fuzzy description logics with general concept inclusionsstefborg/talks/quantlaworkshop2013.pdf ·...

68
Institut f ¨ ur Theoretische Informatik Lehrstuhl f ¨ ur Automatentheorie FUZZY DESCRIPTION LOGICS WITH GENERAL CONCEPT INCLUSIONS Stefan Borgwardt Tautewalde, Sep 11, 2013

Upload: others

Post on 15-Oct-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Institut fur Theoretische Informatik Lehrstuhl fur Automatentheorie

FUZZY DESCRIPTION LOGICS WITHGENERAL CONCEPT INCLUSIONS

Stefan Borgwardt

Tautewalde, Sep 11, 2013

Page 2: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Motivation

laura:Humanlaura:Femalelaura:Happy(laura, 1):has-agelaura:∃wears.Hatlaura:∃has-symptom.Coughlaura:∃has-disease.ColdHuman u ∃has-age.(≤12) v ChildChild u Female v Girl

... holds to degree / probability / possibility 0 ... 0.1 ... 0.5 ... 0.9 ... 1

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 1

Page 3: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Motivation

laura:Humanlaura:Femalelaura:Happy(laura, 1):has-agelaura:∃wears.Hatlaura:∃has-symptom.Coughlaura:∃has-disease.ColdHuman u ∃has-age.(≤12) v ChildChild u Female v Girl

... holds to degree / probability / possibility 0 ... 0.1 ... 0.5 ... 0.9 ... 1

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 1

Page 4: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Uncertainty and Vagueness

laura:∃wears.Hat

Probabilistic/Possibilistic DLs:

• probability/possibility distributions on possible worlds

• P-SHOIN (D) (Lukasiewicz 2008)

• Prob-ALC (Lutz and Schroder 2010)

• ALCN with possibilistic axioms (Hollunder 1995)

laura:Happy, (laura, elisabeth):likes

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

• two degrees of truth (false, true) are replaced by [0, 1] (Zadeh 1965)

• fuzzy sets A : ∆→ [0, 1] instead of sets A : ∆→ {0, 1}• conjunction, etc. are interpreted by appropriate truth functions

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 2

Page 5: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Uncertainty and Vagueness

laura:∃wears.Hat

Probabilistic/Possibilistic DLs:

• probability/possibility distributions on possible worlds

• P-SHOIN (D) (Lukasiewicz 2008)

• Prob-ALC (Lutz and Schroder 2010)

• ALCN with possibilistic axioms (Hollunder 1995)

laura:Happy, (laura, elisabeth):likes

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

• two degrees of truth (false, true) are replaced by [0, 1] (Zadeh 1965)

• fuzzy sets A : ∆→ [0, 1] instead of sets A : ∆→ {0, 1}• conjunction, etc. are interpreted by appropriate truth functions

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 2

Page 6: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Uncertainty and Vagueness

laura:∃wears.Hat

Probabilistic/Possibilistic DLs:

• probability/possibility distributions on possible worlds

• P-SHOIN (D) (Lukasiewicz 2008)

• Prob-ALC (Lutz and Schroder 2010)

• ALCN with possibilistic axioms (Hollunder 1995)

laura:Happy, (laura, elisabeth):likes

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

• two degrees of truth (false, true) are replaced by [0, 1] (Zadeh 1965)

• fuzzy sets A : ∆→ [0, 1] instead of sets A : ∆→ {0, 1}• conjunction, etc. are interpreted by appropriate truth functions

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 2

Page 7: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Uncertainty and Vagueness

laura:∃wears.Hat

Probabilistic/Possibilistic DLs:

• probability/possibility distributions on possible worlds

• P-SHOIN (D) (Lukasiewicz 2008)

• Prob-ALC (Lutz and Schroder 2010)

• ALCN with possibilistic axioms (Hollunder 1995)

laura:Happy, (laura, elisabeth):likes

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

• two degrees of truth (false, true) are replaced by [0, 1] (Zadeh 1965)

• fuzzy sets A : ∆→ [0, 1] instead of sets A : ∆→ {0, 1}• conjunction, etc. are interpreted by appropriate truth functions

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 2

Page 8: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Uncertainty and Vagueness

laura:∃wears.Hat

Probabilistic/Possibilistic DLs:

• probability/possibility distributions on possible worlds

• P-SHOIN (D) (Lukasiewicz 2008)

• Prob-ALC (Lutz and Schroder 2010)

• ALCN with possibilistic axioms (Hollunder 1995)

laura:Happy, (laura, elisabeth):likes

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

• two degrees of truth (false, true) are replaced by [0, 1] (Zadeh 1965)

• fuzzy sets A : ∆→ [0, 1] instead of sets A : ∆→ {0, 1}• conjunction, etc. are interpreted by appropriate truth functions

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 2

Page 9: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Uncertainty and Vagueness

laura:∃wears.Hat

Probabilistic/Possibilistic DLs:

• probability/possibility distributions on possible worlds

• P-SHOIN (D) (Lukasiewicz 2008)

• Prob-ALC (Lutz and Schroder 2010)

• ALCN with possibilistic axioms (Hollunder 1995)

laura:Happy, (laura, elisabeth):likes

Fuzzy DLs: (Straccia 2001; Tresp and Molitor 1998; Yen 1991)

• two degrees of truth (false, true) are replaced by [0, 1] (Zadeh 1965)

• fuzzy sets A : ∆→ [0, 1] instead of sets A : ∆→ {0, 1}• conjunction, etc. are interpreted by appropriate truth functions

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 2

Page 10: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 11: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z

• residual negation x = x ⇒ 0

• involutive negation ∼x = 1− x

• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 12: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z

• residual negation x = x ⇒ 0

• involutive negation ∼x = 1− x

• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 13: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:

• Godel (G): x ⊗ y = min{x, y}

• Product (Π): x ⊗ y = x · y• Łukasiewicz (Ł): x ⊗ y = max(0, x + y − 1)

• Ordinal sums, e.g. (0, 0.5,Π), (0.5, 1, Ł)

00.2

0.40.6

0.81 0

0.20.4

0.60.8

1

0

0.2

0.4

0.6

0.8

1

G

x

y

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 14: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:

• Godel (G): x ⊗ y = min{x, y}• Product (Π): x ⊗ y = x · y

• Łukasiewicz (Ł): x ⊗ y = max(0, x + y − 1)

• Ordinal sums, e.g. (0, 0.5,Π), (0.5, 1, Ł)

00.2

0.40.6

0.81 0

0.20.4

0.60.8

1

0

0.2

0.4

0.6

0.8

1

Π

x

y

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 15: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:

• Godel (G): x ⊗ y = min{x, y}• Product (Π): x ⊗ y = x · y• Łukasiewicz (Ł): x ⊗ y = max(0, x + y − 1)

• Ordinal sums, e.g. (0, 0.5,Π), (0.5, 1, Ł)

00.2

0.40.6

0.81 0

0.20.4

0.60.8

1

0

0.2

0.4

0.6

0.8

1

Ł

x

y

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 16: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:

• Godel (G): x ⊗ y = min{x, y}• Product (Π): x ⊗ y = x · y• Łukasiewicz (Ł): x ⊗ y = max(0, x + y − 1)

• Ordinal sums, e.g. (0, 0.5,Π), (0.5, 1, Ł)

00.2

0.40.6

0.81 0

0.20.4

0.60.8

1

0

0.2

0.4

0.6

0.8

1

⊗1

x

y

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 17: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Mathematical Fuzzy Logic

• t-norm ⊗ : [0, 1]× [0, 1]→ [0, 1]:associative, commutative, monotone, unit 1, (continuous)

Continuous t-norms:

• Godel (G): x ⊗ y = min{x, y}• Product (Π): x ⊗ y = x · y• Łukasiewicz (Ł): x ⊗ y = max(0, x + y − 1)

• Ordinal sums, e.g. (0, 0.5,Π), (0.5, 1, Ł)

00.2

0.40.6

0.81 0

0.20.4

0.60.8

1

0

0.2

0.4

0.6

0.8

1

⊗1

x

y

starts with product

ends with Łukasiewicz

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 3

Page 18: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy Description LogicsFuzzy interpretations I = (∆I , ·I):

• concept names: HappyI : ∆I → [0, 1]

• role names: likesI : ∆I ×∆I → [0, 1]

• individual names: lauraI ∈ ∆I

EL:

• conjunction (C u D)I(x) = CI(x)⊗ DI(x)

• top >I(x) = 1

• existential restriction (∃r.C)I(x) = supy∈∆I

rI(x, y)⊗ CI(y)

More constructors:

• AL = EL + ∀r.C• C: involutive negation ¬C

• N: residual negation �C

• I: implication C → D, bottom ⊥

⊗-IALC Π-NEL Ł-ELC

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 4

Page 19: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy Description LogicsFuzzy interpretations I = (∆I , ·I):

• concept names: HappyI : ∆I → [0, 1]

• role names: likesI : ∆I ×∆I → [0, 1]

• individual names: lauraI ∈ ∆I

EL:

• conjunction (C u D)I(x) = CI(x)⊗ DI(x)

• top >I(x) = 1

• existential restriction (∃r.C)I(x) = supy∈∆I

rI(x, y)⊗ CI(y)

More constructors:

• AL = EL + ∀r.C• C: involutive negation ¬C

• N: residual negation �C

• I: implication C → D, bottom ⊥

⊗-IALC Π-NEL Ł-ELC

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 4

Page 20: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy Description LogicsFuzzy interpretations I = (∆I , ·I):

• concept names: HappyI : ∆I → [0, 1]

• role names: likesI : ∆I ×∆I → [0, 1]

• individual names: lauraI ∈ ∆I

EL:

• conjunction (C u D)I(x) = CI(x)⊗ DI(x)

• top >I(x) = 1

• existential restriction (∃r.C)I(x) = supy∈∆I

rI(x, y)⊗ CI(y)

More constructors:

• AL = EL + ∀r.C• C: involutive negation ¬C

• N: residual negation �C

• I: implication C → D, bottom ⊥

⊗-IALC Π-NEL Ł-ELC

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 4

Page 21: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy Description LogicsFuzzy interpretations I = (∆I , ·I):

• concept names: HappyI : ∆I → [0, 1]

• role names: likesI : ∆I ×∆I → [0, 1]

• individual names: lauraI ∈ ∆I

EL:

• conjunction (C u D)I(x) = CI(x)⊗ DI(x)

• top >I(x) = 1

• existential restriction (∃r.C)I(x) = supy∈∆I

rI(x, y)⊗ CI(y)

More constructors:

• AL = EL + ∀r.C• C: involutive negation ¬C

• N: residual negation �C

• I: implication C → D, bottom ⊥

⊗-IALC Π-NEL Ł-ELC

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 4

Page 22: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy ReasoningOntology O: finite set of axioms:

• concept assertion 〈a:C . p〉: CI(aI) . p• role assertion 〈(a, b):r . p〉: rI(aI , bI) . p• GCI 〈C v D ≥ p〉: CI(x)⇒ DI(x) ≥ p for all x ∈ ∆I

p ⊗ CI(x) ≤ DI(x)

crisp if p = 1

Witnessed interpretations: (Hajek 2005)

(∃r.C)I(x) = maxy∈∆I

rI(x, y)⊗ CI(y).

Reasoning tasks:• ontology consistency:

Does O have a (witnessed) model?• concept satisfiability:

Is there a (witnessed) model I of O with CI(x) ≥ p for some x ∈ ∆I?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)• recommender systems with background knowledge• information retrieval, query relaxation

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 5

Page 23: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy ReasoningOntology O: finite set of axioms:

• concept assertion 〈a:C . p〉: CI(aI) . p• role assertion 〈(a, b):r . p〉: rI(aI , bI) . p• GCI 〈C v D ≥ p〉: CI(x)⇒ DI(x) ≥ p for all x ∈ ∆I

p ⊗ CI(x) ≤ DI(x)

crisp if p = 1

Witnessed interpretations: (Hajek 2005)

(∃r.C)I(x) = maxy∈∆I

rI(x, y)⊗ CI(y).

Reasoning tasks:• ontology consistency:

Does O have a (witnessed) model?• concept satisfiability:

Is there a (witnessed) model I of O with CI(x) ≥ p for some x ∈ ∆I?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)• recommender systems with background knowledge• information retrieval, query relaxation

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 5

Page 24: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy ReasoningOntology O: finite set of axioms:

• concept assertion 〈a:C . p〉: CI(aI) . p• role assertion 〈(a, b):r . p〉: rI(aI , bI) . p• GCI 〈C v D ≥ p〉: CI(x)⇒ DI(x) ≥ p for all x ∈ ∆I

p ⊗ CI(x) ≤ DI(x)

crisp if p = 1

Witnessed interpretations: (Hajek 2005)

(∃r.C)I(x) = maxy∈∆I

rI(x, y)⊗ CI(y).

Reasoning tasks:• ontology consistency:

Does O have a (witnessed) model?• concept satisfiability:

Is there a (witnessed) model I of O with CI(x) ≥ p for some x ∈ ∆I?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)• recommender systems with background knowledge• information retrieval, query relaxation

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 5

Page 25: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy ReasoningOntology O: finite set of axioms:

• concept assertion 〈a:C . p〉: CI(aI) . p• role assertion 〈(a, b):r . p〉: rI(aI , bI) . p• GCI 〈C v D ≥ p〉: CI(x)⇒ DI(x) ≥ p for all x ∈ ∆I

p ⊗ CI(x) ≤ DI(x)

crisp if p = 1

Witnessed interpretations: (Hajek 2005)

(∃r.C)I(x) = maxy∈∆I

rI(x, y)⊗ CI(y).

Reasoning tasks:• ontology consistency:

Does O have a (witnessed) model?• concept satisfiability:

Is there a (witnessed) model I of O with CI(x) ≥ p for some x ∈ ∆I?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)• recommender systems with background knowledge• information retrieval, query relaxation

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 5

Page 26: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy ReasoningOntology O: finite set of axioms:

• concept assertion 〈a:C . p〉: CI(aI) . p• role assertion 〈(a, b):r . p〉: rI(aI , bI) . p• GCI 〈C v D ≥ p〉: CI(x)⇒ DI(x) ≥ p for all x ∈ ∆I

p ⊗ CI(x) ≤ DI(x)

crisp if p = 1

Witnessed interpretations: (Hajek 2005)

(∃r.C)I(x) = maxy∈∆I

rI(x, y)⊗ CI(y).

Reasoning tasks:• ontology consistency:

Does O have a (witnessed) model?• concept satisfiability:

Is there a (witnessed) model I of O with CI(x) ≥ p for some x ∈ ∆I?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)• recommender systems with background knowledge• information retrieval, query relaxation

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 5

Page 27: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy ReasoningOntology O: finite set of axioms:

• concept assertion 〈a:C . p〉: CI(aI) . p• role assertion 〈(a, b):r . p〉: rI(aI , bI) . p• GCI 〈C v D ≥ p〉: CI(x)⇒ DI(x) ≥ p for all x ∈ ∆I

p ⊗ CI(x) ≤ DI(x)

crisp if p = 1

Witnessed interpretations: (Hajek 2005)

(∃r.C)I(x) = maxy∈∆I

rI(x, y)⊗ CI(y).

Reasoning tasks:• ontology consistency:

Does O have a (witnessed) model?• concept satisfiability:

Is there a (witnessed) model I of O with CI(x) ≥ p for some x ∈ ∆I?

Applications: (Ciaramella et al. 2010; Meghini, Sebastiani, and Straccia 2001)• recommender systems with background knowledge• information retrieval, query relaxation

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 5

Page 28: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau AlgorithmsTableau algorithm for ⊗-ALC without GCIs: (Bobillo and Straccia 2009)

〈a:C ≥ p〉 〈a:C = va :C〉, va :C ≥ p

〈(a, b):r ≥ p〉 〈(a, b):r = v(a,b):r 〉, v(a,b):r ≥ p

〈x :C u D = v〉 〈x :C = vx :C〉, 〈x :D = vx :D〉, v = vx :C ⊗ vx :D

. . .

〈x :∃r.C = v〉 〈(x, y):r = v(x,y):r 〉, 〈y :C = vy :C〉, v = v(x,y):r ⊗ vy :C

〈x :∃r.C = v〉, 〈(x, y):r = v ′〉 〈y :C = vy :C〉, v ≥ v ′ ⊗ vy :C

. . .

• deterministic exponential time• O is consistent iff the constraints have a solution (NP-hard)• NEXPTIME for Ł-ALC, EXPSPACE for Π-ALC• possible for any finite ordinal sum

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 6

Page 29: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau AlgorithmsTableau algorithm for ⊗-ALC without GCIs: (Bobillo and Straccia 2009)

〈a:C ≥ p〉 〈a:C = va :C〉, va :C ≥ p

〈(a, b):r ≥ p〉 〈(a, b):r = v(a,b):r 〉, v(a,b):r ≥ p

〈x :C u D = v〉 〈x :C = vx :C〉, 〈x :D = vx :D〉, v = vx :C ⊗ vx :D

. . .

〈x :∃r.C = v〉 〈(x, y):r = v(x,y):r 〉, 〈y :C = vy :C〉, v = v(x,y):r ⊗ vy :C

〈x :∃r.C = v〉, 〈(x, y):r = v ′〉 〈y :C = vy :C〉, v ≥ v ′ ⊗ vy :C

. . .

• deterministic exponential time• O is consistent iff the constraints have a solution (NP-hard)• NEXPTIME for Ł-ALC, EXPSPACE for Π-ALC• possible for any finite ordinal sum

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 6

Page 30: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau AlgorithmsTableau algorithm for ⊗-ALC without GCIs: (Bobillo and Straccia 2009)

〈a:C ≥ p〉 〈a:C = va :C〉, va :C ≥ p

〈(a, b):r ≥ p〉 〈(a, b):r = v(a,b):r 〉, v(a,b):r ≥ p

〈x :C u D = v〉 〈x :C = vx :C〉, 〈x :D = vx :D〉, v = vx :C ⊗ vx :D

. . .

〈x :∃r.C = v〉 〈(x, y):r = v(x,y):r 〉, 〈y :C = vy :C〉, v = v(x,y):r ⊗ vy :C

〈x :∃r.C = v〉, 〈(x, y):r = v ′〉 〈y :C = vy :C〉, v ≥ v ′ ⊗ vy :C

. . .

• deterministic exponential time• O is consistent iff the constraints have a solution (NP-hard)• NEXPTIME for Ł-ALC, EXPSPACE for Π-ALC• possible for any finite ordinal sum

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 6

Page 31: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau AlgorithmsTableau algorithm for ⊗-ALC without GCIs: (Bobillo and Straccia 2009)

〈a:C ≥ p〉 〈a:C = va :C〉, va :C ≥ p

〈(a, b):r ≥ p〉 〈(a, b):r = v(a,b):r 〉, v(a,b):r ≥ p

〈x :C u D = v〉 〈x :C = vx :C〉, 〈x :D = vx :D〉, v = vx :C ⊗ vx :D

. . .

〈x :∃r.C = v〉 〈(x, y):r = v(x,y):r 〉, 〈y :C = vy :C〉, v = v(x,y):r ⊗ vy :C

〈x :∃r.C = v〉, 〈(x, y):r = v ′〉 〈y :C = vy :C〉, v ≥ v ′ ⊗ vy :C

. . .

• deterministic exponential time• O is consistent iff the constraints have a solution (NP-hard)

• NEXPTIME for Ł-ALC, EXPSPACE for Π-ALC• possible for any finite ordinal sum

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 6

Page 32: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau AlgorithmsTableau algorithm for ⊗-ALC without GCIs: (Bobillo and Straccia 2009)

〈a:C ≥ p〉 〈a:C = va :C〉, va :C ≥ p

〈(a, b):r ≥ p〉 〈(a, b):r = v(a,b):r 〉, v(a,b):r ≥ p

〈x :C u D = v〉 〈x :C = vx :C〉, 〈x :D = vx :D〉, v = vx :C ⊗ vx :D

. . .

〈x :∃r.C = v〉 〈(x, y):r = v(x,y):r 〉, 〈y :C = vy :C〉, v = v(x,y):r ⊗ vy :C

〈x :∃r.C = v〉, 〈(x, y):r = v ′〉 〈y :C = vy :C〉, v ≥ v ′ ⊗ vy :C

. . .

• deterministic exponential time• O is consistent iff the constraints have a solution (NP-hard)• NEXPTIME for Ł-ALC, EXPSPACE for Π-ALC• possible for any finite ordinal sum

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 6

Page 33: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 34: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 35: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 36: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 37: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 38: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 39: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 40: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Fuzzy GCIs

• GCIs like 〈> v ∃r.> ≥ 1〉 can lead to cycles in the tableau

• blocking condition for Π-ALC with GCIs: (Bobillo and Straccia 2007)x is blocked by y if their assertions and constraints are isomorphic

• the algorithm is not sound(Baader and Penaloza 2011a; Bobillo, Bou, and Straccia 2011)

〈a:A ≥ 0.5〉, 〈A v ∃r.A ≥ 1〉, 〈> v ¬∃r.> ≥ 0.1〉

0.5 ≤ va :A, va :A ≤ vx1 :A · v(a,x1):r , v(a,x1):r ≤ 0.9,

vx1 :A ≤ vx2 :A · v(x1,x2):r , v(x1,x2):r ≤ 0.9,

vx2 :A ≤ vx3 :A · v(x2,x3):r , v(x2,x3):r ≤ 0.9

0.5 ·(10

9

)i ≤ vxi :A vx7 :A > 1 !

• undecidability results for variants of Π-ALC and Ł-ALC with GCIs(Baader and Penaloza 2011a,b; Cerami and Straccia 2011)

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 7

Page 41: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

(Un)Decidable Fuzzy DLs with GCIs

Consistency is undecidable (with crisp GCIs) in ... (Borgwardt and Penaloza 2012)• ... ⊗-NEL with crisp assertions if ⊗ starts with Ł• ... ⊗-ELC with ≥-assertions and ⊗-IAL with =-assertions for all continuous

t-norms except the Godel t-norm

Consistency is decidable (EXPTIME-complete) in ⊗-IAL with ≥-assertionsif ⊗ does not start with Ł (Borgwardt, Distel, and Penaloza 2012)

• residual negation is crisp: x =

{0 if x > 01 if x = 0

• restrict to crisp models of crisp ontologies

undecidablefuzzy DLs

constructorsNEL IAL ELC

[u,>,∃,�] [u,>,⊥,∃,∀,→] [u,>,∃,¬]

asse

rtio

ns crisp starts with Ł starts with Ł Π Ł

≥ starts with Ł starts with Ł not G

= starts with Ł not G not G

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 8

Page 42: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

(Un)Decidable Fuzzy DLs with GCIsConsistency is undecidable (with crisp GCIs) in ... (Borgwardt and Penaloza 2012)

• ... ⊗-NEL with crisp assertions if ⊗ starts with Ł• ... ⊗-ELC with ≥-assertions and ⊗-IAL with =-assertions for all continuous

t-norms except the Godel t-norm

Consistency is decidable (EXPTIME-complete) in ⊗-IAL with ≥-assertionsif ⊗ does not start with Ł (Borgwardt, Distel, and Penaloza 2012)

• residual negation is crisp: x =

{0 if x > 01 if x = 0

• restrict to crisp models of crisp ontologies

undecidablefuzzy DLs

constructorsNEL IAL ELC

[u,>,∃,�] [u,>,⊥,∃,∀,→] [u,>,∃,¬]

asse

rtio

ns crisp starts with Ł starts with Ł Π Ł

≥ starts with Ł starts with Ł not G

= starts with Ł not G not G

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 8

Page 43: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

(Un)Decidable Fuzzy DLs with GCIsConsistency is undecidable (with crisp GCIs) in ... (Borgwardt and Penaloza 2012)

• ... ⊗-NEL with crisp assertions if ⊗ starts with Ł• ... ⊗-ELC with ≥-assertions and ⊗-IAL with =-assertions for all continuous

t-norms except the Godel t-norm

Consistency is decidable (EXPTIME-complete) in ⊗-IAL with ≥-assertionsif ⊗ does not start with Ł (Borgwardt, Distel, and Penaloza 2012)

• residual negation is crisp: x =

{0 if x > 01 if x = 0

• restrict to crisp models of crisp ontologies

undecidablefuzzy DLs

constructorsNEL IAL ELC

[u,>,∃,�] [u,>,⊥,∃,∀,→] [u,>,∃,¬]

asse

rtio

ns crisp starts with Ł starts with Ł Π Ł

≥ starts with Ł starts with Ł not G

= starts with Ł not G not G

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 8

Page 44: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

(Un)Decidable Fuzzy DLs with GCIsConsistency is undecidable (with crisp GCIs) in ... (Borgwardt and Penaloza 2012)

• ... ⊗-NEL with crisp assertions if ⊗ starts with Ł• ... ⊗-ELC with ≥-assertions and ⊗-IAL with =-assertions for all continuous

t-norms except the Godel t-norm

Consistency is decidable (EXPTIME-complete) in ⊗-IAL with ≥-assertionsif ⊗ does not start with Ł (Borgwardt, Distel, and Penaloza 2012)

• residual negation is crisp: x =

{0 if x > 01 if x = 0

• restrict to crisp models of crisp ontologies

undecidablefuzzy DLs

constructorsNEL IAL ELC

[u,>,∃,�] [u,>,⊥,∃,∀,→] [u,>,∃,¬]

asse

rtio

ns crisp starts with Ł starts with Ł Π Ł

≥ starts with Ł starts with Ł not G

= starts with Ł not G not G

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 8

Page 45: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

(Un)Decidable Fuzzy DLs with GCIsConsistency is undecidable (with crisp GCIs) in ... (Borgwardt and Penaloza 2012)

• ... ⊗-NEL with crisp assertions if ⊗ starts with Ł• ... ⊗-ELC with ≥-assertions and ⊗-IAL with =-assertions for all continuous

t-norms except the Godel t-norm

Consistency is decidable (EXPTIME-complete) in ⊗-IAL with ≥-assertionsif ⊗ does not start with Ł (Borgwardt, Distel, and Penaloza 2012)

• residual negation is crisp: x =

{0 if x > 01 if x = 0

• restrict to crisp models of crisp ontologies

undecidablefuzzy DLs

constructorsNEL IAL ELC

[u,>,∃,�] [u,>,⊥,∃,∀,→] [u,>,∃,¬]

asse

rtio

ns crisp starts with Ł starts with Ł Π Ł

≥ starts with Ł starts with Ł not G

= starts with Ł not G not G

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 8

Page 46: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Complete Residuated De Morgan Lattices

More general:• complete distributive lattice (L,∨,∧, 0, 1)

• (generalized) t-norm ⊗ : L× L→ L:associative, commutative, monotone, unit 1, (“continuous”)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z• residual negation x = x ⇒ 0• involutive De Morgan negation ∼ : L→ L• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

1

∼b∼a ∼c

ba c

0

L-EL:• HappyI : ∆I → L• likesI : ∆I ×∆I → L• (∃r.C)I(x) =

∨y∈∆I

rI(x, y)⊗ CI(y)

〈(laura, elisabeth):likes = a〉, 〈(laura, stefan):likes = b〉

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 9

Page 47: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Complete Residuated De Morgan Lattices

More general:• complete distributive lattice (L,∨,∧, 0, 1)

• (generalized) t-norm ⊗ : L× L→ L:associative, commutative, monotone, unit 1, (“continuous”)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z• residual negation x = x ⇒ 0• involutive De Morgan negation ∼ : L→ L• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

1

∼b∼a ∼c

ba c

0

L-EL:• HappyI : ∆I → L• likesI : ∆I ×∆I → L• (∃r.C)I(x) =

∨y∈∆I

rI(x, y)⊗ CI(y)

〈(laura, elisabeth):likes = a〉, 〈(laura, stefan):likes = b〉

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 9

Page 48: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Complete Residuated De Morgan Lattices

More general:• complete distributive lattice (L,∨,∧, 0, 1)

• (generalized) t-norm ⊗ : L× L→ L:associative, commutative, monotone, unit 1, (“continuous”)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z• residual negation x = x ⇒ 0

• involutive De Morgan negation ∼ : L→ L• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

1

∼b∼a ∼c

ba c

0

L-EL:• HappyI : ∆I → L• likesI : ∆I ×∆I → L• (∃r.C)I(x) =

∨y∈∆I

rI(x, y)⊗ CI(y)

〈(laura, elisabeth):likes = a〉, 〈(laura, stefan):likes = b〉

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 9

Page 49: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Complete Residuated De Morgan Lattices

More general:• complete distributive lattice (L,∨,∧, 0, 1)

• (generalized) t-norm ⊗ : L× L→ L:associative, commutative, monotone, unit 1, (“continuous”)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z• residual negation x = x ⇒ 0• involutive De Morgan negation ∼ : L→ L• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

1

∼b∼a ∼c

ba c

0

L-EL:• HappyI : ∆I → L• likesI : ∆I ×∆I → L• (∃r.C)I(x) =

∨y∈∆I

rI(x, y)⊗ CI(y)

〈(laura, elisabeth):likes = a〉, 〈(laura, stefan):likes = b〉

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 9

Page 50: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Complete Residuated De Morgan Lattices

More general:• complete distributive lattice (L,∨,∧, 0, 1)

• (generalized) t-norm ⊗ : L× L→ L:associative, commutative, monotone, unit 1, (“continuous”)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z• residual negation x = x ⇒ 0• involutive De Morgan negation ∼ : L→ L• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

1

∼b∼a ∼c

ba c

0

L-EL:• HappyI : ∆I → L• likesI : ∆I ×∆I → L• (∃r.C)I(x) =

∨y∈∆I

rI(x, y)⊗ CI(y)

〈(laura, elisabeth):likes = a〉, 〈(laura, stefan):likes = b〉

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 9

Page 51: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Complete Residuated De Morgan Lattices

More general:• complete distributive lattice (L,∨,∧, 0, 1)

• (generalized) t-norm ⊗ : L× L→ L:associative, commutative, monotone, unit 1, (“continuous”)

• residuum⇒ : [0, 1]× [0, 1]→ [0, 1]: x ⊗ y ≤ z iff y ≤ x ⇒ z• residual negation x = x ⇒ 0• involutive De Morgan negation ∼ : L→ L• t-conorm x ⊕ y = ∼(∼x ⊗∼y)

1

∼b∼a ∼c

ba c

0

L-EL:• HappyI : ∆I → L• likesI : ∆I ×∆I → L• (∃r.C)I(x) =

∨y∈∆I

rI(x, y)⊗ CI(y)

〈(laura, elisabeth):likes = a〉, 〈(laura, stefan):likes = b〉

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 9

Page 52: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Reasoning over Finite Lattices

Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:(Bobillo, Delgado, et al. 2012; Straccia 2006)

• introduce cut-concepts and -roles Ap, rp for every p ∈ L

• Ap = all individuals x with AI(x) ≥ p

• A0.5 v A0.25, r0.5 v r0.25, . . . — needs role hierarchy (H)!

• 〈a:C u D ≥ p〉 a:⊔

q⊗q′=p Cq u Dq′

• 〈C v D ≥ p〉 {Cq v Dq′ | q ⇒ q′ ≥ p}• exponential in the size of O 2-EXPTIME

Satisfiability and consistency are EXPTIME-complete in L-IALC over finite L:(Borgwardt and Penaloza 2013a,c)

• combination of automata construction and tableaux rules

• PSPACE-complete without GCIs

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 10

Page 53: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Reasoning over Finite Lattices

Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:(Bobillo, Delgado, et al. 2012; Straccia 2006)

• introduce cut-concepts and -roles Ap, rp for every p ∈ L

• Ap = all individuals x with AI(x) ≥ p

• A0.5 v A0.25, r0.5 v r0.25, . . . — needs role hierarchy (H)!

• 〈a:C u D ≥ p〉 a:⊔

q⊗q′=p Cq u Dq′

• 〈C v D ≥ p〉 {Cq v Dq′ | q ⇒ q′ ≥ p}• exponential in the size of O 2-EXPTIME

Satisfiability and consistency are EXPTIME-complete in L-IALC over finite L:(Borgwardt and Penaloza 2013a,c)

• combination of automata construction and tableaux rules

• PSPACE-complete without GCIs

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 10

Page 54: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Reasoning over Finite Lattices

Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:(Bobillo, Delgado, et al. 2012; Straccia 2006)

• introduce cut-concepts and -roles Ap, rp for every p ∈ L

• Ap = all individuals x with AI(x) ≥ p

• A0.5 v A0.25, r0.5 v r0.25, . . . — needs role hierarchy (H)!

• 〈a:C u D ≥ p〉 a:⊔

q⊗q′=p Cq u Dq′

• 〈C v D ≥ p〉 {Cq v Dq′ | q ⇒ q′ ≥ p}

• exponential in the size of O 2-EXPTIME

Satisfiability and consistency are EXPTIME-complete in L-IALC over finite L:(Borgwardt and Penaloza 2013a,c)

• combination of automata construction and tableaux rules

• PSPACE-complete without GCIs

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 10

Page 55: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Reasoning over Finite Lattices

Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:(Bobillo, Delgado, et al. 2012; Straccia 2006)

• introduce cut-concepts and -roles Ap, rp for every p ∈ L

• Ap = all individuals x with AI(x) ≥ p

• A0.5 v A0.25, r0.5 v r0.25, . . . — needs role hierarchy (H)!

• 〈a:C u D ≥ p〉 a:⊔

q⊗q′=p Cq u Dq′

• 〈C v D ≥ p〉 {Cq v Dq′ | q ⇒ q′ ≥ p}• exponential in the size of O 2-EXPTIME

Satisfiability and consistency are EXPTIME-complete in L-IALC over finite L:(Borgwardt and Penaloza 2013a,c)

• combination of automata construction and tableaux rules

• PSPACE-complete without GCIs

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 10

Page 56: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Reasoning over Finite Lattices

Reduction to classical reasoning for L-ALC with GCIs over finite total orders L:(Bobillo, Delgado, et al. 2012; Straccia 2006)

• introduce cut-concepts and -roles Ap, rp for every p ∈ L

• Ap = all individuals x with AI(x) ≥ p

• A0.5 v A0.25, r0.5 v r0.25, . . . — needs role hierarchy (H)!

• 〈a:C u D ≥ p〉 a:⊔

q⊗q′=p Cq u Dq′

• 〈C v D ≥ p〉 {Cq v Dq′ | q ⇒ q′ ≥ p}• exponential in the size of O 2-EXPTIME

Satisfiability and consistency are EXPTIME-complete in L-IALC over finite L:(Borgwardt and Penaloza 2013a,c)

• combination of automata construction and tableaux rules

• PSPACE-complete without GCIs

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 10

Page 57: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Automata-Based Approach for Satisfiability

• adaptation of classical construction (Baader, Hladik, and Penaloza 2008)

• recognize tree-shaped models by looping tree automaton of exponential size

• satisfiability PSPACE-complete without GCIs

• not suited for consistency

∃likes.∃has-disease.> 7→ a, ∃has-disease.> 7→ 0, . . .

∃has-disease.> 7→ ∼a, ρ 7→ ∼b, . . . ρ 7→ 0, . . ....

...

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 11

Page 58: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Automata-Based Approach for Satisfiability

• adaptation of classical construction (Baader, Hladik, and Penaloza 2008)

• recognize tree-shaped models by looping tree automaton of exponential size

• satisfiability PSPACE-complete without GCIs

• not suited for consistency

∃likes.∃has-disease.> 7→ a, ∃has-disease.> 7→ 0, . . .

∃has-disease.> 7→ ∼a, ρ 7→ ∼b, . . . ρ 7→ 0, . . ....

...

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 11

Page 59: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Automata-Based Approach for Satisfiability

• adaptation of classical construction (Baader, Hladik, and Penaloza 2008)

• recognize tree-shaped models by looping tree automaton of exponential size

• satisfiability PSPACE-complete without GCIs

• not suited for consistency

∃likes.∃has-disease.> 7→ a, ∃has-disease.> 7→ 0, . . .

∃has-disease.> 7→ ∼a, ρ 7→ ∼b, . . . ρ 7→ 0, . . ....

...

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 11

Page 60: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Automata-Based Approach for Satisfiability

• adaptation of classical construction (Baader, Hladik, and Penaloza 2008)

• recognize tree-shaped models by looping tree automaton of exponential size

• satisfiability PSPACE-complete without GCIs

• not suited for consistency

∃likes.∃has-disease.> 7→ a, ∃has-disease.> 7→ 0, . . .

∃has-disease.> 7→ ∼a, ρ 7→ ∼b, . . . ρ 7→ 0, . . ....

...

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 11

Page 61: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau Algorithm for Consistency

• try all pre-completions of the assertions (Hollunder 1996)

• test satisfiability for each individual name

• consistency PSPACE-complete without GCIs

〈x :∃likes.∃has-disease.> ≥ a〉, 〈(x, y):likes = b〉

x∃likes.∃has-disease.> = a

y

∃has-disease.> = alikes = b

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 12

Page 62: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau Algorithm for Consistency

• try all pre-completions of the assertions (Hollunder 1996)

• test satisfiability for each individual name

• consistency PSPACE-complete without GCIs

〈x :∃likes.∃has-disease.> ≥ a〉, 〈(x, y):likes = b〉

x∃likes.∃has-disease.> = a

y

∃has-disease.> = alikes = b

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 12

Page 63: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Tableau Algorithm for Consistency

• try all pre-completions of the assertions (Hollunder 1996)

• test satisfiability for each individual name

• consistency PSPACE-complete without GCIs

〈x :∃likes.∃has-disease.> ≥ a〉, 〈(x, y):likes = b〉

x∃likes.∃has-disease.> = a

y

∃has-disease.> = alikes = b

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 12

Page 64: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Summary

• fuzzy DLs with GCIs over [0, 1] often undecidable or trivial

• tight complexity results for fuzzy DLs over finite lattices

Open questions:

• for some cases decidability still unknown

• in EL, consistency is trivial, but what about subsumption?(Borgwardt and Penaloza 2013b)

• tight complexity results without GCIs?

Thank you!

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 13

Page 65: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Summary

• fuzzy DLs with GCIs over [0, 1] often undecidable or trivial

• tight complexity results for fuzzy DLs over finite lattices

Open questions:

• for some cases decidability still unknown

• in EL, consistency is trivial, but what about subsumption?(Borgwardt and Penaloza 2013b)

• tight complexity results without GCIs?

Thank you!

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 13

Page 66: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

Summary

• fuzzy DLs with GCIs over [0, 1] often undecidable or trivial

• tight complexity results for fuzzy DLs over finite lattices

Open questions:

• for some cases decidability still unknown

• in EL, consistency is trivial, but what about subsumption?(Borgwardt and Penaloza 2013b)

• tight complexity results without GCIs?

Thank you!

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 13

Page 67: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

References I

Baader, Franz, Jan Hladik, and Rafael Penaloza (2008). “Automata can show PSPACE results for descriptionlogics”. In: Inform. Comput. 206.9-10, pages 1045–1056.Baader, Franz and Rafael Penaloza (2011a). “Are Fuzzy Description Logics with General Concept InclusionAxioms Decidable?” In: Proc. FUZZ-IEEE’11, pages 1735–1742.— (2011b). “On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm”. In: Proc.FroCoS’11. Volume 6989. LNCS, pages 55–70.Bobillo, Fernando, Felix Bou, and Umberto Straccia (2011). “On the Failure of the Finite Model Property in someFuzzy Description Logics”. In: Fuzzy Set. Syst. 172.1, pages 1–12.Bobillo, Fernando, Miguel Delgado, Juan Gomez-Romero, and Umberto Straccia (2012). “Joining Godel andZadeh Fuzzy Logics in Fuzzy Description Logics”. In: Int. J. Uncertain. Fuzz. 20.4, pages 475–508.Bobillo, Fernando and Umberto Straccia (2007). “A Fuzzy Description Logic with Product T-norm”. In: Proc.FUZZ-IEEE’07, pages 1–6.— (2009). “Fuzzy Description Logics with General T-norms and Datatypes”. In: Fuzzy Set. Syst. 160.23,pages 3382–3402.Borgwardt, Stefan, Felix Distel, and Rafael Penaloza (2012). “How Fuzzy is my Fuzzy Description Logic?” In:Proc. IJCAR’12. Volume 7364. LNAI, pages 82–96.Borgwardt, Stefan and Rafael Penaloza (2012). “Undecidability of Fuzzy Description Logics”. In: Proc. KR’12,pages 232–242.— (2013a). “Consistency Reasoning in Lattice-Based Fuzzy Description Logics”. In: Int. J. Approx. Reason. Inpress.— (2013b). “Positive Subsumption in Fuzzy EL with General t-norms”. In: Proc. IJCAI’13, pages 789–795.— (2013c). “The Complexity of Lattice-Based Fuzzy Description Logics”. In: J. Data Semant. 2.1, pages 1–19.

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 14

Page 68: Fuzzy Description Logics with General Concept Inclusionsstefborg/Talks/QuantLAWorkshop2013.pdf · Institut fur Theoretische Informatik¨ Lehrstuhl fur¨ Automatentheorie FUZZY DESCRIPTION

References II

Cerami, Marco and Umberto Straccia (2011). “On the Undecidability of Fuzzy Description Logics with GCIs withŁukasiewicz t-norm”. In: CoRR abs/1107.4212v3. http://arxiv.org/abs/1107.4212v3.Ciaramella, Alessandro, Mario G. C. A. Cimino, Francesco Marcelloni, and Umberto Straccia (2010). “CombiningFuzzy Logic and Semantic Web to Enable Situation-Awareness in Service Recommendation”. In: Proc. DEXA’10.Volume 6261. LNCS, pages 31–45.Hajek, Petr (2005). “Making Fuzzy Description Logic more General”. In: Fuzzy Set. Syst. 154.1, pages 1–15.Hollunder, Bernhard (1995). “An Alternative Proof Method for Possibilistic Logic and its Application toTerminological Logics”. In: Int. J. Approx. Reason. 12.2, pages 85–109.— (1996). “Consistency Checking Reduced to Satisfiability of Concepts in Terminological Systems”. In: Ann.Math. Artif. Intell. 18.2-4, pages 133–157.Lukasiewicz, Thomas (2008). “Expressive Probabilistic Description Logics”. In: Artif. Intell. 172.6–7,pages 852–883.Lutz, Carsten and Lutz Schroder (2010). “Probabilistic Description Logics for Subjective Uncertainty”. In: Proc.KR’10, pages 393–403.Meghini, Carlo, Fabrizio Sebastiani, and Umberto Straccia (2001). “A Model of Multimedia InformationRetrieval”. In: J. ACM 48.5, pages 909–970.Straccia, Umberto (2001). “Reasoning within Fuzzy Description Logics”. In: J. Artif. Intell. Res. 14,pages 137–166.— (2006). “Description Logics over Lattices”. In: Int. J. Uncertain. Fuzz. 14.1, pages 1–16.Tresp, Christopher B. and Ralf Molitor (1998). “A Description Logic for Vague Knowledge”. In: Proc. ECAI’98,pages 361–365.Yen, John (1991). “Generalizing Term Subsumption Languages to Fuzzy Logic”. In: Proc. IJCAI’91,pages 472–477.Zadeh, Lotfi A. (1965). “Fuzzy Sets”. In: Inform. Control 8.3, pages 338–353.

Tautewalde, Sep 11, 2013 Fuzzy Description Logics with GCIs 15