fundamental symmetries studies with electron · pdf filefundamental symmetries studies with...

37
Fundamental symmetries studies with l t t t FRIB 1 electron spectroscopy at FRIB Chi lit fli i it ti Chirality flipping interactions Axial and tensor Fermi and scalar Tools: R×B spectrometer Cyclotron Radiation Emission Spectroscopy Examples of other uses of beta spectroscopy: Nuclear structure for 2 decays Nuclear structure for 2 decays Efficiency of some neutrino detectors Alejandro Garcia University of Washington Fundamental symmetries at FRIB

Upload: vuongnhu

Post on 06-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Fundamental symmetries studies with l t t t FRIB

1

electron spectroscopy at FRIB

Chi lit fli i i t ti• Chirality flipping interactions• Axial and tensor• Fermi and scalar• Tools: R×B spectrometer p

Cyclotron Radiation Emission Spectroscopy

• Examples of other uses of beta spectroscopy:• Nuclear structure for 2 decays• Nuclear structure for 2 decays• Efficiency of some neutrino detectors

Alejandro GarciaUniversity of Washington

Fundamental symmetries at FRIB

Fundamental symmetries studies with 6He 6He

0+ 2

6Li1+ Q~3.5 MeV•Simple decay (~100% to ground state)

•Pure Gamow‐Teller decay•Half‐life ~1 sec → appropriate for trapping pp p pp g•Large Q‐value → good for seeing effects of n•Noble gas → no worries about chemistry•Light nucleus → ab‐initio calculations

Compare to neutron:• No backgrounds from neutron captures• Pure GT transition (simpler decay, no polarization)

6He “little a”

P. Muller, A. Leredde Argonne National Lab

6He “little b”

P. Muller, A. Leredde Argonne National Lab

X. Fléchard, E. Liennard, LPC, CAEN, France

O. Naviliat-Cuncic, NSCL, MSU

A Knecht PSI Switzerland

A. Knecht, PSI, Switzerland

A. Hime, B. Vandebender, PNNL,

Y. Bagdasarova, A. Garcia, D. Hertzog, R. Hong, P.A. Knecht, PSI, Switzerland

Y. Bagdasarova, A. Garcia, R. Hong, M. Sternberg, D. Storm, H.E. Swanson, F. Wauters, D. Zumwalt

University of Washington

Y. Bagdasarova, A. Garcia, D. Hertzog, R. Hong, P. Kammel, J. Kofron, G. Rybka, M. Sternberg, D. Storm, H.E. Swanson, F. Wauters, D. Zumwalt

University of Washington

Fundamental symmetries at FRIB

Now ~1010 atoms of 6He/s at Seattle via 7Li(d 3He)6He

3

Now 10 atoms of He/s at Seattle via Li(d, He) He

A K ht t l

Most intense source of 6He in the world here at CENPA.

A. Knecht et al.NIM A. 660, 43 (2011)

Typical decay density is about 109 decays/s cm3…

(Good neutron decay density i 1 d / 3)

Fundamental symmetries at FRIB

is1 decay/s cm3)

6He lifetime, ab-initio calculations, gA(nuclear) 4

221 VG

Several `ab initio’ calculations show agreement on matrix element at the

22 ˆ

)(1 iOfg

KVG

tEf AudFiOf ˆWith calculated and lifetime can extract gA

Several ab-initio calculations show agreement on matrix element at the few percent level:

Schiavilla & Wiringa PRC 65, 054302 (2002)Navratil & Ormand, PRC 68, 034305 (2003)Previn et al., PRC 76, 064319 (2007)Vaintraub et al., PRC 79, 065501 (2009) But experimental situation was unclear.

Fundamental symmetries at FRIB

5Knecht et al. ,Phys. Rev. Lett. 108, 122502 (2012);Phys. Rev. C 86, 035506 (2012).

6He lifetime, ab-initio calculations, gA(nuclear)

• We resolved the discrepancy.

Our result in combination with ab‐initio l l ti h th t t hicalculations shows that extraneous quenching 

is at most about 2%. 

Now limited by theoretical uncertainty.

Fundamental symmetries at FRIB

Searches for Tensor currents. 6

Are nuclear weak decays carried only by W’s?

e+

Or chirality-flipping interactions?

d e+ de+

e+W

d

u

e+e

?u

e

Lepto-Quarku

e

Le

R

TTRe

L

TTif

Le

L

Aif

eCCeCC

eCH

)()(

2''

55

Finding these would be a

Decay rate: 222

'2Re TTA CCCb

big deal

e

e

e

e

Emb

Ep

Epadwdw

10

222

2'222

31 TTA CCC

a

2'222 TTA CCC

2'2223

TTA CCC

Fundamental symmetries at FRIB

• Electron and 6Li detected in coincidence

6He “little a”

P. Muller, A. Leredde Argonne National Lab

7

• Electron and 6Li detected in coincidence• E‐E scintillator system for electron (energy, 

start of time‐of‐flight)• Micro‐channel plate for 6Li (position, TOF)

X. Fléchard, E. Liennard, LPC, CAEN, France

O. Naviliat-Cuncic, NSCL, MSU

A Knecht PSI S it erlandA. Knecht, PSI, Switzerland

Y. Bagdasarova, A. Garcia, R. Hong, M. Sternberg, D. Storm, H.E. Swanson, F. Wauters, D. Zumwalt

University of Washington

Fundamental symmetries at FRIB

8Magneto‐Optical Trap

• RF discharge in xenon/krypton to excite into metastable state

• Cycling on 1083 nm transition to slow down and magneto‐optically trap

• Based on experience from 6He, 8He h di t b ANLcharge radius measurements by ANL collaborators:L.‐B. Wang et al., PRL 93, 142501 (2004)P M ll l PRL 99 252501

Fundamental symmetries at FRIB

P. Mueller et al., PRL 99, 252501 (2007)

Precision beta decay versus others: Can “precision” compete with “energy”? Yes

9

Can precision compete with energy ? Yes.

F. Wauters et al. PRC 89, 025501 (2014)

Fundamental symmetries at FRIB

Detect little b 10Is it possible to break the “b ~ 10-3 barrier” and reach into really interesting terrain?

e

e

e

e

Emb

Ep

Epadwdw

10

2'2221 CCC

quadratic linear

2'222

231

TTA

TTA

CCC

CCCa

222

'2Re TTA CCCb 2'22

2 TTA CCCb

Nb

Ethres

/10

keV 200

Can get stats with rates of about 104 Hz.

Fundamental symmetries at FRIB

Detect little b 11Typical beta spectrometers work best with a `point’ source

From Knutson et al. submitted to PRC(Recent work on the shape of the betashape of the beta spectrum of 14O.)

Hard to apply this technique for 6He:Hard to apply this technique for 6He: presently we can load only ~1000 atoms in laser trap

Fundamental symmetries at FRIB

R×B spectrometer for 6He (similar to idea being pursued by PERC):12

BRBRpRD

cos2

sincos)(

22

max

1)/(3)/(

TeslaBMeVpc

Existing device at PSI

100 kVplatform

Fundamental symmetries at FRIB

Comparison of neutron to 6He shape measurement with R×B spectrometer13

Parameter Neutron(PERC)

6He(CENPA)

KeMax(MeV) 0.97 3.5

B3 (Tesla) 0.15 0.15

Effective decay rate (1/s) 106 105

T bl N YTrappable No  Yes

Image size at p≈0 1×1 cm2 0.3×0.3 cm2

Systematic uncertainties:• Singles measurement: backgrounds? Looks ok.• Effects from unobserved backscattering? Looks ok• Effects from unobserved backscattering? Looks ok.• Non-trapped 6He? Looks manageable.• Trajectories in realistic configuration: any surprises? Needs more study

Fundamental symmetries at FRIB

146He “little b”: Project 8 collaboration is aiming at detecting electrons from 3H decay.

P8 idea: Pick up cyclotron radiation

•None of the usual problems of calorimetry: scattering, dead layers, low resolution, etc…

•Good linearity between cyclotron frequency and energy.

•Excellent resolution

Fundamental symmetries at FRIB

156He “little b”: Project 8 collaboration is aiming at detecting electrons from 3H decay.

P8 idea: Pick up cyclotron radiation

Project 8 recently showed impressive lt f i l tresults from a conversion electron source

(Asner et al. arXiv:1408.5362)

Fundamental symmetries at FRIB

166He “little b”: aiming for 10-4 with Project-8 like system

Intense production at CENPA (decay density up to about 109 decays/s cm3!) and 6He as gas make it well suited for P8-like approach.

Pick up cyclotron radiation

pp

Need larger guide (58x29 mm2 vs. 11x4 mm2)--loose power prop to area --but compensate due to higher energies

many alternative schemes to be considered

40/1/1 AP 22 1 BP

--many alternative schemes to be considered

Isotope Decay t1/2 (days) Ee(keV)

Next: test with conversion lines at energies closer to 6He sotope ecay t1/2 (days) e( e )

131mXe IT 12 129,158,163

133mXe IT 2.2 233

Fundamental symmetries at FRIB

133Xe ‐ 5.3 346

176He “little b”: aiming for 10-4 with Project-8 like system

Fundamental symmetries at FRIB

186He at CENPA summary:

Present and near future work (little a):• Several ongoing upgrades. Expect trapping about 1000 atoms with little bkgd.• Determination of apparatus parameters: E field, geometry, efficiencies, instabilities.

Present and near future work (little b):• Test “Project8-like” setup with higher energy conversion sources.• Put together similar system to detect betas in 200-900 keV range.• We would consider again the “R×B Spectrometer” idea if the above fails.

Goals 3 years:

We would consider again the R B Spectrometer idea if the above fails.

Goals 3 years:Determination of a to ~0.1%; R&D to determination of b. Determine b to ~10-3.

Goals 6 years:Goals 6 years:Determine b to ~10-4.

Fundamental symmetries at FRIB

19Examples of other applications of electron spectroscopy

Benchmarks for 22 decays nuclear structure:• 22 decays

i l b t d• single beta decays• single electron capture decays 

In 3 cases one can check all of the above for the same nucleus: good for understanding overarching issues (role of p‐p, p‐h correlations, deformation, etc...)

We developed a device to determine the tiny EC branches.

Fundamental symmetries at FRIB

We developed a device to determine the tiny EC branches using the radioactive beams available at IGISOL (JYFLTRAP).

20

Use ion trap for clean activityHigh-resolution Ge for x raysScintillator for vetoing beta-decays

100Tc EC decay: 116In EC decay:

21

yBR(EC) = (2.6±0.4)×10‐5

yBR(EC) = (2.3±0.6)×10‐4

Wrede et al., PRC 87, 032501 (2013).

S. Sjue, Thesis 2008;Sjue et al., PRC 87, 032501 (2013).

Both of our results are consistent with complete ground state dominance: just using the ground state accounts for the measureddominance: just using the ground state accounts for the measured 2‐2decay rate

Fundamental symmetries at FRIB

Comparison with 2 different QRPA calculations 22

O. Moreno, R. Alvarez-Rodriguez, P. Sarriguren, E. Moya de Guerra, F. Simkovic, A. Faessler,J. Phys. G 36, 015106 (2009)

Suhonen & CivitaresePhys. Lett. B725, 753 (2013)

Our measurements

Fundamental symmetries at FRIB

23High resolution Auger spectroscopy would determine the efficiencies of  solar pp neutrino detectors

Fundamental symmetries at FRIB

24

High-resolution beta spectroscopy

Perhaps FRIB would be the place for the most intense production of some gaseous molecular species or trapped ions that could be used for cyclotron-radiation detection in pure axial and pure Fermi decays to search for tensor and scalar currents.

High-resolution Auger spectroscopy with ions of choice could help with spectroscopy relevant for neutrino physics (double beta decay, solar neutrinos).

Fundamental symmetries at FRIB

25

Backup slides

Fundamental symmetries at FRIB

26

Long range Short range

Fundamental symmetries at FRIB

6He: 27

“recoil order”

fpr

MfrC WMV

V 2][

… and radiative corrections.

ligriCM

AA

5

Small and under control for 6He decay.y

From theorists (Barry Holstein et al.): “no show stoppers”

Fundamental symmetries at FRIB

We have already trapped ~500 atoms of 6He at UW!

28

Fundamental symmetries

Precision beta decay versus pion and “LHC”: (Wauters et al.) 29

Fundamental symmetries with 6He

MCPPSD (micro chanel plates with delay line anodes)30

MCPs (micro channel plates)

Delay line anodesx

X = c (tx1-tx2) tx2

tx1

5 polarization voltages: front MCP, back MCP, det. frame, anode ref, anode sig

( )

Fundamental symmetries with 6He

5 signals: charge emitted by MCPs, charge collected on anodes (x1,x2,y1,y2) p g , , , _ , _ g

X&Y calibration: 31- Reconstruction with 2d order polynomial functions

Fundamental symmetries with 6He

32Detect little b. Betas in adiabatic motion in B: basic ideas

rBFlux 22 constantsin)1

qBpr

rBFlux

0

0 constantsin)1

2) O bit l ti t d

constantsin2

B

2) Orbital magnetic moment conserved:

constant2

sin 20

er

3) A force F applied perpendicular to B generates a “drift velocity”:

2

)/(B

BeFu

4) A solenoidal field with intensity varying as in the figureyields smaller pitch-angle betas, good for minimizing backscatter

Fundamental symmetries with 6He

Comparison of neutron to 6He shape measurement with R×B spectrometer33

Parameter Neutron 6He

KeMax(MeV) 0.97 3.5

B3 (Tesla) 0 15 0 15B3 (Tesla) 0.15 0.15

Effective decay rate (1/s) 106 105

Trappable No  Yes Backscattering front foil

Image size at p≈0 1×1 cm2 0.3×0.3 cm2of a gas counterParameter Backscattered 

fraction (%)

Ke(MeV)

Systematic uncertainties:• Singles measurement: backgrounds?• Effects from unobserved backscattering?

e( )

0.1 0.3

0.2 0.07

• Effects from unobserved backscattering?• Non-trapped 6He?• Trajectories in realistic configuration: any

surprises?

0.3 0.03

0.5 0.01

1.0 0.002

Fundamental symmetries with 6He

34

Fundamental symmetries with 6He

Trapping of 6He 35

• RF discharge in xenon/krypton to excite into metastable state

• Cycling on 1083 nm transition to transversely cool, slow down and trap magneto‐optically

• Trapped atoms transferred to detection chamber with 2nd MOT

• Based on experience from 6He, 8He charge radius measurements by ANL collaborators:L.‐B. Wang et al., PRL 93, 142501 (2004)P Mueller et al PRL 99 252501 (2007)

Fundamental symmetries with 6He

P. Mueller et al., PRL 99, 252501 (2007)

Detection systems 36

E‐E scintillator system for electron detection (energy, start of time‐of‐flight)

Micro‐channel plate d fdetector for detection of 6Li recoil nucleus (position, time‐of‐

Fundamental symmetries with 6He

(p ,flight)

Systematic uncertainties on little a (from MC simulations). 37

a/ x ( a/ x)/a x  a/a

Z‐Position <‐3e‐4 /0.1mm <0.1%/0.1mm z = 0.1 mm 0.1%

Timing (res) ‐7e‐4/1ns 0.2%/1ns = 1.0 ns 0.2%

MCP: mask ‐0.02 /mm 6.5%/mm r = 15  m 0.1%for radius cut

MCP: position 1.5e‐3 / mm 0.3%/mm pos = 0.3 mm 0.1%

Beta threshold

2e‐4/ 10 keV 0.065%/ 10 keV Th = 15 keV 0.1%

E Fi ld 1e 4/V 0 03%/V V 1 V 0 03%E‐Field Stability

1e‐4/V 0.03%/V V = 1 V 0.03%

Total 0.3%

Fundamental symmetries with 6He