fundamental physics with askaryan arrays · fundamental physics with askaryan arrays amy connolly...

28
Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30 th , 2013 1 1

Upload: others

Post on 30-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Fundamental Physics with Askaryan ArraysAmy Connolly (The Ohio State University and CCAPP)SnowmassJuly 30th, 2013

1

1

Page 2: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Outline

• Introduction to radio Cerenkov technique and experiments

• Cross-sections• Lorentz Invariance Violation• UHE Astrophysics• Conclusions

2

See tomorrow’s talk by Abby Vieregg for more details on neutrino searches

2

Page 3: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Introduction to radio Cerenkov technique and experiments

3

Page 4: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Motivations for ultra-high energy (UHE) neutrinos (>1018 eV)

1. Expect UHE neutrinos from GZK (Greisen-Zatsepin-Kuzmin) process: Cosmic rays >1019.5 eV slowed by cosmic microwave background (CMB) photons within ~50 Mpc:

p+ �CMB ! �⇤ ! n+ ⇤+

n ! p+ e� + ⇥̄e

⇤+ ! µ+⇥µ

µ+ ! e+⇥̄µ⇥e

2. Expect UHE neutrinos from UHECR sources: should produce UHE neutrinos through γ-hadronic interactions

ν’s from GZK process first

pointed out by Berezinsky and Zatsepin (1969)

4

4

Page 5: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Detection Techniques• <1018 eV: optical dominates current constraints• >1018 eV: radio dominates

- Radio thresholds dropping with experiments coming online

Cascades in atmosphere

5

5

Page 6: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

RMoliere ≈ 10 cm, L ~ meters → Radio!

• Coherent Cerenkov signal from net “current,” instead of from individual tracks

• A ~20% charge asymmetry develops (mainly Compton scattering)

• Excess moving with v > c/n in matter → Cherenkov Radiation dP ∝ ν dν

• If λ >> RMoliere → Coherent Emission P ~ N2 ~ E2

λ > RMoliere → Radio/Microwave Emission

This effect has been confirmed experimentally in sand, salt, ice:PRL 86, 2802 (2002)

PRD 72, 023002 (2005)PRD 74, 043002 (2006)PRL 99, 171101 (2007)

Idea by Gurgen Askaryan (1962)

Radio Cerenkov Technique (Askaryan Effect)

6

6

Page 7: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Antarctic Ice

[P. Gorham]

Ice thicknesses

2 km depths are typical across the continent

South Pole Ice

1 km

Radio Attenuation Lengths

7

7

Page 8: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Balloon Experiments

ANITA

Exavolt Antenna

(EVA)

3 year NASA grant for engineering phase

Long duration balloon program operated by

NASA

Neutrino signal V-pol

ANITA 1: 2006-2007 ANITA 2: 2008-2009 ANITA 3: 2014-2015 8

8

Page 9: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Askaryan Radio Array (ARA)

• Radio array at the South Pole- Testbed station,

Stations 1,2&3 deployed last 3 seasons

• Phase1: 37 stations ~100 km2

- Establish flux• Phase 2: ~1000 km2

- High statistics astronomy/ particle physics exploitation

IC

South Pole

2 km

DARK

SECTOR

Legend:

Power/comms cable

Power/comms/calib. station

Testbed station

Production Station

QUIET CIRCLE

CLEAN AIRSECTOR

QUIET SECTOR

Runway

Operation zone

Askaryan Radio Array ARA!37

University of Wisconsin, Ohio State University and CCAPP, University of Maryland and IceCube Research Center, University of Kansas and Instrumentation Design Laboratory, University of Bonn, National Taiwan University, University College London, University of Hawaii, Universite Libre de Bruxelles, Univ. of Wuppertal, Chiba Univ., Univ. of Delaware

NSF has funded Testbed+3 Stations. Pending approval for next phase

200 m depth

9

Page 10: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

10

ARIANNA• Radio array on Ross Ice

Shelfhttp://arianna.ps.uci.edu

• On track for completing 7 station array in Dec. 2013

• Propose 960 station array

USSweden

New Zealand10

Page 11: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

11

E (eV)

1510 1610 1710 1810 1910 2010 2110 2210

)-1

sr

-1 s

-2E

F(E)

(cm

-2110

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110ARA37 (3yrs) AraSim

ARA3 (3yrs) AraSim

ARA3 (1yr) AraSim

TestBed (3yr) AraSim

ANITA IIAugerIceCube40RICE '11GZK, Kotera '10GZK, ESS '01

E (eV)

1510 1610 1710 1810 1910 2010 2110 2210

)-1

sr

-1 s

-2E

F(E)

(cm

-2110

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110ARA37 (3yrs) AraSim

ARA3 (3yrs) AraSim

ARA3 (1yr) AraSim

TestBed (3yr) AraSim

ANITA IIAugerIceCube40RICE '11GZK, Kotera '10GZK, ESS '01

E (eV)

1510 1610 1710 1810 1910 2010 2110 2210

)-1

sr

-1 s

-2E

F(E)

(cm

-2110

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110ARA37 (3yrs) AraSim

ARA3 (3yrs) AraSim

ARA3 (1yr) AraSim

TestBed (3yr) AraSim

ANITA IIAugerIceCube40RICE '11GZK, Kotera '10GZK, ESS '01

E (eV)

1510 1610 1710 1810 1910 2010 2110 2210

)-1

sr

-1 s

-2E

F(E)

(cm

-2110

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110ARA37 (3yrs) AraSim

ARA3 (3yrs) AraSim

ARA3 (1yr) AraSim

TestBed (3yr) AraSim

ANITA IIAugerIceCube40RICE '11GZK, Kotera '10GZK, ESS '01

E (eV)

1510 1610 1710 1810 1910 2010 2110 2210

)-1

sr

-1 s

-2E

F(E)

(cm

-2110

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110ARA37 (3yrs) AraSim

ARA3 (3yrs) AraSim

ARA3 (1yr) AraSim

TestBed (3yr) AraSim

ANITA IIAugerIceCube40RICE '11GZK, Kotera '10GZK, ESS '01

E (eV)

1510 1610 1710 1810 1910 2010 2110 2210

)-1 sr-1 s

-2E

F(E)

(cm

-2110

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110ARA37 (3yrs) AraSim

ARA3 (3yrs) AraSim

ARA3 (1yr) AraSim

TestBed (3yr) AraSim

ANITA IIAugerIceCube40RICE '11GZK, Kotera '10GZK, ESS '01

11

Page 12: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Cross sections

12

Page 13: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Why are νN cross sections interesting?• Center of mass (COM) of UHE neutrino interactions with

nuclei well exceed LHC energies - √s=√2MNEν, Eν=1018 eV →√s=45 TeV!

• Predictions of SM νN cross section (σ) at high energies rely on measurements of quark, anti-quark number densities at low x (parton momentum fraction) inaccessible with accelerators- Eν > 1017 eV → x ≲ 10-5

- HERA measures x ≳ 10-4 - 10-5

• νN σ’s at all energies needed to model experiments13

13

Page 14: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

•Once an UHE ν sample is measured:• The distribution of ν

zenith angles θz would be sensitive to νN cross sections• For Eν = 1018 eV,

ECM = 45 TeV!

νN Cross Section Measurement with a Neutrino Telescope

14

Page 15: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

/ GeV )i

( E10

log6 7 8 9 10 11 12

)2 (

Cro

ss S

ectio

n / c

m10

log

-33

-32

-31

-30

-29

-28SM

=1 TeVD=1, MD=1, Nminx=1 TeVD=7, MD=1, Nminx=1 TeVD=7, MD=3, Nminx=2 TeVD=7, MD=1, Nminx

Enhanced Cross Sections• Models with extra space-time

dimensions lead to enhanced νN cross sections due to micro-black hole production

zecos -0.2 0 0.2 0.4 0.6 0.8 1

Num

ber o

f eve

nts

02468

101214161820

SM=1 TeVD=1, MD=1, Nminx=1 TeVD=7, MD=1, Nminx=1 TeVD=7, MD=3, Nminx=2 TeVD=7, MD=1, Nminx

• These would modify the θz distributions from the Standard Model (SM) expectation

• ND = # extra dimensions, MD = reduced Planck scale, xmin = MBHmin / MD

upgoing downgoing

Connolly, et al., Phys.Rev.D83:113009,2011

J. Alvarez-Muniz and E. Zas, Phys. Lett. B411, 218 (1997)

15

15

Page 16: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Expected Constraints

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=1D=1, MD=1, Nminx =1D=1, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL (%

)

2030405060708090

100

=1D=3, MD=1, Nminx =1D=3, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=1D=5, MD=1, Nminx =1D=5, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=1D=7, MD=1, Nminx =1D=7, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=1D=1, MD=3, Nminx =1D=1, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL (%

)

2030405060708090

100

=1D=3, MD=3, Nminx =1D=3, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=1D=5, MD=3, Nminx =1D=5, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=1D=7, MD=3, Nminx =1D=7, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=2D=1, MD=1, Nminx =2D=1, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL (%

)

2030405060708090

100

=2D=3, MD=1, Nminx =2D=3, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=2D=5, MD=1, Nminx =2D=5, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=2D=7, MD=1, Nminx =2D=7, MD=1, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=2D=1, MD=3, Nminx =2D=1, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL (%

)

2030405060708090

100

=2D=3, MD=3, Nminx =2D=3, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=2D=5, MD=3, Nminx =2D=5, MD=3, Nminx

>p < n10

log1 1.5 2 2.5 3

CL

(%)

2030405060708090

100

=2D=7, MD=3, Nminx =2D=7, MD=3, Nminx

• xmin = 3, MD = 2, ND = 7 excluded with 110 events

• Black bands: systematic uncertainty on SM cross sections

• Gray bands: statistical uncertainties

• On average, with 100 events, expect to exclude:

• xmin = 1, MD = 1, ND ≥ 2 xmin = 3, MD = 1, ND ≥ 3 xmin = 1, MD = 2, ND ≥ 3

Most of these already excluded by the LHC. BUT unique opportunity to probe the theory w/ UHE neutrinos 16

Connolly, et al., Phys.Rev.D83:113009,2011

16

Page 17: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Lorentz Invariance Violation

17

Page 18: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Lorentz Invariance Violation, Really?• Neutrinos are the only particles we can see from cosmic

distances at the highest energies observed- It is natural that we should use them to test LIV

• LIV falls naturally from many GUT models, L. Maccione, A. M. Taylor, D. M. Mattingly, & S. Liberati, JCAP 0904:022, (2009), P. Horava, Phys. Rev. D79, 084008 (2009); Phys. Rev. Lett. 102, 161301 (2009).

• It has been proposed that the photon could be a Goldstone boson arising from LIV, R. Bluhm and V.A. Kostelecký, Spontaneous Lorentz Violation, Nambu-Goldstone Modes, and Gravity, Phys. Rev. D 71, 065008 (2005), Bjorken (1963)

• It has been proposed that the graviton could be a Goldstone boson arising from LIV, V.A. Kostelecký and R. Potting, Gravity from Spontaneous Lorentz Violation, Phys. Rev. D 79, 065018 (2009)

• It is possible that both the photon and graviton are both simultaneously Goldstone bosons from LIV 18

18

Page 19: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Lorentz Invariance Violation (LIV)

• If neutrinos can exceed speed of light then can “brem”- ν→νʹ e+ e- (Coleman and Glashow)- Neutrino loses ~3/4 of its energy

• Effectively a “decay” with time constant:

with τCG=6.5 × 10-11 s-αν is a measure of level of LIV Eν=pνc(1+ αν)

• Over cosmic distances, neutrinos above an energy will all brem, show up at lower energies

P.W. Gorham, A. Connolly et al., Phys.Rev. D86 (2012) 103006

⌧⌫ = ⌧CG E⌫,GeV�5 ↵⌫

�3 s

19

19

Page 20: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Lorentz Invariance Violation (LIV)

Attenuation vs. redshift

Different energies, same αν = 8 × 10-26

Observed neutrino spectra, adapting CRPropa outputs

Different values of log10 αν 20

P.W. Gorham, A. Connolly et al., Phys.Rev. D86 (2012) 103006

20

Page 21: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

ANITA Results

• Set lower limit on LIV parameter αν assuming LIV was the reason for the models evading detection

P.W. Gorham, A. Connolly et al., Phys.Rev. D86 (2012) 103006

All the experimental results searching for violations of Lorentz invariance (Data Tables for Lorentz and CPT violation) published in Rev. Mod. Phys.83:11 (2011); the annually updated version can be found here arXiv:0801.0287. 21

21

Page 22: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

UHE Astrophysics

22

Page 23: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Neutrinos are Unique Probes of UHE Astrophysics

10

1810

1910

2010

2110

1

10

2

10

3

Energy of injected proton (eV)

Distancetoprotonsource(Mpc)

Protons from sources

0

0.5

1

1.5

·10�2

Probability

10

1810

1910

2010

2110

1

10

2

10

3

Energy of injected proton (eV)

Distancetoprotonsource(Mpc)

Neutrinos from p� � interactions

0

0.1

0.2

0.3

Probability

• Will be only particles >1019.5 eV from ≳100 Mpc

23

Plots made with the help of CRPropa 2.0E-1 spectrum, flat redshift evolution

23

Page 24: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Neutrinos: Only Probes of Ultimate Cosmic Acceleration Energy

• Highest energy cosmic rays are all local - not cosmic probes

20 20.5 21 21.5 22 22.5 23log

10 E

max

-3

-2.5

-2

-1.5

-1

!H

E

FRII log10

Ebrk

=21FRII log

10E

brk=20

SFR log10

Ebrk

=21SFR log

10E

brk=20

Pure proton at source, ankle transition

1016 1017 1018 1019 1020 1021

Energy [eV]102

103

104

105

106

107

E2 dN

/dE

[eV

m-2

s-1 sr

-1]

SFR (20,-1.7,22.5)SFRFRII (--,aLE,22.5)FRII

Pure proton at source, ankle transition

ANITA-IIRICE

IceCube-Full

A. Connolly, S. Horiuchi, N. Griffith, paper in preparation

PRELIMINARY

24

Emax=1021.5 1022.5

24

Page 25: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Summary

• Although radio Cerenkov experiments built as single purpose detectors for UHE neutrinos, variety of fundamental physics results: - LIV- did not have time to discuss magnetic monopoles,

quark nuggets• once UHE neutrinos are observed, will be unique

laboratories for - particle physics at super-LHC energies (cross sections) - unique view of UHE universe at cosmic distances

25

25

Page 26: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

Backup Slides

26

Page 27: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

CMS constraints for reference

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults27

27

Page 28: Fundamental Physics with Askaryan Arrays · Fundamental Physics with Askaryan Arrays Amy Connolly (The Ohio State University and CCAPP) Snowmass July 30th, 2013 1 1. Outline • Introduction

νN Cross Section calculations

Weaker low-x dependence gives lower cross sections at high energies

R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic (1998)

A. Connolly, R. Thorne and D. Waters (2011)

Cooper-Sarkar, Mertsch and Sarkar (2011)

M. Block, L. Durand, P. Ha, D. McKay (2013)

28

28