fundamentals of reliability engineering and applications part3of3

50
Fundamentals of Reliability Fundamentals of Reliability Engineering and Applications Part 3 of 3 E. A. Elsayed ©2011 ASQ & Presentation Elsayed Presented live on Dec 14 th , 2010 http://reliabilitycalendar.org/The_Re liability Calendar/Short Courses/Sh liability_Calendar/Short_Courses/Sh ort_Courses.html

Upload: asq-reliability-division

Post on 25-Jan-2015

1.714 views

Category:

Technology


3 download

DESCRIPTION

This is a three parts lecture series. The parts will cover the basics and fundamentals of reliability engineering. Part 1 begins with introduction of reliability definition and other reliability characteristics and measurements. It will be followed by reliability calculation, estimation of failure rates and understanding of the implications of failure rates on system maintenance and replacements in Part 2. Then Part 3 will cover the most important and practical failure time distributions and how to obtain the parameters of the distributions and interpretations of these parameters. Hands-on computations of the failure rates and the estimation of the failure time distribution parameters will be conducted using standard Microsoft Excel. Part 3. Failure Time Distributions 1.Constant failure rate distributions 2.Increasing failure rate distributions 3.Decreasing failure rate distributions 4.Weibull Analysis – Why use Weibull?

TRANSCRIPT

Page 1: Fundamentals of reliability engineering and applications part3of3

Fundamentals of ReliabilityFundamentals of Reliability Engineering and Applications

Part 3 of 3

E. A. Elsayed©2011 ASQ & Presentation ElsayedPresented live on Dec 14th, 2010

http://reliabilitycalendar.org/The_Reliability Calendar/Short Courses/Shliability_Calendar/Short_Courses/Short_Courses.html

Page 2: Fundamentals of reliability engineering and applications part3of3

ASQ Reliability DivisionASQ Reliability Division Short Course SeriesShort Course SeriesThe ASQ Reliability Division is pleased to present a regular series of short courses 

featuring leading international practitioners, academics and consultantsacademics, and consultants.

The goal is to provide a forum for the basic andThe goal is to provide a forum for the basic and continuing education of reliability 

professionals.

http://reliabilitycalendar.org/The_Reliability Calendar/Short Courses/Shliability_Calendar/Short_Courses/Short_Courses.html

Page 3: Fundamentals of reliability engineering and applications part3of3

1

Fundamentals of Reliability Engineering and Applications

E. A. [email protected]

Rutgers University

December 14, 2010

Page 4: Fundamentals of reliability engineering and applications part3of3

OutlinePart 1. Reliability Definitions

Reliability Definition…Time dependent characteristics

Failure Rate Availability MTTF and MTBF Time to First Failure Mean Residual Life Conclusions

2

Page 5: Fundamentals of reliability engineering and applications part3of3

OutlinePart 2. Reliability Calculations

1. Use of failure data 2. Density functions 3. Reliability function 4. Hazard and failure rates

3

Page 6: Fundamentals of reliability engineering and applications part3of3

OutlinePart 2. Reliability Calculations

1. Use of failure data 2. Density functions 3. Reliability function 4. Hazard and failure rates

4

Page 7: Fundamentals of reliability engineering and applications part3of3

OutlinePart 3. Failure Time Distributions

1. Constant failure rate distributions 2. Increasing failure rate distributions 3. Decreasing failure rate distributions 4. Weibull Analysis – Why use Weibull?

5

Page 8: Fundamentals of reliability engineering and applications part3of3

6

Empirical Estimate of F(t) and R(t)

When the exact failure times of units is known, weuse an empirical approach to estimate the reliabilitymetrics. The most common approach is the RankEstimator. Order the failure time observations (failuretimes) in an ascending order:

1 2 1 1 1... ...i i i n nt t t t t t t− + −≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

Page 9: Fundamentals of reliability engineering and applications part3of3

7

Empirical Estimate of F(t) and R(t)

is obtained by several methods

1. Uniform “naive” estimator

2. Mean rank estimator

3. Median rank estimator (Bernard)

4. Median rank estimator (Blom)

( )iF t

in

1i

n +0 30 4..

in−+

3 81 4

//

in−+

Page 10: Fundamentals of reliability engineering and applications part3of3

8

[ ][ ]

[ ]

( ) 1 ( ) 1 exp

1- ( ) exp 1 exp

1 ( )1ln

1 ( )1 ln ln ln ln

1 ( )ln ln

λ

λ

λ

λ

λ

λ

= − = − −

= −

=−

=−

⇒ = +−

= += +

F t R t t

F t t

tF t

tF t

tF t

y ty a bx

Exponential Distribution

8

Page 11: Fundamentals of reliability engineering and applications part3of3

Median Rank Calculations

9

i t (i) t(i+1) F=(i-0.3)/(n+0.4) R=1-F f(t) h(t)0 0 70 0 1 0.0014 0.00141 70 150 0.067307692 0.9327 0.0013 0.00142 150 250 0.163461538 0.8365 0.001 0.00133 250 360 0.259615385 0.7404 0.0009 0.00134 360 485 0.355769231 0.6442 0.0008 0.00135 485 650 0.451923077 0.5481 0.0006 0.00126 650 855 0.548076923 0.4519 0.0005 0.00127 855 1130 0.644230769 0.3558 0.0004 0.00128 1130 1540 0.740384615 0.2596 0.0002 0.00129 1540 - 0.836538462 0.1635

Page 12: Fundamentals of reliability engineering and applications part3of3

Failure Rate

10

0

0.0004

0.0008

0.0012

0.0016

0.002

0 1 2 3 4 5 6 7 8 9

Failu

re R

ate

Time

Failure Rate

Page 13: Fundamentals of reliability engineering and applications part3of3

Probability Density Function

11

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 1 2 3 4 5 6 7 8 9

Prob

abili

ty D

ensi

ty F

unct

ion

Time

Probability Density Function

Page 14: Fundamentals of reliability engineering and applications part3of3

Reliability Function

12

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Rel

iabi

lity

Time

Reliability Function

Page 15: Fundamentals of reliability engineering and applications part3of3

13

Exponential Distribution: Another Example

Given failure data:

Plot the hazard rate, if constant then use the exponential distribution with f(t), R(t) and h(t) as defined before.

We use a software to demonstrate these steps.

13

Page 16: Fundamentals of reliability engineering and applications part3of3

14

Input Data

14

Page 17: Fundamentals of reliability engineering and applications part3of3

15

Plot of the Data

15

Page 18: Fundamentals of reliability engineering and applications part3of3

16

Exponential Fit

16

Page 19: Fundamentals of reliability engineering and applications part3of3

Exponential Analysis

Page 20: Fundamentals of reliability engineering and applications part3of3

18

Weibull Model

• Definition

1

( ) exp 0, 0, 0t tf t tβ β

β β ηη η η

− = − > > ≥

( ) exp 1 ( )tR t F tβ

η

= − = −

1

( ) ( ) / ( ) tt f t R tβ

βλη η

= =

18

Page 21: Fundamentals of reliability engineering and applications part3of3

19

Weibull Model Cont.

1/0

1(1 )tMTTF t e dtβη ηβ

∞ −= = Γ +∫

22 2 1(1 ) (1 )Var η

β β

= Γ + − Γ +

1/Median life ((ln 2) )βη=

• Statistical properties

19

Page 22: Fundamentals of reliability engineering and applications part3of3

20

Versatility of Weibull Model

Hazard rate:

Time t

1β =

Constant Failure Rate Region

Haz

ard

Rat

e

0

Early Life Region

0 1β< <

Wear-Out Region

1β >

1

( ) ( ) / ( ) tt f t R tβ

βλη η

= =

20

Page 23: Fundamentals of reliability engineering and applications part3of3

21

Weibull Model

21

Page 24: Fundamentals of reliability engineering and applications part3of3

22

Weibull Analysis: Shape Parameter

22

Page 25: Fundamentals of reliability engineering and applications part3of3

23

Weibull Analysis: Shape Parameter

23

Page 26: Fundamentals of reliability engineering and applications part3of3

24

Weibull Analysis: Shape Parameter

24

Page 27: Fundamentals of reliability engineering and applications part3of3

25

Normal Distribution

25

Page 28: Fundamentals of reliability engineering and applications part3of3

26

Failure Data

26

Table 1: Failure Data

Design A Design BSample # Cycles Sample # Cycles

1 726,044 11 529,0822 615,432 12 729,9573 508,077 13 650,5704 807,863 14 445,8345 755,223 15 343,2806 848,953 16 959,9037 384,558 17 730,0498 666,686 18 730,6409 515,201 19 973,224

10 483,331 20 258,006

Page 29: Fundamentals of reliability engineering and applications part3of3

2727

( ) 1 ( ) 1 exp

1- ( ) exp

log

ln (1- ( )) =

1 ln ln ln ln1 ( )

tF t R t

tF t

Taking the

tF t

tF t

β

β

β

η

η

η

β β η

= − = − −

= −

⇒ = −−

Linearization of the Weibull Model

Page 30: Fundamentals of reliability engineering and applications part3of3

2828

2

1 ln ln ln ln1 ( )

,

using Excel

tF t

This is an equation of straight liney a bxUse linear regression obtain a and b by solving

y n a b x

xy a x b x

or by

β β η⇒ = −−

= +

= +

= +∑ ∑∑ ∑ ∑

Linearization of the Weibull Model

Page 31: Fundamentals of reliability engineering and applications part3of3

29

( ) 1 ( ) 1 exp

1 ln ln ln ln1 ( )

tF t R t

tF t

β

η

β β η

= − = − −

⇒ = −−

Calculations using Excel

• Weibull Plot

is linear function of ln(time).

• Estimate at ti using Bernard’s Formulaˆ ( )iF t

0.3ˆ ( )0.4i

iF tn−

=+

For n observed failure time data 1 2( , ,..., ,... )i nt t t t

29

Page 32: Fundamentals of reliability engineering and applications part3of3

3030

Linearization of the Weibull Model

Design A Cycles Rank

Median Ranks 1/(1-Median Rank) ln(ln(1/(1-Median Rank))) ln(Design A Cycles)

384,558 1 0.067307692 1.072164948 -2.663843085 12.8598499483,331 2 0.163461538 1.195402299 -1.72326315 13.088457508,077 3 0.259615385 1.350649351 -1.202023115 13.13838829515,201 4 0.355769231 1.552238806 -0.821666515 13.15231239615,432 5 0.451923077 1.824561404 -0.508595394 13.33007974666,686 6 0.548076923 2.212765957 -0.230365445 13.41007445726,044 7 0.644230769 2.810810811 0.032924962 13.4953659755,223 8 0.740384615 3.851851852 0.299032932 13.53476835807,863 9 0.836538462 6.117647059 0.593977217 13.60214777848,953 10 0.932692308 14.85714286 0.992688929 13.6517591

Page 33: Fundamentals of reliability engineering and applications part3of3

3131

Linearization of the Weibull Model

-3-2.5

-2-1.5

-1-0.5

00.5

11.5

12.8 13 13.2 13.4 13.6 13.8

ln(ln

(1/(1

-Med

ian

Ran

k)))

ln(Design A Cycles)

Line Fit Plot

Page 34: Fundamentals of reliability engineering and applications part3of3

3232

Linearization of the Weibull ModelSUMMARY OUTPUT

Regression StatisticsMultiple R 0.98538223R Square 0.97097815Adjusted R Square 0.96735041Standard Error 0.20147761Observations 10

ANOVAdf SS

Regression 1 10.86495309Residual 8 0.324745817Total 9 11.18969891

Coefficients Standard ErrorIntercept -57.1930531 3.464488033ln(Design A Cycles) 4.2524822 0.259929377

Beta (or Shape Parameter) =4.25Alpha (or Characteristic Life) =693,380

lnβ η

Page 35: Fundamentals of reliability engineering and applications part3of3

Reliability Plot

.0000

.1000

.2000

.3000

.4000

.5000

.6000

.7000

.8000

.9000

1.0000

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000

Surv

ival

Pro

babi

lity

Cycles

Page 36: Fundamentals of reliability engineering and applications part3of3

Input Data

Page 37: Fundamentals of reliability engineering and applications part3of3

Plots of the Data

Page 38: Fundamentals of reliability engineering and applications part3of3

Weibull Fit

Page 39: Fundamentals of reliability engineering and applications part3of3

Test for Weibull Fit

Page 40: Fundamentals of reliability engineering and applications part3of3

Parameters for Weibull

Page 41: Fundamentals of reliability engineering and applications part3of3

Weibull Analysis

Page 42: Fundamentals of reliability engineering and applications part3of3

Example 2: Input Data

Page 43: Fundamentals of reliability engineering and applications part3of3

Example 2: Plots of the Data

Page 44: Fundamentals of reliability engineering and applications part3of3

Example 2: Weibull Fit

Page 45: Fundamentals of reliability engineering and applications part3of3

Example 2:Test for Weibull Fit

Page 46: Fundamentals of reliability engineering and applications part3of3

Example 2: Parameters for Weibull

Page 47: Fundamentals of reliability engineering and applications part3of3

Weibull Analysis

Page 48: Fundamentals of reliability engineering and applications part3of3

46

Versatility of Weibull Model

Hazard rate:

Time t

1β =

Constant Failure Rate Region

Haz

ard

Rat

e

0

Early Life Region

0 1β< <

Wear-Out Region

1β >

1

( ) ( ) / ( ) tt f t R tβ

βλη η

= =

46

Page 49: Fundamentals of reliability engineering and applications part3of3

47

( ) 1 ( ) 1 exp

1 ln ln ln ln1 ( )

tF t R t

tF t

β

η

β β η

= − = − −

⇒ = −−

Graphical Model Validation

• Weibull Plot

is linear function of ln(time).

• Estimate at ti using Bernard’s Formulaˆ ( )iF t

0.3ˆ ( )0.4i

iF tn−

=+

For n observed failure time data 1 2( , ,..., ,... )i nt t t t

47

Page 50: Fundamentals of reliability engineering and applications part3of3

48

Example - Weibull Plot

• T~Weibull(1, 4000) Generate 50 data

10-5

100

105

0.01

0.02

0.05

0.10

0.25

0.50

0.75 0.90 0.96 0.99

Data

Prob

abilit

y

Weibull Probability Plot

0.632

η

βIf the straight line fits the data, Weibull distribution is a good model for the data

48