆ‘๐‘›๐‘—=1๐‘ค๐‘— = 1. Sinceweights of criteria are completely unknown, we proposea new entropy weighting method based on the proposedPythagorean fuzzy entropy measures as follows:

    ๐‘ค๐‘— = ๐ธ๐‘—โˆ‘๐‘›๐‘—=1 ๐ธ๐‘— (22)where the weights of the criteria ๐ถ๐‘— is calculated with ๐ธ๐‘— =(1/๐‘š)โˆ‘๐‘š๐‘–=1 ๏ฟฝฬƒ๏ฟฝ๐‘–๐‘—.Step 3 (Pythagorean fuzzy positive-ideal solution (PFPIS)and Pythagorean fuzzy negative-ideal solution (PFNIS)).In general, it is important to determine the positive-idealsolution (PIS) and negative-ideal solution (NIS) in a TOPSISmethod. Since the evaluation criteria can be categorized intotwo categories, benefit and cost criteria in TOPSIS, let๐‘€1 and๐‘€2 be the sets of benefit criteria and cost criteria in criteria๐ถ๐‘—, respectively. According to Pythagorean fuzzy sets and theprinciple of a TOPSISmethod, we define a Pythagorean fuzzyPIS (PFPIS) as follows:

    ๐ด+ = {โŸจ๐ถ๐‘—, (๐œ‡+๐‘— , ]+๐‘— , ๐œ‹+๐‘— )โŸฉ} ,๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ (๐œ‡+๐‘— , ]+๐‘— , ๐œ‹+๐‘— ) = (1, 0, 0) ,

    (๐œ‡โˆ’๐‘— , ]โˆ’๐‘— , ๐œ‹โˆ’๐‘— ) = (0, 1, 0) ,๐‘— โˆˆ ๐‘€1

    (23)

    Similarly, a Pythagorean fuzzy NIS (PFNIS) is defined as

    ๐ดโˆ’ = {โŸจ๐ถ๐‘—, (๐œ‡โˆ’๐‘— , ]โˆ’๐‘— , ๐œ‹โˆ’๐‘— )โŸฉ} ,

    ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ (๐œ‡โˆ’๐‘— , ]โˆ’๐‘— , ๐œ‹โˆ’๐‘— ) = (0, 1, 0) ,(๐œ‡+๐‘— , ]+๐‘— , ๐œ‹+๐‘— ) = (1, 0, 0) ,

    ๐‘— โˆˆ ๐‘€2(24)

    Step 4 (calculation of distance measures from PFPIS andPFNIS). In this step, we need to use a distance between twoPFSs. Following the similar idea from the previously definedPNE distance ๐œ๐ธ between two PFSs, we define a Pythagoreanweighted Euclidean (PWE) distance for any two PFSs ๏ฟฝฬƒ๏ฟฝ, ๐‘„ โˆˆ๐‘ƒ๐น๐‘†(๐‘‹) as๐œ๐‘ค๐ธ (๏ฟฝฬƒ๏ฟฝ, ๐‘„) = [12

    ๐‘›โˆ‘๐‘–=1

    ๐‘ค๐‘– ((๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ ๐œ‡2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))2

    + (]2๏ฟฝฬƒ๏ฟฝ(๐‘ฅ๐‘–) โˆ’ ]2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))2 + (๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–) โˆ’ ๐œ‹2๏ฟฝฬƒ๏ฟฝ (๐‘ฅ๐‘–))2)]

    1/2(25)

    We next use the PWE distance ๐œ๐‘ค๐ธ to calculate the distances๐ท+(๐ด ๐‘–) and ๐ทโˆ’(๐ด ๐‘–) of each alternative ๐ด ๐‘– from PFPIS andPFNIS, respectively, as follows:

    ๐ท+ (๐ด ๐‘–) = ๐‘‘๐ธ (A๐‘–,A+)= โˆš 12

    ๐‘›โˆ‘๐‘—=1

    ๐‘ค๐‘— [(1 โˆ’ ๐œ‡2๐‘–๐‘—)2 + (]2๐‘–๐‘—)2 + (1 โˆ’ ๐œ‡2๐‘–๐‘— โˆ’ ]2๐‘–๐‘—)2]๐ทโˆ’ (๐ด ๐‘–) = ๐‘‘๐ธ (A๐‘–,Aโˆ’)

    = โˆš 12๐‘›โˆ‘๐‘—=1

    ๐‘ค๐‘— [(๐œ‡2๐‘–๐‘—)2 + (1 โˆ’ ]2๐‘–๐‘—)2 + (1 โˆ’ ๐œ‡2๐‘–๐‘— โˆ’ ]2๐‘–๐‘—)2]

    (26)

    Step 5 (calculation of relative closeness degree and rankingof alternatives). The relative closeness degree ๏ฟฝฬƒ๏ฟฝ(๐ด ๐‘–) of each

  • 10 Complexity

    Table 5: Criteria to evaluate an audit company.

    Criteria Description of criteria

    Required experience and capability tomake independent decision (๐ถ1)

    Certification and required knowledge on accounting business and taxation law,understanding of management system, auditor should not be trembled or influenceby anyone, actions, decision and report should be based on careful analysis.

    The capability to comprehend differentbusiness needs (๐ถ2) Ability to work with different companies setups, analytical ability, planning andstrategy.Effective communication skills (๐ถ3) Mastered excellent communication skills, well versed in compelling report,convincing skills to present their reports, should be patient enough to elaborate

    points to the entire satisfaction of the auditee.

    Table 6: Pythagorean fuzzy decision matrices.

    Alternatives Criteria Evalutionโˆ—๐ถ1 ๐ถ2 ๐ถ3๐ด1 (0.5500, 0.4130, 0.7259) (0.6030, 0.51400, 0.6101) (0.5000, 0.1000, 0.8602)๐ด2 (0.4000, 0.2000, 0.8944) (0.4000, 0.2000, 0.8944) (0.4500, 0.5050, 0.7365)๐ด3 (0.5000, 0.1000, 0.8602) (0.6030, 0.51400, 0.6101) (0.5500, 0.4130, 0.7259)Table 7: Weight of criteria.

    ๐‘ค1 ๐‘ค2 ๐‘ค3๐ธ๐‘‹๐‘ข๐‘’ 0.3333 0.3333 0.3333๐‘’1๐ป๐ถ 0.2912 0.3646 0.3442๐‘’min/max 0.2209 0.4640 0.3151alternative ๐ด ๐‘– with respect to PFPIS and PFNIS is obtainedby using the following expression:

    ๏ฟฝฬƒ๏ฟฝ (๐ด ๐‘–) = ๐ทโˆ’ (๐ด ๐‘–)๐ทโˆ’ (๐ด ๐‘–) + ๐ท+ (๐ด ๐‘–) (27)Finally, the alternatives are ordered according to the

    relative closeness degrees. The larger value of the relativecloseness degrees reflects that an alternative is closer toPFPIS and farther from PFNIS, simultaneously. Therefore,the ranking order of all alternatives can be determinedaccording to ascending order of the relative closeness degrees.The most preferred alternative is the one with the highestrelative closeness degree.

    In the next example, we present a comparison between theproposed entropies ๐‘’1๐ป๐ถ and ๐‘’min/max with the entropy ๐ธ๐‘‹๐‘ข๐‘’by Xue at el. [20] based on PFSs for multicriteria decisionmaking problem. The prime objective of decision makers isto select a best alternative from a set of available alternativesaccording to some criteria in multicriteria decision makingprocess. Corruption is the misuse and mishandle of publicpower and resources for private and individual interest andbenefits, usually in the form of bribery and favouritism. Inaddition, corruption twists andmanipulates the basis of com-petitions by misallocating resources and slowing economicactivity (Wikipedia).

    Example 4. In this example, a real world problemon selectionof well renowned national or international audit company istaken into account to demonstrate the comparison analysis

    among the proposed probabilistic entropy ๐‘’1๐ป๐ถ and non-probabilistic entropy ๐‘’min/max with the entropy ๐ธ๐‘‹๐‘ข๐‘’ [20].To ensure the transparency and accountability of state runintuitions, the ministry of finance of a developing countryoffers quotations to select a renowned audit company toget unbiased and fair audit report to keep on tract theeconomic development of a state. The quotations which aregone through scrutiny process and found successful by acommittee are comprised of experts. The quotations whichare found successfully by the committee are called eligiblewhile the rest are rejected. A commission of experts isinvited to rank the audit companies {๐ด1, ๐ด2, ๐ด3} and toselect the best one on the basis of set criteria {๐ถ1, ๐ถ2, ๐ถ3}.The descriptions about criteria are given in Table 5, andPythagorean fuzzy decision matrices are presented in Table 6.The obtained weights of criteria from the entropies ๐‘’1๐ป๐ถ,๐‘’min/max, and ๐ธ๐‘‹๐‘ข๐‘’ are shown in Table 7. From Table 7, itis seen that the weights of criteria obtained by the entropy๐ธ๐‘‹๐‘ข๐‘’ are always the same despite having different alternatives.However, the proposed entropies ๐‘’1๐ป๐ถ and ๐‘’min/max correctlydifferentiate the weights of criteria for each alternative ๐ด ๐‘–.The weights of criteria in Table 7 are also used to calculatethe distances ๐ท+(๐ด ๐‘–) and๐ทโˆ’(๐ด ๐‘–) of each alternative ๐ด ๐‘– fromPFPIS and PFNIS, respectively, where the results are shownin Table 8. Furthermore, the relative closeness degrees ofeach alternative to ideal solution are shown in Table 9. It canbe seen that the relative closeness degrees obtained by theproposed entropies ๐‘’1๐ป๐ถ and ๐‘’min/max are different for differentalternatives๐ด ๐‘– , but the relative closeness degrees obtainedby the entropy ๐ธ๐‘‹๐‘ข๐‘’ [20] could not differentiate different

  • Complexity 11

    Table 8: Distance for each alternative.

    ๐ธ๐‘‹๐‘ข๐‘’ ๐ทโˆ’ (๐ด ๐‘–) ๐ท+ (๐ด ๐‘–) ๐‘’1๐ป๐ถ ๐ทโˆ’ (๐ด ๐‘–) ๐ท+ (๐ด ๐‘–) ๐‘’min/max ๐ทโˆ’ (๐ด ๐‘–) ๐ท+ (๐ด ๐‘–)๐ด1 0.7593 0.6476 ๐ด1 0.7587 0.6468 ๐ด1 0.7455 0.6363๐ด2 0.8230 0.7842 ๐ด2 0.8208 0.7830 ๐ด2 0.8269 0.7862๐ด3 0.7593 0.6476 ๐ด3 0.7493 0.6403 ๐ด3 0.7284 0.6244Table 9: Degree of relative closeness.

    ๐ธ๐‘‹๐‘ข๐‘’ ๐‘(๐ด ๐‘–) ๐‘’1๐ป๐ถ ๐‘(๐ด ๐‘–) ๐‘’min/max ๐‘(๐ด ๐‘–)๐ด1 0.5397 ๐ด1 0.5398 ๐ด1 0.5395๐ด2 0.5121 ๐ด2 0.5118 ๐ด2 0.5126๐ด3 0.5397 ๐ด3 0.5392 ๐ด3 0.5384Table 10: Ranking of alternatives by different methods.

    Method Ranking Best alternative๐ธ๐‘‹๐‘ข๐‘’ ๐ด2 โ‰บ ๐ด1 = ๐ด3 None๐‘’1๐ป๐ถ ๐ด2 โ‰บ ๐ด3 โ‰บ ๐ด1 ๐ด1๐‘’min/max ๐ด2 โ‰บ ๐ด3 โ‰บ ๐ด1 ๐ด1alternatives so that it gives bias ranking of alternatives. Theseranking results of different alternatives by the entropies ๐‘’1๐ป๐ถ,๐‘’min/max and ๐ธ๐‘‹๐‘ข๐‘’ are shown in Table 10. As can be seen, theranking of alternatives by the proposed entropies ๐‘’1๐ป๐ถ and๐‘’min/max is well; however, the entropy๐ธ๐‘‹๐‘ข๐‘’ [20] could not rankthe alternative ๐ด1 and ๐ด3. It is found that there is no conflictin ranking alternatives by using the proposed Pythagoreanfuzzy TOPSIS method based on the proposed entropies ๐‘’1๐ป๐ถand ๐‘’min/max. Totally, the comparative analysis shows that thebest alternative is ๐ด1.

    We next apply the constructed Pythagorean fuzzy TOP-SIS in multicriterion decision making for China-PakistanEconomic Corridor projects.

    Example 5. A case study in ranking China-Pakistan Eco-nomic Corridor projects on priorities basis in the light ofrelated expertsโ€™ opinions is used in order to demonstrate theefficiency of the proposed Pythagorean fuzzy TOPSIS beingapplied to multicriterion decision making. China-PakistanEconomic Corridor (CPEC) is a collection of infrastructureprojects that are currently under construction throughoutin Pakistan. Originally valued at $46 billion, the value ofCPEC projects is now worth $62 billion. CPEC is intendedto rapidly modernize Pakistani infrastructure and strengthenits economy by the construction of modern transportationnetworks, numerous energy projects, and special economiczones. CPEC became partly operational when Chinese cargowas transported overland to Gwadar Port for onward mar-itime shipment to Africa and West Asia (see Wikipedia). Itis not only to benefit China and Pakistan, but also to havepositive impact on other countries and regions. Under CPECprojects, it will have more frequent and free exchanges ofgrowth, people to people contacts, and integrated region ofshared destiny by enhancing understanding through aca-demic, cultural, regional knowledge, and activity of higher

    volume of flows in trades and businesses. The enhancementof geographical linkages and cooperation by awin-winmodelwill result in improving the life standard of people, road,rail, and air transportation systems and also sustainable andperpetual development in China and Pakistan.

    Now suppose the concern and relevant experts areallowed to rank the CPEC projects according to needs of bothcountries on priorities basis. Assume that initially there arefivemega projectswhich areGwadar Port (A1 ), Infrastructure(A2), Economic Zones (A3), Transportation and Energy(A4), and Social Sector Development (A5), according tothe following four criteria: time frame and infrastructuralimprovement (C1), maintenance and sustainability (C2),socioeconomic development (C3), and eco-friendly (C4). Adetailed description of such criteria is displayed in Table 11.Consider a decision organization with the five concerns,where relevant experts are authorized to rank the satisfactorydegree of an alternative with respect to the given criterion,which is represented by a Pythagorean fuzzy value (PFV).Theevaluation values of the five alternatives ๐ด ๐‘–, ๐‘– = 1, 2, . . . , 5with Pythagorean fuzzy decision matrix are given in Table 12.

    We next use entropymeasures ๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max basedon better performance in numerical analysis to calculate thecriteria weights ๐‘ค๐‘— using (22). These results are shown inTable 13. From Table 13, we can see that the criteria weightsand ranking of weights obtained by each entropy measure aredifferent. We find the distances๐ท+ and๐ทโˆ’ of each alternativefrom PFPIS and PFNIS using (23) and (24). The results areshown in Table 14. We also calculate the relative closenessdegrees ๏ฟฝฬƒ๏ฟฝ of alternatives using (27). The results are shownin Table 15. From Table 15, it can be clearly seen that, underdifferent entropy measures, the relative closeness degreesof alternatives obtained are different, but the gap betweenthese values are considerably small. Thus, the ranking ofalternatives is almost the same.The final ranking results fromdifferent entropies are shown in Table 16. From Table 16, itcan be identified that there is no conflict in selecting thebest alternative among alternatives by using the proposedPythagorean fuzzy TOPSIS method based on the entropies๐‘’1๐ป๐ถ, ๐‘’๐ธ, and ๐‘’min/max.There is only one conflict to be found indeciding the preference ordering of alternatives ๐ด4 and๐ด5 in๐‘’๐ธ. Hence, the results of ranking of alternatives according to

  • 12 Complexity

    Table 11: Criteria to assess CPEC projects.

    Criterion Description of criterion

    Time frame and infrastructuralimprovement ๐ถ1

    Roadmap to ensure timely completion of project without any interruption andhurdle and play a vital role in making infrastructural improvement anddevelopment

    Maintenance and sustainability ๐ถ2 Themaintenance, repair, reliability and sustainability of the projectSocioeconomic development ๐ถ3 Bring visible development and improvement in GDP, economy stability andprosperity, life expectancy, education, health, employment, personal dignity,

    personal safety and freedom

    Eco โˆ’ friendly ๐ถ4 Not harmful to the environment, contributes to green living, practices that helpconserve natural resources and prevent contribution to air, water and land pollution.Table 12: Pythagorean fuzzy decision matrix.

    Alternatives Criteria Evaluation๐ถ1 ๐ถ2 ๐ถ3 ๐ถ4๐ด1 (0.60, 0.50, 0.6245) (0.65, 0.45, 0.6124) (0.35, 0.70, 0.6225) (0.50, 0.70, 0.5099)๐ด2 (0.80, 0.40, 0.4472) (0.80, 0.40, 0.4472) (0.70, 0.30, 0.6481) (0.60, 0.30, 0.7416)๐ด3 (0.60, 0.50, 0.6245) (0.70, 0.50, 0.5099) (0.70, 0.35, 0.6225) (0.40, 0.20, 0.8944)๐ด4 (0.90, 0.30, 0.3162) (0.80, 0.35, 0.4873) (0.50, 0.30, 0.8124) (0.20, 0.50, 0.8426)๐ด5 (0.80, 0.40, 0.4472) (0.50, 0.30, 0.8124) (0.70, 0.50, 0.5099) (0.60, 0.50, 0.6245)Table 13: Entropies and weights of the criteria.

    ๐‘ค1 ๐‘ค2 ๐‘ค3 ๐‘ค4๐‘’1๐ป๐ถ 0.2487 0.2563 0.2585 0.2366๐‘’๐ธ 0.2063 0.2411 0.2539 0.2987๐‘’min/max 0.3048 0.2524 0.2141 0.2288Table 14: Distance for each alternative.

    ๐‘’1๐ป๐ถ ๐ทโˆ’ (๐ด ๐‘–) ๐ท+ (๐ด ๐‘–) ๐‘’๐ธ ๐ทโˆ’ (๐ด ๐‘–) ๐ท+ (๐ด ๐‘–) ๐‘’min/max ๐ทโˆ’ (๐ด ๐‘–) ๐ท+ (๐ด ๐‘–)๐ด1 0.5732 0.6297 ๐ด1 0.5608 0.6354 ๐ด1 0.5825 0.6196๐ด2 0.7757 0.4381 ๐ด2 0.7776 0.4557 ๐ด2 0.7741 0.4294๐ด3 0.7445 0.5848 ๐ด3 0.7592 0.6055 ๐ด3 0.7377 0.5865๐ด4 0.8012 0.5819 ๐ด4 0.7944 0.6163 ๐ด4 0.8049 0.5582๐ด5 0.7252 0.5268 ๐ด5 0.7180 0.5331 ๐ด5 0.7302 0.5195Table 15: Degree of relative closeness for each alternative.

    ๐‘’1๐ป๐ถ ๐‘(๐ด ๐‘–) ๐‘’๐ธ ๐‘(๐ด ๐‘–) ๐‘’min/max ๐‘(๐ด ๐‘–)๐ด1 0.4765 ๐ด1 0.4688 ๐ด1 0.4846๐ด2 0.6391 ๐ด2 0.6305 ๐ด2 0.6432๐ด3 0.5601 ๐ด3 0.5563 ๐ด3 0.5571๐ด4 0.5793 ๐ด4 0.5631 ๐ด4 0.5905๐ด5 0.5792 ๐ด5 0.5739 ๐ด5 0.5843

    the closeness degrees are made in an increasing order.There-fore, our analysis shows that the most feasible alternative is๐ด2 which is unanimously chosen by all proposed entropymeasures.

    6. Conclusions

    In this paper, we have proposed new fuzzy entropy measuresfor PFSs based on probabilistic-type, distance, Pythagorean

  • Complexity 13

    Table 16: Ranking of alternative for different entropies.

    Method Ranking Best alternative๐‘’1๐ป๐ถ ๐ด1 โ‰บ ๐ด3 โ‰บ ๐ด5 โ‰บ ๐ด4 โ‰บ ๐ด2 ๐ด2๐‘’๐ธ ๐ด1 โ‰บ ๐ด3 โ‰บ ๐ด4 โ‰บ ๐ด5 โ‰บ ๐ด2 ๐ด2๐‘’min/max ๐ด1 โ‰บ ๐ด3 โ‰บ ๐ด5 โ‰บ ๐ด4 โ‰บ ๐ด2 ๐ด2index, and minโ€“max operator. We have also extended non-probabilistic entropy to๐œŽ-entropy for PFSs.The entropymea-sures are considered especially for PFSs on finite universesof discourses. As these are not only used in purposes ofcomputing environment, but also used in more general casesfor large universal sets. Structured linguistic variables areused to analyze and compare behaviors and performanceof the proposed entropies for PFSs in different Pythagoreanfuzzy environments. We have examined and analyzed thesecomparison results obtained from these entropy measuresand then selected appropriate entropies which can be usefuland also be helpful to decide fuzziness of PFSs more clearlyand efficiently. We have utilized our proposed methods toperform comparison analysis with the most recently devel-oped entropy measure for PFSs. In this connection, we havedemonstrated a simple example and a problem involvingMCDM to show the advantages of our suggested methods.Finally, the proposed entropy measures of PFSs are appliedin an application to multicriterion decision making forranking China-Pakistan Economic Corridor projects. Basedon obtained results, we conclude that the proposed entropymeasures for PFSs are reasonable, intuitive, and well suitedin handling different kinds of problems, involving linguisticvariables and multicriterion decision making in Pythagoreanfuzzy environment.

    Data Availability

    All data are included in the manuscript.

    Conflicts of Interest

    The authors declare that they have no conflicts of interest.

    References

    [1] L. A. Zadeh, โ€œFuzzy sets,โ€ Information and Computation, vol. 8,pp. 338โ€“353, 1965.

    [2] I. B. Turksen, โ€œInterval valued fuzzy sets based on normalforms,โ€ Fuzzy Sets and Systems, vol. 20, no. 2, pp. 191โ€“210, 1986.

    [3] J. M. Mendel and R. I. B. John, โ€œType-2 fuzzy sets made simple,โ€IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 117โ€“127,2002.

    [4] R. R. Yager, โ€œOn the theory of bags,โ€ International Journal ofGeneral Systems: Methodology, Applications, Education, vol. 13,no. 1, pp. 23โ€“37, 1987.

    [5] K. T. Atanassov, โ€œIntuitionistic fuzzy sets,โ€ Fuzzy Sets andSystems, vol. 20, no. 1, pp. 87โ€“96, 1986.

    [6] V. Torra, โ€œHesitant fuzzy sets,โ€ International Journal of IntelligentSystems, vol. 25, no. 6, pp. 529โ€“539, 2010.

    [7] V. Torra andY. Narukawa, โ€œOn hesitant fuzzy sets and decision,โ€in Proceedings of the IEEE International Conference on FuzzySystems, pp. 1378โ€“1382, Jeju-do, Republic of Korea, August 2009.

    [8] R. R. Yager and A. M. Abbasov, โ€œPythagorean membershipgrades, complex numbers, and decision making,โ€ InternationalJournal of Intelligent Systems, vol. 28, no. 5, pp. 436โ€“452, 2013.

    [9] R. R. Yager, โ€œPythagorean fuzzy subsets,โ€ in Proceedings of the9th Joint World Congress on Fuzzy Systems and NAFIPS AnnualMeeting, IFSA/NAFIPS 2013, pp. 57โ€“61, Edmonton, Canada,June 2013.

    [10] R. R. Yager, โ€œPythagorean membership grades in multicriteriondecision making,โ€ IEEE Transactions on Fuzzy Systems, vol. 22,no. 4, pp. 958โ€“965, 2014.

    [11] X. L. Zhang and Z. S. Xu, โ€œExtension of TOPSIS to multiplecriteria decision making with pythagorean fuzzy sets,โ€ Interna-tional Journal of Intelligent Systems, vol. 29, no. 12, pp. 1061โ€“1078,2014.

    [12] X. L. Zhang, โ€œA novel approach based on similarity measurefor Pythagorean fuzzymulti-criteria group decision making,โ€International Journal of Intelligence Systems, vol. 31, pp. 593โ€“611,2016.

    [13] P. Ren, Z. Xu, and X. Gou, โ€œPythagorean fuzzy TODIMapproach to multi-criteria decision making,โ€ Applied Soft Com-puting, vol. 42, pp. 246โ€“259, 2016.

    [14] X. D. Peng and Y. Yang, โ€œPythagorean fuzzy Choquet integralbased MABAC method for multiple attribute group decisionmaking,โ€ International Journal of Intelligent Systems, vol. 31, no.10, pp. 989โ€“1020, 2016.

    [15] X. Zhang, โ€œMulticriteria Pythagorean fuzzy decision analysis:A hierarchicalQUALIFLEX approachwith the closeness index-based rankingmethods,โ€ Information Sciences, vol. 330, pp. 104โ€“124, 2016.

    [16] X. Peng, H. Yuan, and Y. Yang, โ€œPythagorean fuzzy informationmeasures and their applications,โ€ International Journal of Intel-ligent Systems, vol. 32, no. 10, pp. 991โ€“1029, 2017.

    [17] R. Zhang, J. Wang, X. Zhu, M. Xia, and M. Yu, โ€œSomeGeneralized Pythagorean Fuzzy Bonferroni Mean AggregationOperators with Their Application to Multiattribute GroupDecision-Making,โ€ Complexity, vol. 2017, Article ID 5937376, 16pages, 2017.

    [18] D. Liang and Z. Xu, โ€œThe new extension of TOPSIS methodfor multiple criteria decision making with hesitant Pythagoreanfuzzy sets,โ€ Applied Soft Computing, vol. 60, pp. 167โ€“179, 2017.

    [19] L. Peฬrez-Domฤฑฬnguez, L. A. Rodrฬฤฑguez-Picoฬn, A. Alvarado-Iniesta, D. Luviano Cruz, and Z. Xu, โ€œMOORA underPythagorean Fuzzy Set for Multiple Criteria Decision Making,โ€Complexity, vol. 2018, Article ID 2602376, 10 pages, 2018.

    [20] W. Xue, Z. Xu, X. Zhang, and X. Tian, โ€œPythagorean fuzzyLINMAP method based on the entropy theory for railwayproject investment decision making,โ€ International Journal ofIntelligent Systems, vol. 33, no. 1, pp. 93โ€“125, 2018.

    [21] L. Zhang and F.Meng, โ€œAn approach to interval-valued hesitantfuzzy multiattribute group decision making based on thegeneralized Shapley-Choquet integral,โ€ Complexity, vol. 2018,Article ID 3941847, 19 pages, 2018.

    [22] A. Guleria and R. K. Bajaj, โ€œPythagorean fuzzy informationmeasure for multicriteria decision making problem,โ€ Advancesin Fuzzy Systemsโ€”Applications andTheory, vol. 2018, Article ID8023013, 11 pages, 2018.

    [23] M. S. Yang andZ.Hussain, โ€œDistance and similarity measures ofhesitant fuzzy sets based on Hausdorff metric with applications

  • 14 Complexity

    to multi-criteria decision making and clustering,โ€ Soft Comput-ing, 2018.

    [24] Z. Hussain and M.-S. Yang, โ€œEntropy for hesitant fuzzy setsbased on Hausdorff metric with construction of hesitant fuzzyTOPSIS,โ€ International Journal of Fuzzy Systems, vol. 20, no. 8,pp. 2517โ€“2533, 2018.

    [25] A. de Luca and S. Termini, โ€œA definition of a nonprobabilisticentropy in the setting of fuzzy sets theory,โ€ Information andComputation, vol. 20, pp. 301โ€“312, 1972.

    [26] R. R. Yager, โ€œOn the measure of fuzziness and negation. PartI: membership in the unit interval,โ€ International Journal ofGeneral Systems, vol. 5, no. 4, pp. 189โ€“200, 1979.

    [27] B. Kosko, โ€œFuzzy entropy and conditioning,โ€ Information Sci-ences, vol. 40, no. 2, pp. 165โ€“174, 1986.

    [28] X. C. Liu, โ€œEntropy, distance measure and similarity measure offuzzy sets and their relations,โ€ Fuzzy Sets and Systems, vol. 52,no. 3, pp. 305โ€“318, 1992.

    [29] N. R. Pal and S. K. Pal, โ€œSome properties of the exponentialentropy,โ€ Information Sciences, vol. 66, no. 1-2, pp. 119โ€“137, 1992.

    [30] J.-L. Fan and Y.-L. Ma, โ€œSome new fuzzy entropy formulas,โ€Fuzzy Sets and Systems, vol. 128, no. 2, pp. 277โ€“284, 2002.

    [31] P. Burillo and H. Bustince, โ€œEntropy on intuitionistic fuzzy setsand on interval-valued fuzzy sets,โ€ Fuzzy Sets and Systems, vol.78, no. 3, pp. 305โ€“316, 1996.

    [32] E. Szmidt and J.Kacprzyk, โ€œEntropy for intuitionistic fuzzy sets,โ€Fuzzy Sets and Systems, vol. 118, no. 3, pp. 467โ€“477, 2001.

    [33] E. Szmidt and J. Baldwin, โ€œEntropy for intuitionistic fuzzy settheory and mass assignment theory,โ€ Notes on IFSs, vol. 10, pp.15โ€“28, 2004.

    [34] W. L. Hung and M. S. Yang, โ€œFuzzy entropy on intuitionisticfuzzy sets,โ€ International Journal of Intelligent Systems, vol. 21,no. 4, pp. 443โ€“451, 2006.

    [35] J. Havrda and F. S. Charvaฬt, โ€œQuantification method of classifi-cation processes. Concept of structural๐›ผ-entropy,โ€Kybernetika,vol. 3, pp. 30โ€“35, 1967.

  • Hindawiwww.hindawi.com Volume 2018

    MathematicsJournal of

    Hindawiwww.hindawi.com Volume 2018

    Mathematical Problems in Engineering

    Applied MathematicsJournal of

    Hindawiwww.hindawi.com Volume 2018

    Probability and StatisticsHindawiwww.hindawi.com Volume 2018

    Journal of

    Hindawiwww.hindawi.com Volume 2018

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawiwww.hindawi.com Volume 2018

    OptimizationJournal of

    Hindawiwww.hindawi.com Volume 2018

    Hindawiwww.hindawi.com Volume 2018

    Engineering Mathematics

    International Journal of

    Hindawiwww.hindawi.com Volume 2018

    Operations ResearchAdvances in

    Journal of

    Hindawiwww.hindawi.com Volume 2018

    Function SpacesAbstract and Applied AnalysisHindawiwww.hindawi.com Volume 2018

    International Journal of Mathematics and Mathematical Sciences

    Hindawiwww.hindawi.com Volume 2018

    Hindawi Publishing Corporation http://www.hindawi.com Volume 2013Hindawiwww.hindawi.com

    The Scientific World Journal

    Volume 2018

    Hindawiwww.hindawi.com Volume 2018Volume 2018

    Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisAdvances inAdvances in Discrete Dynamics in

    Nature and SocietyHindawiwww.hindawi.com Volume 2018

    Hindawiwww.hindawi.com

    Di๏ฟฝerential EquationsInternational Journal of

    Volume 2018

    Hindawiwww.hindawi.com Volume 2018

    Decision SciencesAdvances in

    Hindawiwww.hindawi.com Volume 2018

    AnalysisInternational Journal of

    Hindawiwww.hindawi.com Volume 2018

    Stochastic AnalysisInternational Journal of

    Submit your manuscripts atwww.hindawi.com

    https://www.hindawi.com/journals/jmath/https://www.hindawi.com/journals/mpe/https://www.hindawi.com/journals/jam/https://www.hindawi.com/journals/jps/https://www.hindawi.com/journals/amp/https://www.hindawi.com/journals/jca/https://www.hindawi.com/journals/jopti/https://www.hindawi.com/journals/ijem/https://www.hindawi.com/journals/aor/https://www.hindawi.com/journals/jfs/https://www.hindawi.com/journals/aaa/https://www.hindawi.com/journals/ijmms/https://www.hindawi.com/journals/tswj/https://www.hindawi.com/journals/ana/https://www.hindawi.com/journals/ddns/https://www.hindawi.com/journals/ijde/https://www.hindawi.com/journals/ads/https://www.hindawi.com/journals/ijanal/https://www.hindawi.com/journals/ijsa/https://www.hindawi.com/https://www.hindawi.com/