fundamentals. crystal patterns and crystal structures...

129
Didactic material for the MaThCryst schools Massimo Nespolo, Université de Lorraine, France [email protected] Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts

Upload: others

Post on 13-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Didactic material for the MaThCryst schools

Massimo Nespolo, Université de Lorraine, [email protected]

Fundamentals. Crystal patterns and crystal structures.Lattices, their symmetry and related basic concepts

Page 2: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine2 / 129

Ideal crystal:

Perfect periodicity, no static (vacancies, dislocations, chemical heterogeneities, even the surface!) or dynamic (phonons) defects.

Real crystal:

A crystal whose structure differs from that of an ideal crystal for the presence of static or dynamic defects.

Perfect crystal:

A real crystal whose structure contains only equilibrium defects.

Imperfect crystal:A real crystal whose structure contains also non-equilibrium defects (dislocations, chemical heterogeneities...).

What follows describes the structure of an ideal crystals (something that does not exist!), whereas a real crystal is rarely in thermodynamic equilibrium.

Ideal vs. real crystal, perfect vs. imperfect crystal

Page 3: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine3 / 129

Time and space averaged structure!“Time-averaged” because the time span of a diffraction experiment is much larger that the time of an atomic vibration.

The instantaneous position of an atom is replaced by the envelop (most often an ellipsoid) that describes the volume spanned by the atom during its vibration.

“Space-averaged” because a conventional diffraction experiment gives the average of the atomic position in the whole crystal volume, which corresponds to “the” position of the atom only if perfect periodicity is respected.

Importance of studying the “ideal” crystalNon-conventional experiments (time-resolved crystallography,

nanocrystallography etc.) allow to go beyond the ideal crystal model, but also some information that are often neglected in a conventional experiment (diffuse scattering) can give precious insights on the real

structure of the crystal under investigation.

What do you get from a (conventional) diffraction experiment?

Page 4: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine4 / 129

Space and time-averaged structure

Page 5: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine5 / 129

Transformations

Affinetransformation

Euclidean transformationor isometry

Symmetryoperation

1 2

34

4 1

23

An affine transformation is a deformation that sends corners to corners, parallel lines to parallel lines, mid-points of edges to mid-point of edges but does not preserves distances or angles.

An isometry is a special case of affine transformation which is not a deformation: the object on which it acts can change its orientation and position in space.

A symmetry operation is a special case of isometry: the object on which it acts can change its orientation and position in space only in such a way that its configuration (position, orientation) after the action cannot be distinguished from its configuration before the action.

Page 6: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine6 / 129

Symmetry operations of a crystal pattern

●A crystal pattern is an idealized crystal structure which makes abstraction of the defects (including the surface!) and of the atomic nature of the structure.

●A crystal pattern is therefore infinite and perfect.●A crystal pattern has both translational symmetry and point symmetry; these are described by its space group.

●We have to define the concepts of group and its declinations in crystallography.

Page 7: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine7 / 129

● geometric element:the point, line or plane left invariant by the symmetry operation.

● symmetry element: the geometric element defined above together with the set of operations (called element set) that leave in invariant.

● symmetry operation: an isometry that leave invariant the object to which it is applied.

geometric element

element set

symmetry element

symmetry operation

The operation that share a given geometric element differ by a lattice vector. The one characterized by the shortest vector is called defining operationdefining operation.

symmetry operation

symmetry operation

Elements and operations

Page 8: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine8 / 129

Crystal structure/pattern vs. crystal lattice

Crystal

Crystal pattern(crystal structure)

Molecule orcoordination polyhedron

Unit cell

Lattice nodes

Translations

Page 9: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine9 / 129

Example of crystal pattern which is not a crystal structure

Page 10: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine10 / 129

Unit cell

Asymmetric unit*

*In mathematics, it is called “fundamental region”

fi

The minimal unit you need to describe a crystal pattern

Page 11: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine11 / 129

Symmetry operations are classified into first kind (keep the handedness) and second kind (change the handedness).If the object on which the operation is applied is non-chiral, the effect of the operation on the handedness is not visible but the nature of the operation (first or second kind) is not affected!

The determinant of the matrix representation of a symmetry operation is +1 (first kind) or -1 (second kind)

ChiralityChirality: property of an object not being superimposable to its mirror image by a first-kind operation. HandednessHandedness: one of the two configurations (left or right) of chiral object. Also known as chirality sensechirality sense.

The concepts of chirality and handedness(the left-right difference)

Page 12: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine12 / 129

Handedness of the object and nature of the operation

Page 13: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine13 / 129

Crystal structure, fractional atomic coordinates, crystallographic orbits, Wyckoff positions

Crystal structure: atomic distribution in space that complies with the order and periodicity of the crystal

Fractional atomic coordinates: atomic coordinates x,y,z within a unit cell with respect to the basis vectors a,b,c.

a,b,c (bold): basis vectors

a,b,c (italics): reference axes and cell parameters

x,y,z (italics): fractional atomic coordinates

crystallographic orbit: the infinite set of atoms obtained by applying all the symmetry operations of the space group to a given atom in the unit cell.

Don’t forget the translations!

Wyckoff positions:classification of the crystallographic orbits on the basis of the symmetry of the atomic positions (site-symmetry group) (N to 1 mapping)*.

*More about this follows.

Page 14: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine14 / 129

Substructure S4

Substructure S1

Substructure S0

Substructure S2

Substructure S3

Fi,00

Fi,10

Global vs. local domain of action

Fpp

local operations: act only on a specific substructure

Global (total) operations:that subset of local and partial operations that actually act on the whole structure

Structure

Fqp

partial operations: relate only a specific pair of substructures

https://doi.org/10.2465/gkk1952.14.Special2_215https://doi.org/10.2465/gkk1952.14.Special2_215

Page 15: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine15 / 129

A set S

A binary operation ○

An “internal law of composition” S ○ S → S(closure property)

We've got a “magma”

Note: An “external law of composition” acts on two disjoint sets S ○ S' → S

S S'

Binary operations acting on a set

Page 16: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine16 / 129

Associativity: a ○ (b ○ c) = (a ○ b) ○ c

Presence of identity (neutral element): left identity e ○ a = aright identity a ○ e = a

Presence of the inverse (symmetric) element of each element:left inverse: a-1 ○ a = eright inverse: a ○ a-1 = e

Commutativity: a ○ b = b ○ a

Presence of singular element: left singular s ○ a = sright singular a ○ s = s

Presence of a second binary operation: a S b S = c S

Possible properties associated to a magma

Page 17: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine17 / 129

Algebraic structures

globality associativity identity inverse element

Magma

Semigroup

Monoid

Group

Semicategory

Category

Groupoid

Page 18: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine18 / 129

A symmetry group (G,○) is a set G whose elements are symmetry operations having the following features:● the combination ○ (successive application) of two symmetry operations

gi and g

j of the set G is still a symmetry operation g

k of the set G

(closure property): giG ○ g

jG → g

kG (g

ig

j = g

k)

● the binary operation is associative: gi(g

jg

k) = (g

ig

j)g

k

● the set G includes the identity (left and right identical): egi = g

ie

● for each element of the set G (each symmetry operation) the inverse element (inverse symmetry operation) is in the set G: g

i-1g

i = g

ig

i-1 = e

In the following we will normally speak of a group G: it is a shortened expression for group (G,○) where ○ is the “successive application” of symmetry operations g G. Rigorously speaking, G is not a group but just a set!

The notion of symmetry group

Page 19: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine19 / 129

A special case of Abelian groups: cyclic groupsA cyclic group is a special Abelian group in which all elements of the group are generated from a single element (the generator).

G = {g, g2, g3, …. , gn = e}

Commutativity is NOT included in the group properties (closure, associativity, presence of identity and of the inverse of each element).

A group which includes the commutativity property is called Abelian.

Abelian and cyclic groups

Page 20: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine20 / 129

Order of a group element: the smallest n such that gn = e.

Order of a group: the number of elements of the group (finite or infinite)

If n = the group is infinite

If n = 2, then g-1 = g and the element is known as an involution.

The notion of “order”

Page 21: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine21 / 129

(G, *) (H, #)f

Let G and H be two sets, and * and # two binary operations acting on G and H respectively.

*u'

#v' w'

The mapping f : G → H that satisfies the relation f(u * v) = f(u) # f(v) is called a homomorphism.

● If G contains the neutral element 1G, then H too contains a neutral element 1

H and the

homomorphism f maps them:1G →1

H● If G contains the inverse of each element g, then H too contains the inverse of each

element h, and the homomorphism f maps the respective elements: f(u-1) = u'-1 = f(u)-1.

Domain Codomain

u

wv

f(u) = u'

f(v) = v'

f(w) = w'

w = u*v

w' = u'#v'

f(u * v) = f(w) = w' = u' # v' = f(u) # f(v)

If H G, the homomorphism takes the name of endomorphismendomorphism

Homomorphism

Page 22: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine22 / 129

1H

Kernelof f image of f

(G,*) (H, #)f

The kernelkernel of the homomorphism f : G → H is the subset of elements of G that is mapped by f on to neutral element of H.

The imageimage of the homomorphism f : G → H is the set of elements of G that are mapped by f on H. The image may coincide with the codomain or be a subset of it.

DomainCodomain

ker f ={gG: f(g) = 1H}

Kernel and image

Page 23: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine23 / 129

A 1:1 mapping f : G → H is called an isomorphism. For an isomorphism Ker(f) = 1.We are especially interested in isomorphic groups, which have the same structure but differ only for the labelling of the elements.

1H

(G,*) (H, #)f

1G =

Ker(f)

Isomorphism

Page 24: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine24 / 129

Dimensions of the space and periodicity of the pattern

nmG n-dimensional space, m-dimensional periodicity

m = 0:point groupspoint groups;n = m:space groupsspace groups;0 < m < n: subperiodic groupssubperiodic groups

n m No. of types of groups Name

1 0 2 1-dimensional point groupspoint groups

1 2 Line groups:1-dimensional space groups1-dimensional space groups

2 0 10 2-dimensional point groupspoint groups

1 7 Frieze groupsFrieze groups

2 17 Plane groups, wallpaper groups:2-dimensional space groups2-dimensional space groups

3 0 32 3-dimensional point-groupspoint-groups

1 75 Rod groupsRod groups

2 80 Layer groupsLayer groups

3 230 (3-dimensional) Space groupsSpace groups

Page 25: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine25 / 129

Symmetry group of the crystal

Space group:shows the symmetry of the crystal structure and is obtained as intersection of eigensymmetries that build up the structure.

G = iE

i

Point group:shows the morphological symmetry of the crystal as well as the symmetry of its physical properties. It is isomorphic to the factor group of the space group and its translation subgroup.

Translation group:the group containing only the translations of the crystal structure。It is a normal subgroup of the space group G.

TG → tjT, g

iG : g

itjg

i-1 = t

j

P G/T

Some of the definitions will follow

Page 26: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine26 / 129

Bravais lattices

● Bravais lattices are sets of (zero-dimensional) points (nodes).

● The lattice nodes are (quite obviously…) different from atoms. Warning: In the literature, this difference is often overlooked!

● The space group of a Bravais lattice is a Bravais group (B).

● The subgroup T of B which contains, apart from the identity, only the translations of B, is the translation subgroup.

● The subgroup H of B obtained by removing all the translations from B is isomorphic to the point group P of the lattice.

B ={(W,w)}

H = {(W,0)}

W = nn matrix, I = nn identity matrix、w = n1 matrix, 0 = n1 zero matrix

T={(I,w)} P={W}Isomorphism

EndomorphismProjection

The minimal point group of a Bravais lattice is built on{I,-I}.

Page 27: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine27 / 129

The minimal point group of a Bravais lattice is built on{I,-I}.

origin

tt

I-I

I-I

I-I

etc….

1-dimensional space:x → x: -I = reflection (or inversion)

2-dimensional space:xy → xy: -I = rotation

3-dimensional space:xyz → xyz: -I = inversion

etc….

Bravais lattices

Page 28: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine28 / 129

1

1

1

...

1

...

x

y

z

w

...

x

y

z

w

det( -In) = (-1)n

Odd-dimensional space:-1

Even-dimensional space: +1

Second kind operation

First kind operation

The inversion does not exist in even-dimensional spacesThe inversion does not exist in even-dimensional spaces

-I in En

Page 29: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine29 / 129

Symmetry operations

Translations

Identity

Reflections

How many 1D lattices are there? Infinite!

How many types of 1D lattice are there? One

etc. etc.

I = 1, -I = m point group of a Bravais lattice: m = {1,m}

One-dimensional lattices

Page 30: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine30 / 129

The world in two dimensions

E2 : the two-dimensional Euclidean space

Page 31: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine31 / 129

Operations that leave invariant all the space (2D): the identityOperations that leave invariant one direction of the space (1D): reflectionsOperations that leave invariant one point of the space (0D): rotationsOperations that do not leave invariant any point of the space: translations

Two independent directions in E2 two axes (a, b) and one interaxial angle (g)

The subspace left invariant (if any) by the symmetry operation has dimensions from 0 to N (= 2 here)

I = 1, -I = 2 Minimal point group of a Bravais lattice: 2 = {1,2}

Symmetry operations in E2

Page 32: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine32 / 129

2  2-fold rotation point m  Reflection line(mirror)

First kind operations Second kind operation

Hermann-Mauguin symbol

Graphicsymbol

Meaning

3  3-fold rotation point

4  4-fold rotation point

6  6-fold rotation point

Hermann-Mauguin symbol

Graphicsymbol

Meaning

Operations obtained as combination with a translation are introduced later

The orientation in space of a reflection line is always expressed with respect to the lattice direction to which it is perpendicular

Symmetry elements in E2

Page 33: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine33 / 129

a

00

10

20

30

01 02 03

11 12 13

21 22 23

31 32 33

b

[42] direction ?

[10]

[01]

a axis?

b axis?

[13]

[11]

[21]

40 41 42 43

Lattice node coordinates uv, lattice direction indices [uv]

Page 34: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine34 / 129

t(1,0), t(0,1)

t(1,0), t(0,1), t(½,½)

t(1,0), t(0,1), t(⅔,⅓), t(⅓,⅔)

t(1,0), t(0,1), t(¾,¼), t(½,½), t(¼,¾)

Choice of the unit cell

Page 35: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine35 / 129

1 1

0 1

Determ.: 1

2 0

1 1

Determ.: 2

1 1

0 1

Determ.: 1

12

12

0

1

Determ.: ½

1 1

1 1

Determ.: 2

1 12 2

1 12 2

Determ.: ½

2 0

1 1

Determ.: 2

12

12

0

1

Determ.: ½

1 1

1 1

Determ.: 2

1 12 2

1 12 2

Determ.: ½

1 12 2

3 12 2

Determ.: 1

1 12 2

3 12 2

Determ.: 1

2 2

1 3

Determ.: 4

3 14 2

1 14 2

Determ.: ¼

1 1

1 3

Determ.: 4

3 14 4

1 14 4

Determ.: ½

1 12 2

3 52 2

Determ.: 2 Determ.: ½

5 14 4

3 14 4

1 1

0 2

Determ.: 2

12

12

1

0

Determ.: ½

3 3

1 2

Determ.: 3

23

13

1

1

Determ.: ⅓

2 1

1 2

Determ.: 3

2 13 3

1 23 3

Determ.: ⅓

12

52

1

2

Determ.: 1.5

5 13 3

4 23 3

Determ.: ⅔

3 32 2

1 12 2

Determ.: 1.5

13

13

1

1

Determ.: ⅔

7 54 4

1 14 4

Determ.: ¾

513 3

713 3

Determ.: 4/3

Change of reference

Page 36: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine36 / 129

t(1,0), t(0,1) : primitive (p) unit cell

t(1,0), t(0,1), t(½,½) : centred (c) unit cell

Conventional unit cell1. Edges of the cell are parallel to the symmetry directions of the lattice

(if any);2. If more than one unit cell satisfies the above condition, the smallest

one is the conventional cell.

Reduced cell (Lagrange-Gauss reduction)1. Basis vectors correspond to the shortest lattice translation vectors;2. ||a|| ≤ ||b||, ||b|| ≤ ||b+qa||, q any integer. For q = 1, this condition means

that the sides of the unit cell are not longer than its diagonals.

Cartesian (orthonormal) cell: unsuitable (in general)

Change of the unit cell (cont.)

Page 37: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine37 / 129

312 2

512 2

712 2

1 12 2

00

10

20

30

01 02 03

11 12 13

21 22 23

31 32 33

40 41 42 43

24

44

34

14

04

[10]

[01]

½[11]

½[13]

3 32 2

3 52 2

3 72 2

3 12 2

5 52 2

5 32 2

5 12 2

7 52 2

7 32 2

7 12 2

https://doi.org/10.1107/S1600576717010548

Lattice node coordinates uv, lattice direction indices [uv]

Page 38: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine38 / 129

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 39: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine39 / 129

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 40: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine40 / 129

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 41: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine41 / 129

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fi fi fi fi fi fi fi fi fi fi fi fi fi fifi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 42: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine42 / 129

ba

O

no symmetry direction for this latticepoint group of the lattice: 2 = {I, -I}no symmetry restriction on the cell parameters:a; b; g

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 43: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine43 / 129

fi

fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 44: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine44 / 129

ap

bc

O

bpa

c

Primitive unit cellConventional unit cell

fi

two symmetry directions for this lattice, that are taken as axes a and b

point group of the lattice: 2 m m

[10][01]

symmetry restriction on the cell parameters:a; b; g = 90º

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 45: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine45 / 129

fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fifi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

fifi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 46: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine46 / 129

bc=p

Oa

c=p

Conventional (primitive) unit cell

fi

two symmetry directions for this lattice, that are taken as axes a and b

point group of the lattice: 2 m m

[10][01]

symmetry restriction on the cell parameters:a; b; g = 90º

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 47: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine47 / 129

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 48: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine48 / 129

This lattice has four symmetry directions. Those corresponding to the shortest period are taken as axes a

1 and a

2.

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 49: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine49 / 129

b,a2

a,a1

This lattice has four symmetry directions. Those corresponding to the shortest period are taken as axes a

1 and a

2.

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 50: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine50 / 129

This lattice has four symmetry directions. Those corresponding to the shortest period are taken as axes a

1 and a

2.

b,a2

a,a1

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 51: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine51 / 129

Point group of the lattice symmetry: 4 m m

10 11

b,a2

a,a1

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 52: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine52 / 129

Point group of the lattice symmetry: 4 m m

10 11

b,a2

a,a1

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

p cell (conventional)

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 53: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine53 / 129

b,a2

a,a1

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fifi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

fi

Restrictions on cell parameters: a = b; g = 90°

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 54: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine54 / 129

fi

fi fi fififi

fi fifi fi

fifififififififififi

fi fi fi fi fi

fifififififififififi

fi fi fi fi

fififififi

fi

This lattice has six symmetry directions. Two among the three corresponding to the shortest period are taken as axes a

1 et a

2.

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 55: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine55 / 129

fi

fi fi fififi

fi fifi fi

fifififififififififi

fi fi fi fi fi

fifififififififififi

fi fi fi fi

fififififi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 56: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine56 / 129

b,a2

a,a1

p cell (conventional)

h cell (triple)

Point group of the lattice:6 m m

10 11

Restrictions on the cell parameters: a = b; g = 120°

fi

fi fi fififi

fi fifi fi

fifififififififififi

fi fi fi fi fi

fifififififififififi

fi fi fi fi

fififififi

fi

Exercise:Find the lattice symmetry and thenthen choose a suitable unit cell

Page 57: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine57 / 129

[10] [11]

[01]

[21]

[12][11]

a1

a2

Direction indices [uv] in the hexagonal lattice of E2

Page 58: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine58 / 129

Why not 5, then?

Page 59: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine59 / 129

Crystal patterns in 2D

Page 60: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine60 / 129

Symmetry of the lattice : SL = 4mm

Lattice

« Object » (content of the unit cell)

Pattern

Symmetry of the object : So = 4mm

Symmetry of the pattern : Sp = 4mm

Sp = S

L : holohedry

The concept of holohedry

Page 61: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine61 / 129

Symmetry of the lattice: SL= 4mm

Symmetry of the object: So = 3m

Symmetry of the pattern : Sp = m = 4mm 3m

Sp < S

L : merohedry

The concept of holohedry

Page 62: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine62 / 129

Symmetry of the lattice: SL= 4mm

Symmetry of the object: So = 3m

Symmetry of the pattern : Sp = 1 = 4mm 3m

SP < S

L: merohedry

The concept of holohedry

Page 63: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine63 / 129

Symmetry of the lattice : SL = 4mm

Symmetry of the object : So = 5m

Symmetry of the pattern : Sp = m = 4mm 5m

Sp < S

L : merohedry

The crystallographic restriction (n = 1, 2, 3, 4, 6) applies to the

lattice and to the pattern, but not to the content of the unit cell!

The concept of holohedry

Page 64: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine64 / 129

The notion of subgroupThe notion of subgroup

Page 65: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine65 / 129

m[10]

m[11]

m[01]

m[11]

Symmetry elements:

Symmetry operations:

one fourfold rotation point: 4four reflection lines: m

[10], m

[01], m

[11], m

[11]

Four rotations (41, 42 = 2, 43 = 4-1, 44 =1)Four reflections (m

[10], m

[01], m

[11], m

[11])

Check that these operations do form a group

● Isometries are always associative● The identity belong to the set (it corresponds to 44 and m2)● The inverse of each operation belongs to the set (1-1=1; m-1

= m; 2-1 = 2, 4-1 = 43)● To check the closure, let us build the multiplication

(Cayley) table.

1

2

4

3

a1 (a)

a2 (b)

Geometric elements: one point (centre of the square), four lines ([10], [01], [11], [11])

Exercise: find the elements, the operations and the symmetry group of a square in E2

Page 66: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine66 / 129

H GFrom the group (G,○) we select a subset of elements forming a subset H. If the (H,○) is a group under the same binary operation ○ as (G,○), then (H,○) is a subgroup of (G,○).

m[10]

m[11]

m[01]

m[11]

1

2

0

3

Multiplication table of the group (G,○)Multiplication table of the subgroup (H,○)

1 2 41 43 m[10]

m[01]

m[11]

m[11]

11

241

1

431

m[10]

m[01]

m[11]

m[11]

11

241

1

431

m[10]

m[01]

m[11]

m[11]

2 41 43 m[10]

m[01]

m[11]

m[11]

1 43 41 m[01]

m[10]

m[11]

m[11]

43 2 1 m[11]

m[11]

m[01]

m[10]

41 1 2 m

[11]m

[11]m

[10]m

[01]

m

[01]m

[11]m

[11]1 2 43 41

m

[10]m

[11]m

[11] 2 1 41 43

m

[11]m

[10]m

[01]41 43 1 2

m

[11]m

[01]m

[10]43 41 2 1

Subgroups

Page 67: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine67 / 129

Order and index of a subgroup

group G, order |G|

group H, order |H|H G

|H| is a divisor of |G| (Lagrange’s theorem)

The ratio iG(H) = |G|/|H| is called the index of H in Gindex of H in G

iG(H) = 8:ogdohedry(3-dimensional space)

iG(H) = 4:tetartohedry

iG(H) = 2:hemihedry

Page 68: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine68 / 129

m[10]

m[11]

m[01]

m[11]

1

2

0

3

Group Subgroup = 1st coset2nd coset

By decomposing (G,○) with respect to (H,○) we get i = |G|/|H| cosets. Each coset has the same number of elements |H| as the subgroup, which is called the length of the coset.

1 2 41 43 m[10]

m[01]

m[11]

m[11]

11

241

1

431

m[10]

m[01]

m[11]

m[11]

11

241

1

431

m[10]

m[01]

m[11]

m[11]

2 41 43 m[10]

m[01]

m[11]

m[11]

1 43 41 m[01]

m[10]

m[11]

m[11]

43 2 1 m[11]

m[11]

m[01]

m[10]

41 1 2 m

[11]m

[11]m

[10]m

[01]

m

[01]m

[11]m

[11]1 2 43 41

m

[10]m

[11]m

[11] 2 1 41 43

m

[11]m

[10]m

[01]41 43 1 2

m

[11]m

[01]m

[10]43 41 2 1

H GC1=H C2

Cosets

Page 69: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine69 / 129

m[10]

m[11]

m[01]

m[11]

1

2

0

3

Group Subgroup = 1st coset2nd, 3rd, 4th coset

1 2 41 43 m[10]

m[01]

m[11]

m[11]

11

241

1

431

m[10]

m[01]

m[11]

m[11]

11

241

1

431

m[10]

m[01]

m[11]

m[11]

2 41 43 m[10]

m[01]

m[11]

m[11]

1 43 41 m[01]

m[10]

m[11]

m[11]

43 2 1 m[11]

m[11]

m[01]

m[10]

41 1 2 m

[11]m

[11]m

[10]m

[01]

m

[01]m

[11]m

[11]1 2 43 41

m

[10]m

[11]m

[11] 2 1 41 43

m

[11]m

[10]m

[01]41 43 1 2

m

[11]m

[01]m

[10]43 41 2 1

H GC1=H

C3

C2

C4

By decomposing (G,○) with respect to (H,○) we get i = |G|/|H| cosets. Each coset has the same number of elements |H| as the subgroup, which is called the length of the coset.

Cosets

Page 70: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine70 / 129

Order Index

8

4

2

1

1

2

4

8

1 4mm = {1, 41, 2, 43, m[10]

, m[01]

, m[11]

, m[11]

}

{1, 41, 2, 43} = 4 {1, 2, m[10]

, m[01]

, } = 2mm. {1, 2, m[11]

, m[11]

} = 2.mm

{1, 2} = 2 {1, m[10]

} = .m. {m[01]

} = .m. {1, m[11]

} = ..m {1, m[11]

} = ..m

{1} = 1

Desymmetrization of the square

Page 71: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine71 / 129

4mm

2mm. 2.mm4

.m[10]

. .m[01]

. 2 ..m[11]

..m[11]

1

Order Index

8

4

2

1

1

2

4

8

1

Desymmetrization of the square

Page 72: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine72 / 129

CosetsConjugacy classes

Conjugate subgroupsNormal or invariant subgroups

Page 73: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine73 / 129

G = 4mm = {1, 41, 42 = 2, 43 = 4-1, m[10]

, m[01]

, m[11]

, m[11]

}

4mm = {2mm.}g{2mm.} ={1, 2, m[10]

, m[01]

}{41, 43, m[11]

, m[11]

}

4mm = {2.mm}g{2.mm} ={1, 2, m[11]

, m[11]

}{41, 43, m[10]

, m[01]

}

4mm = {4}g{4} ={1, 41, 2, 43}{m[10]

, m[01]

, m[11]

, m[11]

}

G = HiC

i =H

ig

iH, g

i(H,C

j<i)

H = 2mm.

H = 2.mm

H = 4

Etc. etc.

G = HiC

i =H

iHg

i, g

i(H,C

j<i) Right coset

Usually, giH Hg

i

If giH = Hg

i, i, then H is called a normal (invariant) subgroupnormal (invariant) subgroup.

Left coset

Left and right cosets

Page 74: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine74 / 129

4mm = {1,2} 41{1,2} m[10]

{1,2} m[11]

{1,2} =

{1,2} {41,43} {m[10]

,m[01]

} {m[11]

,m[11]

}

4mm = {1,2} {1,2}41 {1,2}m[10]

{1,2}m[11]

=

{1,2} {41,43} {m[10]

,m[01]

} {m[11]

,m[11]

}

=

4mm = {1,m[10]

} 41{1,m[10]

} 43{1,m[10]

} 2{1,m[10]

} =

{1,m[10]

} {41,m[11]

} {43,m[11]

} {2,m[01]

}

Normal subgroup

4mm = {1,m[10]

} {1,m[10]

}41 {1,m[10]

}43 {1,m[10]

}2 =

{1,m[10]

} {41,m[11]

} {43,m[11]

} {2,m[01]

}

Decomposition of 4mm with respect to 2 and m[10]

Page 75: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine75 / 129

H G

ghig-1 = h

j; h

iH, gG : conjugate elements

ghi = h

jg; h

iH, gG

ig

ihg

i-1 = Cl(h) conjugacy classconjugacy class

ig

iHg

i-1 = {H, H', H''・・・} are conjugate subgroupsconjugate subgroups of G

If H' = H'' = ・・・ = H (giH = Hg

i, gG)、H is a normal or invariant normal or invariant

subgroupsubgroup of G: H H G G.

The set of conjugate elements form a class

Next consider not one element h but the whole subgroup H

If hi = h

j, gG, h

i is a self-conjugate elementself-conjugate element

Cl(h) = { h' G | ∈Cl(h) = { h' G | ∈ g g G : h' = ghg G : h' = ghg-1-1 } }

Conjugation is a similarity transformation: “do the same thing somewhere else”

Conjugate and normal subgroups

Page 76: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine76 / 129

ig

ihg

i-1 = Cl(h): conjugacy class

h = 1 ig

i1g

i-1 =

ig

ig

i-1 = {1}

h = 2

h = 41

h = m[10]

h = m[11]

ig

i2g

i-1 =

ig

i1g

i-1 =

{2}

ig

i41g

i-1 = {41, 43}

ig

im

[10]g

i-1 = {m

[10], m

[01]}

ig

im

[11]g

i-1 = {m

[11], m

[11]}

4mm = {1}, {2}, {41, 43}, {m[10]

, m[01]

}, {m[11]

, m[11]

}

Conjugacy classes of 4mm

Page 77: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine77 / 129

When we apply an isometry・・・The object is transformed directly(O→ O')

The symmetry group of the object is transformed by conjugation

hO = O, hH gO = O', gH,H'h'O' = O', h'H'

H' = gHg-1

Page 78: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine78 / 129

H = 2mm. = {1, 2, m[10]

, m[01]

}

gHg-1 = 2mm.

gHg-1 = H  H = 2mm. G = 4mm Normal subgroup

{41, 43, m[11]

, m[11]

}

a

b

Effects of the operations in a coset

Page 79: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine79 / 129

H = 2.mm = {1, 2, m[11]

, m[11]

}

gHg-1 = 2.mm

gHg-1 = H H = 2.mm G = 4mmNormal subgroup

{41, 43, m[10]

, m[01]

}

a

b

Effects of the operations in a coset

Page 80: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine80 / 129

H = 4 = {1, 4, 2, 43}

gHg-1 = 4

gHg-1 = H H = 4 G = 4mmNormal subgroup

{m[10]

, m[01]

, m[11]

, m[11]

}

a

b

Effects of the operations in a coset

Page 81: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine81 / 129

H = {1, m[10]

} gHg-1 = {1, m[10]

}

{2, m[01]

}

a

b

g{1,m[01]

}g-1 = {1,m[10]

}

.m. G = 4mmonjugate subgroups

{41, m[11]

}{43, m

[11]}

{2, m[01]

}

{41, m[11]

}

gHg-1 = {1, m[01]

} gHg-1 = {1, m[01]

}

Effects of the operations in a coset

Page 82: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine82 / 129

4mm

2mm. 2.mm4

.m[10]

. .m[01]

. 2 ..m[11]

..m[11]

1

Order Index

8

4

2

1

1

2

4

8

1

Desymmetrization of the square

Page 83: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine83 / 129

Extra-simple exerciseExtra-simple exerciseShow that a subgroup of index 2 is always

normal

Page 84: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine84 / 129

Holohedries and merohedries in the two-dimensional space

Page 85: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Holohedry 2 : {1,2}

Subgroup 1 : {1}

Holohedry 2mm : {1,2,m[10]

,m[01]

}

Subgroups 2 : {1,2}, m : {1,m[10]

}, {1,m[01]

}, 1 : {1}

Holohedry 4mm : {1, 41, 42 = 2, 43 = 4-1, m[10]

, m[01]

, m[11]

, m[11]

}

Subgroups 4 : {1, 41, 42, 43}, 2mm : {1, 2, m[10]

, m[01]

}, {1, 2, m[11]

, m[11]

}, 2 : {1, 2}, m : {1,m

[10]}, {1,m

[01]}, {1,m

[11]}, {1,m

[11]}, 1 : {1}

Holohedry 6mm : {1, 61, 62 = 3, 63 = 2, 64 = 3-1, 65 = 6-1, m[10]

, m[01]

, m[11]

, m[11]

, m

[12], m

[21]}

Subgroups 6 : {1, 61, 62, 63, 64, 65}, 3m : {1, 31, 32, m[10]

, m[01]

, m[11]

}, {1, 31, 32, m

[11], m

[12], m

[21]}, 3 : {1, 3, 3-1}, 2mm : {1, 2, m

[10], m

[12]}, {1, 2, m

[01],

m[21]

}, {1, 2, m[11]

, m[11]

}, 2 : {1,2}, m : {1,m[10]

}, {1,m[01]

}, {1,m[11]

}, {1,m[11]

}, {1,m

[12]}, {1,m

[21]}, 1 : {1}

Conjugacy classes {1}, {2}

Conjugacy classes {1}, {2}, {m[10]

}, {m[01]

}

Conjugacy classes {1}, {2}, {41, 43}, {m[10]

, m[01]

}, {m[11]

, m[11]

}

Conjugacy classes:{1}, {2}, {31, 32}, {61, 65}, {m

[10], m

[01], m

[11], }, {m

[11], m

[12], m

[21]}

Page 86: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine86 / 129

6mm

4mm

6 3m

4 2mm

2

1

m3

4mm

2.mm 2mm.

6mm

3m1 31m

2mm

m[010]

m[100]

Tree of maximal group-subgroups (in bold the holohedries)

Conjugate subgroups

Normal subgroup

Tree of group-subgroups in E2

Page 87: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine87 / 129

Orthorhombic family:2 free parameters (a,b)

Crystal families

Point-group types that satisfy the following criteria belong to the same crystal family:1.they correspond to the same holohedry;2.they are in group-subgroup relation;3.the types of Bravais lattice on which they act have the same number of free parameters.

6mm

4mm

6 3m

4 2mm

2

1

m3

Hexagonal family:1 free parameter (a)Tetragonal family:1

free parameter (a)

Monoclinic family: 3 free parameters (a,b,g)

Page 88: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine88 / 129

mp

tp

op

hp

monoclinicpoint group 2

(minimal point group)No restriction

on a, b, gNo symmetry direction

orthorhombicpoint group 2mm

No restriction on a, b ;g = 90º

[10] and [01]

tetragonalpoint group 4mm

a = b ; g = 90º10 ([10] and [01])11 ([11] and [11])

hexagonalpoint group 6mma = b ; g = 120º

10 ([10], [01] and [11])11 ([21], [12] and [11])

b

a

g b

a

g

a1

a2

g

a1

a2

g

Crystal families: monoclinic, orthorhombic, tetragonal, hexagonalType of lattice*: primitive, centred

*Lattice whose conventional unit cell is primitive or centredKettle S.F.A, Norrby L.J., J. Chem. Ed. 70(12), 1993, 959-963

g bc

ac

bp

ap

oc

Conventional cell parameters and symmetry directions in the four crystal families of E2

Page 89: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine89 / 129

Crystal systems

Point-group types that act on the same types of Bravais lattices belong to the same crystal system.

Type of group mp op oc tp hpCrystal system

2, 1 monoclinic

2mm, m orthorhombic

4mm, 4 tetragonal

6mm, 6, 3m, 3 hexagonal

No. of free parameters 3 2 2 1 1

Page 90: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine90 / 129

Lattice systems

Point-group types that correspond to the same lattice symmetry belong to the same lattice system.

6mm, 6, 3m, 3 : hexagonal lattice system

4mm, 4 : tetragonal lattice system

2mm, m : orthorhombic lattice system

2, 1 : monoclinic lattice system

Page 91: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine91 / 129

The world in three dimensions

E3 : the three-dimensional Euclidean space

Page 92: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine92 / 129

Operations that leave invariant all the space (3D): the identityOperations that leave invariant a plane (2D): the reflectionsOperations that leave invariant one direction of the space (1D): the rotationsOperations that leave invariant one point of the space (0D): the roto-inversionsOperations that do not leave invariant any point of the space : the translations

Three independent directions in E3 three axes (a, b, c) and three interaxial angles (a, b, g)

The subspace left invariant (if any) by the symmetry operation has dimensions from 0 to N (= 3 here)

I = 1, -I = 1 Minimal point group of a Bravais lattice: 1 = {1,1}

Symmetry operations in E3

Page 93: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine93 / 129

Inversion centre vs. inversion point

Rotoinversion: n

On a mono-dimensional element (axis) a zero-dimensional element (point) exists:● if n is odd, the inversion operation exists as an independent operation and

the corresponding element is called an inversion centrecentre;● if n is even, the inversion operation does not exist as an independent

operation and the corresponding element is an inversion pointpoint.

3 (order 6)

inversion centre

4 (order 4)

inversion point

Page 94: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine94 / 129

c

b

a

ab

g

Labelling of axes and angles in E3

Page 95: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine95 / 129

1  one-fold rotoinversion axis(inversion centre)

2 2-fold rotation axis

3 3-fold rotation axis

4 4-fold rotation axis

6 6-fold rotation axis

2/m

3 three-fold rotoinversion axis 4/m

4 four-fold rotoinversion axis 6/m

6 (3/m)  six-fold rotoinversion axis

n-fold rotation axis n-fold rotoinversion axis n-fold rotation axis and mirror plane perpendicular to it

two-fold rotoinversion axis is a mirror plane

First-kind operations Second-kind operations

Operations including translations are introduced laterThe orientation of a mirror plane is indicated by the vector normal to it

Graphic symbols for symmetry elements

Page 96: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine96 / 129

Infinite!

Only one

The orientation of a mirror plane is indicated by the vector normal to it

Page 97: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine97 / 129

II

'

'

'

x x

f y y

z z

II

'

11 '

'

x x

f y y

z z

II

'

1 1 '

'

x x

f y y

z z

1

1 1

1

I

'

1 '

'

x x

f y y

z z

I

'

1 '

'

x x

f y y

z z

Associativity

Commutativity

If fII is a symmetry operation of a given object, and if that object is not centrosymmetric, f

I is not a symmetry operation of the object.

An isometry of the second kind, fII, can always be

expressed as 1fI

Page 98: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine98 / 129

db

q

I

IIII

Equivalence of 2 and m

Page 99: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine99 / 129

db

q

I

IIII

p

I

II

Applies to even-fold rotations as well, because they all “contain” a twofold rotation

42 = 2; 63 = 2

Combination of 2 and 1 gives m

Page 100: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine100 / 129

t(1,0,0), t(0,1,0), t(0,0,1) : Primitive cell (P)

t(1,0,0), t(0,1,0), t(0,0,1), t(½,½,0): Ct(1,0,0), t(0,1,0), t(0,0,1), t(½,0,½): Bt(1,0,0), t(0,1,0), t(0,0,1), t(0,½,½): At(1,0,0), t(0,1,0), t(0,0,1), t(½,½,½): I

t(1,0,0), t(0,1,0), t(0,0,1), t(½,½,0), t(½,0,½), t(0,½,½): Ft(1,0,0), t(0,1,0), t(0,0,1), t(⅔,⅓,0), t(⅓,⅔,0): Ht(1,0,0), t(0,1,0), t(0,0,1), t(⅔,⅓,⅓), t(⅓,⅔,⅔): Rt(1,0,0), t(0,1,0), t(0,0,1), t(⅓,⅓,⅓), t(⅔,⅔,⅔): D

Conventional unit cell1. the basis vectors a, b, c form a right-handed reference;2. edges of the cell are parallel to the symmetry directions of the lattice (if any);3. if more than one unit cell satisfies the above condition, the smallest one is the

conventional cell.Reduced cell1. the basis vectors a, b, c form a right-handed reference;2. its faces are two-dimensional reduced unit cells and its edges are not longer than

its diagonals; concretely:a. basis vectors correspond to the shortest lattice translation vectors;b. the angles between pairs of basis vectors are either all acute (type I reduced

cell) or non-acute (type II reduced cell).

Choice of the unit cell

Page 101: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine101 / 129

a

b

c

P a

b

c

a

b

c

C B a

b

c

A

S

a

b

c

Ia

b

c

F

Types of unit cells that bring a letter in E3

a

b

c

R a

b

c

H a

b

c

D

Seldom used

Page 102: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine102 / 129

mp

b

a

g+ a third direction inclined on the plane

● One symmetry element: the inversion centre ● No symmetry direction● The conventional unit cell is not defined –

no reason to choose a priori a centred cell● Point group of the lattice: 1● No restriction on a, b, c, a, b, g

triclinic crystal family (anorthic)

aP

2D 3D

2 1 1 = 1

Crystal families and types of lattices in E3: the triclinic (aanorthic) family

Page 103: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine103 / 129

monoclinic crystal family

● One symmetry direction (usually taken as the b axis).● The conventional unit cell has two right angles (a and g)● Point group of the lattice: 2/m● Two independent types of unit cell respect these conditions

mP mS

mp

b

a

g+ a third direction perpendicular to the plane

2D 3D

2 2 1 = 2/m

Crystal families and types of lattices in E3: the mmonoclinic family

Page 104: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine104 / 129

cB

bBa

Ba

P = (a

B-c

B)/2 ; c

P = (a

B+c

B)/2

bP

cP

aP

cB

aB

bB

aP

cB

aB

aP = (a

B-c

B)/2

bB

bP

cP

A lattice of type mP is equivalent to mB

Page 105: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine105 / 129

cC

bCa

C

bC

aC

bP

aP

cC

bCa

C

bC

aC

bP

aP

A lattice of type mP is NOT equivalent to mC

Page 106: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine106 / 129

aA = -c

C

cA = a

C

mA mC

mC mF

cF = -a

C+2c

CmC mIa

I = a

C-c

Cc

I

aI

bI b

A

cF

bF b

C

aF a

C

cC

bCa

C

aA

cA b

A b

C

Lattices of type mC, mA, mI and mF are all equivalent

Page 107: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine107 / 129

b-unique c-unique a-unique

b unrestricted by symmetry

g unrestricted by symmetry

a unrestricted by symmetry

mB = mPmA = mC = mI = mF

mC = mPmA = mB = mI = mF

mA = mPmB = mC = mI = mF

The symbol of a monoclinic space group will change depending on which setting and what type of unit cell you choose, leading to up to 21 possible symbols for a monoclinic space group (the “monoclinic monster”).

http://dx.doi.org/10.1107/S2053273316009293

Three monoclinic settings

Page 108: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine108 / 129

op

ba

b

a

oc

g g

oP oI oS oF

orthorhombic crystal family

● Three symmetry directions (axes a, b, c)● The conventional unit cell has three right angles (a, b, g)● Point group of the lattice: 2/m 2/m 2/m● Four types of cell respect these conditions● The unit cell with one pair of faces centred can be equivalently described as A, B or C by a

permutation of the (collective symbol : S)

+ a third direction perpendicular to the plane

2D 3D

2mm 2mm 1 = 2/m2/m2/m

Crystal families and types of lattices in E3: the oorthorhombic family

Page 109: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine109 / 129

a b

c

a

b

c

a

bc

oC oB oA

oS

Three possible setting for the oS type of lattice in E3

Page 110: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine110 / 129

tp

a

bg

tP tI

tetragonal crystal family● Five symmetry directions (c, a&b, the two diagonals in the a-b plane)● Point group of the lattice: 4/m 2/m 2/m● The conventional cell has three right angles and two identical edges● Two independent types of unit cell respect these conditions: tP (equivalent to tC) and tI

(equivalent to tF)

tP

tC

½

tF

½

½

+ a third direction perpendicular to the plane

½

tI

½

½

½

2D 3D

4mm 4mm 1

= 4/m2/m2/m

Crystal families and types of lattices in E3: the ttetragonal family

Page 111: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine111 / 129

Why unit cells of type tA et tB cannot exist?

0 0

0 0

0

0

0 0 0

00

1/2

1/2

1/2

1/2

1/2 1/2

1/2 1/20

4-fold axis!

a1

a2

Page 112: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine112 / 129

Why unit cells of type tA et tB cannot exist?

0 0

0 0

0

0

0 0 0

00

1/2

1/2

1/2

1/2

1/2 1/2

1/2 1/20

1/21/2 1/2

1/21/2

1/21/21/2

1/2

a1

a2

4-fold axis!

Page 113: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine113 / 129

0 0

0 0

0

0

0 0 0

00

1/2

1/2

1/2

1/2

1/2 1/2

1/2 1/20

1/21/2 1/2

1/21/2

1/21/21/2

1/2

a1

a2

4-fold axis!

Why unit cells of type tA et tB cannot exist?

Page 114: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine114 / 129

00

00

00

0 0

0 0

0

0

0 0 0

00

1/2

1/2

1/2

1/2

1/2 1/2

1/2 1/20

1/21/2 1/2

1/21/2

1/21/21/2

1/2

a1

a2

tF!

4-fold axis!

Why unit cells of type tA et tB cannot exist?

Page 115: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine115 / 129

00

00

00

0 0

0 0

0

0

0 0 0

00

1/2

1/2

1/2

1/2

1/2 1/2

1/2 1/20

1/21/2 1/2

1/21/2

1/21/21/2

1/2

a1

a2

tF! tI!

4-fold axis!

Why unit cells of type tA et tB cannot exist?

Page 116: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine116 / 129

tp

a1

a2

g

cP cI cF

cubic crystal family

+ a third direction perpendicular to the plane AND c = a = b

Crystal families and types of lattices in E3: the ccubic family

Page 117: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine117 / 129

ObserverFirst and fourth plane from the observer

Second plane from the observer

Third plane from the observer

Three-fold rotoinversion along the 111 direction

Page 118: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine118 / 129

tp

a1

a2

g

cP cI cF

cubic crystal family

● Thirteen symmetry directions (the 3 axes; the 4 body diagonals ; the six face diagonals)● Point group of the lattice: 4/m 3 2/m● The conventional unit cell has three right angles and three identical edges● Three types of unit cell respect these conditions : cP, cI et cF

+ a third direction perpendicular to the plane AND c = a = b

2D 3D

4mm 4mm 3 = 4/m32/m

Crystal families and types of lattices in E3: the ccubic family

Page 119: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine119 / 129

hp

a1

a2

g

hexagonal crystal family

A1

A2

C

+ a new type of unit cell!

+ a third direction perpendicular to the plane

2D 3D

6mm 6mm 1 = 6/m2/m2/m

Crystal families and types of lattices in E3: the hexagonal family

Page 120: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine120 / 129

A1 A

2

C

a1

a2

a3

A1

A2

a1

a2

a3

Symmetry directions

A1, A

2, C hexagonal axes parallel to the symmetry directions

a1, a

2, a

3 rhombohedral axes NOT parallel to the symmetry directions

Two types of lattice with different symmetry in the hexagonal crystal family

Peculiarity of the hhexagonal crystal family in E3

Page 121: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine121 / 129

[110]R

[101]R

[011]R

[101]R

[011]R

[110]R

a1

a2a

3

A3

A1

A2

[100]H

[010]H

[110]H

[110]H

[010]H

[100]H

[210]H

[120]H

[110]H

[110]H

[210]H

[120]H

z = 0

z = 1/3

z = 2/3

6/m2/m2/m

32/m

Symmetry difference between hP and hR types of lattice

Page 122: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine122 / 129

Conjugate subgroupsNormal subgroup

7 holohedries → 7 lattice systems but 6 crystal families

Cubic

Tetragonalhexagonal

rhombohedral

orthorhombic

monoclinic

triclinicHexagonal crystal family: 2 free

parameters (a,c or a,a)

Poi

nt g

roup

ord

er

Page 123: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine123 / 129

aPmP mS tP tI

oP oI oS oF

hP hRcP cI cF

1 triclinic 2/m monoclinic 4/m 2/m 2/m(4/mmm)

tetragonal

2/m 2/m 2/m (mmm) orthorhombic

6/m 2/m 2/m(6/mmm) hexagonal rhombohedral

cubic3 2/m(3m)

4/m 3 2/m(m3m)

Lattice systems: classification based on the symmetry of the lattices

Page 124: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine124 / 129

Crystal systems:morphological (macroscopic) and physical symmetry

Page 125: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine125 / 129

A1

1 or 1

A2

2 or m or 2/m3A

2

Three twofold elements

A4

A3

A6

4A3

triclinic monoclinic

tetragonal

orthorhombic

hexagonaltrigonal

cubicA

n = n or n

Crystal systems:morphological (macroscopic) and physical symmetry

Page 126: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine126 / 129

hexagonal

6 crystal families

aP

mP ( mB )

mS ( mC, mA, mI, mF )

oP

oS ( oC, oA, oB )

oI

oF

tP ( tC )

tI ( tF )

hR

hP

cP

cI

cF

no restriction on a ; b ; c, a , b , g

no restriction on a ; b ; c ; b.a = g = 90º

no restriction on a ; b ; c.a = b = g = 90º

a = b ; a = b = g = 90ºno restriction on c

a = b = ca = b = g = 90º

a = b ; a = b = 90º, g = 120º no restriction on c

conventional unit cell

a = anortic*(triclinic, asynmetric, tetartoprismac...)

m = monoclinic(clinorhombic, monosymmetric, binary,hemiprismatic, monoclinohedral, ...)

o = orthorhombic(rhombic, trimetric, terbinary, prismatic, anisometric,...)

t = tetragonal(quadratic, dimetric, monodimetric, quaternary...)

h = hexagonal(senaiey, monotrimetric...)

c = cubic(isometric, monometric, triquaternary, regular, tesseral, tessural...)

7 crystal systems(morphological symmetry)

trigonal (ternary...) (***)

triclinic

monoclinic

orthorhombic

tetragonal

hexagonal

cubic

7 lattice systems(lattice symmetry)

triclinic

monoclinic

orthorhombic

rhombohedral

cubic

tetragonal

14 types of Bravais lattices(**)

(*) Synonyms within parentheses. (**) S = one pair of faces centred. Within parentheses the types of lattices that are equivalent (axial setting change – see the monoclinic example). (***) Crystals of the trigonal crystal system may have a rhombohedral or hexagonal lattice

Crystal families, crystal systems, lattice systems and types of Bravais lattices in E3

Page 127: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine127 / 129

[110] [011] [101] 110

[100] [010] [110] 100

Lattice system First symmetry direction

triclinic

monoclinic(b-unique)

orthorhombic

tetragonal

rhombohedral

hexagonal

cubic

[010]

[100] [010] [001]

[100] [010] 100[001]

[111]

[001]

[001] [100] [010] 001

[110] [110] 110

rhombohedral axes

hexagonal axes [001]

[100] [010] [110] 100

[111] [111] [111] [111] 111

[110] [110] [011][011] [101] [101]

110

[110] [120] [210] 110

No restriction on any parameter

a g = 90ºNo restriction on a; b; c; b

a b g = 90ºNo restriction on a; b; c

a = b ; a b g = 90ºNo restriction on c

a = b = ca b g = 90º

a = b; a b = 90º; g = 120º No restriction on c

a = b = ca b g

Symmetry restrictions on the parameters of the conventional cell

Second symmetry direction

Third symmetry direction

Symmetry directions of the lattices in the three-dimensional space(directions in the same box are equivalents by symmetry )

a = b; a b = 90º; g = 120º No restriction on c

Page 128: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine128 / 129

Triclinic family:none

Monoclinic familya = g = 90º

Orthorhombic familya = b = g = 90º

Tetragonal familya = b

a = b = g = 90º

Hexagonal familyHexagonal axes: a = b; a = b = 90º ; g = 120º

Rhombohedral axes: a = b = c; a = b = g

Cubic familya = b = c

a = b = g = 90º

a b c a b g 90°

a b c; a = g = 90°; b 90°

a b c; a = b = g = 90°

a = b c; a = b = g = 90°

a = b c; a = b = 90°; g = 120°a = b = c; a = b = g 90°

a = b = c; a = b = g = 90°

For the crystal structure, too restrictive

For the crystal lattice (geometric concept), insufficient

Restrictions incorrectly given in many textbooks

Symmetry restrictions on cell parameters (conventional cell)

Page 129: Fundamentals. Crystal patterns and crystal structures ...cloud.crm2.univ-lorraine.fr/pdf/common/Nespolo_Fundamentals.pdf · nanocrystallography etc.) allow to go beyond the ideal

Massimo Nespolo, Université de Lorraine129 / 129

Why insufficient for the crystal lattice?

A simple example: mP

if b = 90° the lattice is oP (obviously)

Let us suppose cosb = -a/2c

a

c

oB!