fundamentals of nanotechnology for agriculture · 2013. 8. 23. · fundamentals of nanotechnology...

42
Fundamentals of Nanotechnology for Agriculture Michael Ladisch 1 , Tom Huang 1 , Nathan Mosier 1 , and Robert Armstrong 2 1 Department of Agricultural and Biological Engineering LORRE Purdue University and 2 Center for Strategic Studies National Defense University 229 th ACS Meeting, San Diego, CA, Paper 205, March 17, 2005

Upload: others

Post on 19-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Fundamentals of Nanotechnologyfor Agriculture

Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

1Department of Agricultural and Biological EngineeringLORRE

Purdue Universityand

2Center for Strategic StudiesNational Defense University

229th ACS Meeting, San Diego, CA, Paper 205, March 17, 2005

Page 2: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Acknowledgements

Research supported by USDA ARS Contract 1935-42000-035 National Defense University (DAB J29-03-P-0022)

Richard Linton, Director, Center of Food Safety Engineering

Randy Woodson Dean, School of Agriculture

Page 3: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Nanoscience and Nanotechnology

Nanoscience:Fabrication, study and modeling of devices and structures where at least one dimension is 200 nm or smaller.

Nanotechnology:Enables devices that are compact, portable, energy efficient, integrate sensing, and carry out complex functions of a full-scale laboratory

Page 4: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

DNA as a BarcodeShort specific DNA sequences for identifying

species (cost of “readers” is decreasing)

Cytochrome C oxidase I

all species have the enzyme with variations from one species to another

May work for birds but not plants – need to identify another gene.

Marshall, Science, 2005

Page 5: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Radio Frequency Identification as a Barcode

RFID (Radio Frequency Identification)

Integrated circuit on a small silicon chip attached to a small, flexible antenna, creating a tag. Integrated circuit provides data storage to record and store information.

Reader sends a signal to the tag.

tag absorbs some of the RF energy from the reader signal and then reflects the RF energy as a return radio signal containing information from its memory.

From Alien website: http://www.alientechnology.com

Page 6: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Microfluidics

Movement of fluids at microscopic level Micron-sized channels and featuresApplications

BiosensorsMicro-bioseparationsPathogen detection

Page 7: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Benefits: Microfluidic Systems-Interrogation of fluid samples

MiniaturizationConsumes less reagentsEnables higher sensitivityShorter analysis time

Page 8: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Rapid Prototyping using PDMS UV

High resolution transparency as maskphotoresistSiO2 or silicone substrate

Develop photoresist obtains master

Pour PDMS over master Cure 70 °C for 1 hour

PDMS

PDMS Release PDMS from master and seal against a flat substrate

Microchannels formed. PDMS

Process takes a day or more

Page 9: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

The Need

Simple and rapid fabricationWell defined surface chemistries Flexibility and adaptabilityAmendable for rapid prototyping

techniques

Page 10: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Microfiber Assisted Fabrication in 15 minFlat PDMS cover

Glass fiber (~12 µm diameter)

PDMS

SiO2

SiO2, glass, or PDMS substrate

1 µL labeled avidin (green)

Glass fiber

t = 3 minGlass substrateSiO2 substrate

(a) (b) (c)

Flow channel

1 nL/mm channel

Page 11: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Mixing in Nanoliter Well

Glass fiber (~12 µm dia)PDMS

(a)SiO2 substrate

1 nL well at intersectionLabeled BSA (red, 200 µg/ml)

Labeled avidin (green, 200 µg/ml) t= ~3 minutes(b)

Page 12: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Micro-scale Separation

Derivatize channels with ion exchange bioreceptor

Assemble micro-deviceUse pre-derivatized particles

Page 13: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Commercially Available Micro/Nano Particles

Type Surface Chemistry Size(µm)

Surface charge

Silica Hydroxyl -OH 0.1-7.9 -Polystyrene Hydroxyl -OH 0.7-7.9 -Polystyrene Carboxyl -COOH 0.7-7.9 --Polystyrene Sulfonate -SO3

0.7-7.9 ---Polystyrene Amino -NH3

0.7-7.9 +Polystyrene Dimethylamino -NH(CH3)2

0.7-7.9 ++

Data from Spherotec, Inc. Libertyville IL.

Page 14: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Protein Coated Micro/Nano ParticlesType Surface pI Size

(µm)Surface Affinity

Polystyrene Antibody (IgG) NA 0.7-7.9 Binds protein A, G

Polystyrene Avdin 10.0 0.7-7.9 Binds to biotin

Polystyrene Streptavidin 5.0 0.7-7.9 Binds to bitoin

Polystyrene Biotin NA 0.7-7.9 Binds to strept/avidin

Polystyrene Protein A 4.9 0.7-7.9 Binds to IgGantibody

Polystyrene Protein G 5.0 0.7-7.9 Binds to IgGantibody

Data from Spherotec, Inc. Libertyville IL.

Page 15: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Dip-coating Microfibers with Protein or Derivatized Particles

Glass fiber

EtOH

Ultra-sonic cleaning in EtOH for 5 min

Dip-coat in protein or particle slurry

Glass fiber coated with particles

Page 16: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Glass Fiber Coated with DimethylaminoBeads

Dimethyl-amino microbeads, 800 nm

OH OH OH

+N CH33

H

CH Bare glass fiber, 12 µm dia

Page 17: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Glass Fiber Coated with Streptavidin Beads

Streptavidin microbeads, 800 nm Biotin

+Glass fiber pre-coated with biotin-BSAStreptavidin

Page 18: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Micro-scale Separation

Derivatize channels with ion exchange orbioreceptor (in bead form)

Assemble micro-deviceCarry out separation in flowing fluid

Sample size = 1 µLApply sample at 0.25 to 1 nL / sec

Page 19: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Microfluidic Separation DeviceLabeled avidin (green; 10 µg/ml) and BSA (red; 10 µg/ml) liquid mixture; t=0

Labeled avidin (green; 10 µg/ml) and BSA (red; 10 µg/ml) liquid mixture; t=0

Glass fiber coated with dimethylamino microbeads

Glass fiber coated with biotinylated BSA

Glass substrate Glass substrate

PDMSPDMS

t= ~3 minutes t= 5 minutes(a) (b)

Huang et al, 2003

Page 20: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Surface Effect in Microfluidic Channels (particle detection or capture)

Hydrophobic vs. Hydrophilic• Surface chemistry of a microchannel is extremely

important in the movement and control of fluids at microscopic level

Water in hydrophobic channel Water in hydrophilic channel

Page 21: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Detection of GFP E. coli in moving fluid across microfiber device

1-2 µm GFP E. coli(~106 cells/ml) in PBS

1-2 µm GFP E. coli(~106 cells/ml) in PBS

linear velocity of 10 um/s Linear velocity of 100 um /s

Page 22: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Counting Cells Using Micro-device

PMT

HV power

Air slit

Microscope objective

Microchip Oscilloscope

Page 23: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

ANTIBODYANTIBODY

Fc

Fab Fab

SS

SS

SS

SS

SS

SSS

SS

S

SS

SS

SS

SS

N NNN

Fc

Fab Fab

Antigen binding sites

Disulfide bond

Antigen

Surface of a biochip

* 3-D IgG molecule is obtained from David Wild (http://www.techfak.uni-bielefeld.de/bcd/ForAll/Introd/antibody.html).

Antibody antigen interaction

Page 24: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Specific Binding

Antibody

BSA

Blank LG surface Listeria on P66 Ab

Initial=3.7*108 cells

Page 25: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

E coli Does Not Bind

Initial= 3.7*108 cells

E. Coli on P66 surfacesBlank LG surface

Page 26: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Mixture of Two Bacteria

Initial= 3.7*108 cells

Listeria on P66 surface

E coli on P66 surface

Page 27: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Flow-through: Syringe + Holder

5 ml/min controlled by syringe pump

PBS containing L.monocytogenes

or E.coli

P66 Membrane

Page 28: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Fluorescence Intensity

0

500

1000

1500

2000

2500

Blank membrane E coli captured by P66membrane

L. monocytogenescaptured by P66

membrane

Fluo

resc

ence

Inte

nsity

Integration time = 250 ms

Page 29: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

SEM Images

Blank Membrane

E coli on P66 Membrane

L. monocytogeneson P66 Membrane

Initial= 7.3x107 cells/ml x 50 ml=3.7 x 109 cells

Page 30: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Close-up of a Protein Biochip

Glass cover

In/Out ports

Channels/Wells

Epoxy adhesive

Pin

Tip of a pin

Well = 5 nanoliters30 to 50 wells/chip

Page 31: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Cross-section of a well on a Biochip

Silicon substrate

Pt electrode SiO2 insulation

Glass coverGlass coverTarget molecules Target molecules bound to receptorsbound to receptors

Receptors immobilized on electrode

Protein receptorProtein receptor20 nm size20 nm size

Page 32: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Microchips can be produced in Large Numbers

Microchips for adsorption studies

PECVD fabricated oxide layer

SiO2 with Pt patterns

Page 33: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

To use chip1. Sample fluid2. Place fluid onto chip for

interrogation3. Electrically detect if receptor binds

something present in the fluidComplete steps 1 through 3 in three hours.

That “something” could be a pathogen that requires a rapid, preventative response.

Page 34: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Listeria monocytogenes

•Food-born pathogen

•Gram positive (1µm x 3 µm )

•Growth temperature (1-45 ºC)

•Acid and salt tolerant

•Cause listeriosis (fever, headache, meningitis, encephalitis, liver abscess, abortion & stillbirth)

•Annual cases >2,500; Mortality 20-28%

Bhunia, Jarat, 2001

Page 35: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Sample From Hotdog

OilFat

Aqueous Sample

Solids

Page 36: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Rapid Cell Concentration and Recovery Needed

Separate cells from food or agricultural sample

Concentrate bacteria Recover bacteria and introduce onto biochip

Page 37: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Design principlesMicrofabricate chip. Then

Prepare surface so that nothing adsorbs (biochemical equivalent of Teflon)Fix protein receptor onto treated surface.

Use nanogram amounts of receptors, since these proteins cost $10,000 per gram

( but only pennies per 1000 nanograms)

Page 38: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Combinations of Technology

DNA Barcode + RFID Tag +

Microfluidic Sensor = Information

What is it? Where is it? Where has it been?

These capabilities have existed previously.

Nanotechnology may make them affordable.

Page 39: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Applications in Foods

Food Products$13.1 billion in soda pop

7.5 billion in breakfast cereals60.0 billion in fresh meats

Branded meats, precooked products, micro-waveable red meats

Livestock, poultrySales figures from Sales figures from KilmanKilman, Wall Street Journal, Feb 20, 2002, Wall Street Journal, Feb 20, 2002

Page 40: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Detect Gene Expression Products

Animal health monitoringEarly warning of infectious disease

Biodegradable sensorsTracking foods during processing

Identity tracking and preservation

Nanoscale Science and Engineering for Agriculture and Food Systems, CSREES, USDA National Planning Workshop, 2002

Page 41: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2

Conclusions Nanotechnology combined with

biotechnology enables new sensors that are difficult to make otherwise

Nanotechnology enables detection at a microscale: small, localized and rapid

Applications for food and agriculture in identification of species,pathogens

Page 42: Fundamentals of Nanotechnology for Agriculture · 2013. 8. 23. · Fundamentals of Nanotechnology for Agriculture Michael Ladisch1, Tom Huang1, Nathan Mosier1, and Robert Armstrong2