full issue pdf volume 113, issue 6

82
Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uene20 Download by: [181.198.210.203] Date: 28 September 2016, At: 07:43 Energy Engineering ISSN: 0199-8595 (Print) 1546-0118 (Online) Journal homepage: http://www.tandfonline.com/loi/uene20 Full Issue PDF Volume 113, Issue 6 To cite this article: (2016) Full Issue PDF Volume 113, Issue 6, Energy Engineering, 113:6, 1-81 To link to this article: http://dx.doi.org/10.1080/01998595.2016.11772063 Published online: 13 Sep 2016. Submit your article to this journal Article views: 17 View related articles View Crossmark data

Upload: dinhxuyen

Post on 13-Feb-2017

240 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Full Issue PDF Volume 113, Issue 6

Full Terms & Conditions of access and use can be found athttp://www.tandfonline.com/action/journalInformation?journalCode=uene20

Download by: [181.198.210.203] Date: 28 September 2016, At: 07:43

Energy Engineering

ISSN: 0199-8595 (Print) 1546-0118 (Online) Journal homepage: http://www.tandfonline.com/loi/uene20

Full Issue PDF Volume 113, Issue 6

To cite this article: (2016) Full Issue PDF Volume 113, Issue 6, Energy Engineering, 113:6, 1-81

To link to this article: http://dx.doi.org/10.1080/01998595.2016.11772063

Published online: 13 Sep 2016.

Submit your article to this journal

Article views: 17

View related articles

View Crossmark data

Page 2: Full Issue PDF Volume 113, Issue 6

EnergyEngineering

Steven Parker, PE, CEM, Editor-in-Chief

Vol. 113, No. 6 Contents 2016

JOURNAL OF THE ASSOCIATION OF ENERGY ENGINEERS®

Published Since 1904 ISSN: 0199-8595 (print)ISSN: 1546-0118 (on-line)

5 From the Editor; Shake, Rattle, and Roll

7 MeasurementandVerificationofIndustrialEquipment:SamplingInterval and Data Logger Considerations; Andrew Chase Harding, PE, CEM and Darin W. Nutter, PhD, PE

34 Virtual Audits: The Promise and The Reality; John M. Avina and Steve P. Rottmayer

53 HowMicrogridisChangingtheEnergyLandscape;The Honorable William C. (Bill) Anderson

63 EnMSandEMIS:What’s theDifference?;Mike Brogan, Ph.D., and Paul F. Monaghan, Ph.D.

70 Teaching Pneumatics Controls with New Tricks: Case Study onExisting Buildings Getting Intelligent Solutions; Consolato Gattuso, Leo O’Loughlin, and Harry Sim

79 SecretBenefit#3—SpecialTaxBenefitsfor2016;Eric A. Woodroof, Ph.D., CEM, CRM

Page 3: Full Issue PDF Volume 113, Issue 6

2 Energy Engineering Vol. 113, No. 6 2016

Steven A. Parker, PE, CEM Eric A. Woodroof, Ph.D., CEMEditor-in-Chief Associate Editor Energy Management Consultant Founder, [email protected] [email protected]

EDITORIAL BOARD

LindsayAudin,PE,CEM,EnergyWiz,Inc.;BarryBenator,PE,CEM,Benatech,Inc.;IanBoylan,CharteredEngineer,CEM,TargetEnergy;ScottDunning,PhD,PE,CEM,VirginiaPolytechnicandStateUniversity;LJ Grobler, PhD, PE, CEM, North-West University; Rusty Hodapp, PE, CEM, Dallas/Fort Worth Airport; PaulKistler, PE,CEM,U.S.Department of theNavy;MaryAnneLauderdale, PE,CEM, PowerSecureInternational,Inc.;EricOliver,PE,CEM,EMOEnergySolutions,LLC;StephenRoosa,PhD,CEM,RPMAssetHoldings,EnergyandSustainableSolutions;StephenSain,PE,CEM,SainEngineeringAssociates,Inc.;WayneTurner,PhD,PE,CEM,EditorEmeritus.

AEE EXECUTIVE COMMITTEE 2016AsitPatel,President;IanBoylan,President-Elect;ClintChristenson,Secretary;PaulGoodman,C.P.A.2016RegionalVicePresidents:RonaldB.Slosberg,RegionI;BobH.Starling,RegionII;D.JanDickey,RegionIII, Robert A. Airo, C.E.M., CHFM, Region IV; Robert M. Morris, Region V.

ENERGY ENGINEERING (ISSN 0199-8595) is published bi-monthly by The Fairmont Press, Inc., 700 IndianTrailRd.NW,Lilburn,GA30047-6862.PeriodicalspostageispaidatLilburn,GAandadditionalmailingoffices.POSTMASTER:SendaddresschangestoENERGY ENGINEERING, 700 INDIAN TRAIL RD. NW, LILBURN, GA 30047-6862.ProductionOffice:700IndianTrail,Lilburn,GA30047(770)925-9388

Copyright, 2016, by The Fairmont Press, Inc., 700 Indian Trail, Lilburn, GA 30047. Contributedmaterialexpressestheviewsoftheauthors,notnecessarilythoseoftheAssociationofEnergyEngineers,theeditorsorpublisher.Whileeveryattempt ismade toassure the integrityof thematerial,neither theauthor,association,editorsnorthepublisherisaccountableforerrorsoromissions. Subscriptions:$457forindividualsubscriptions;$607forcombinedinstitutionalprintandonlinesubscriptions;$531forinstitutionalonlineonlysubscriptions.Printonlyinstitutionalsubscriptionsarenotavailable.Backissues,whenavailable,are$40percopy.Specialannualsubscriptionfeesof$14.10areincludedintheannualduesforAEE members.

AEE MEMBERSHIP CHANGESPleasenotifyAssociationofEnergyEngineers,3168MercerUniversityDrive,Atlanta,Ga.30341

Tel:770-447-5083,ext.224,[email protected]

SUBSCRIBEUSA/NorthAmerica–Taylor&FrancisLLC,325ChestnutStreet,Philadelphia,PA19106.

Tel: 215-625-8900. Fax: 215-625-2940.UK/Europe–Taylor&FrancisCustomerServices,SheepenPlace,Colchester,EssexCO33LP,UK.

Tel: +44(0)-20-7017-5198. Fax: +44(0)-20-7017-5198

EDITORIALEditorialoffice:articlesandletterstotheeditorshouldbesubmittedtoStevenParker,Editor-in-Chief,EnergyEngineering,email:[email protected]:700IndianTrail,Lilburn,GA30047(770)925-9388

Publication Policy Energy Engineering is a peer-to-peercommunicationchannelforpracticingenergymanagers.Thus,allarticlesmustbeofapracticalnatureandshouldnotbepureorbasicresearch.Ifthearticleappearstobebasicresearchoriented, the author(s)must explain in a leadingparagraphwhypracticing energymanagers should know thematerial. Peer reviewisofferedifrequestedbytheauthor(s),butpeerreviewmustberequestedinthesubmissionemailorletter.Thiswilladdabout3monthstotheleadtimebeforepublishing.Allotherarticleswillbeeditorreviewed. TransferofcopyrighttoTheFairmontPressorAEEmustoccuruponsubmissionandifanyofthematerialhas been published in other journals previously, that sourcemust be identified and referenced. If the previouspublicationwasatanAEEconferenceor inanotherAEEpublication, thatshouldalsobereferenced.AllarticlesappearinginthejournalareopinionsandworksoftheauthorsandnotAEE,TheFairmontPress,ortheeditor. IfyouaresubmittingapaperforpossiblepublicationyouherebygrantAEE&thejournalpublishertherighttoprintandassignareleaseofcopyrightofsubmittedarticletoAEE&thejournalpublisher.Ifyouaresubmittinga paper under a governmental agency and submittedwork is covered in the public domain, youhereby grantpermissiontoAEE&journalpublishertherighttoreprintsubmittedwork.

Page 4: Full Issue PDF Volume 113, Issue 6

CORPORATE MEMBERS

W W W . A E E C E N T E R . O R G

360 Energy Group, LLC3M Energy ManagementA S FiltrationACOREAEP EnergyAEP OhioAerotekAKF Group, LLCAkron Energy Systems, LLCAlbireo EnergyAlliance to Save EnergyAlly Energy SolutionsAmerican Hydrogen AssociationAmerican Municipal Power, Inc.ARAMARKArchitect of the CapitolArthur Lok Jack Graduate

School of BusinessAT&TBC HydroBeeBenchmark Group, Inc.Boeing CompanyThe Cadmus Group, Inc.Caesars Entertainment

CorporationCALIBRECalvert-Jones Company, Inc.CBRECenergisticCES Engineering LTD CLEAResult ConsultingComEd, an Exelon CompanyConEdison Solutions CompanyConsejo Colombiano de

Eficiencia Energetica Constellation New Energy

Constellation, an Exelon Company

Continental Automated Buildings Association (CABA)

Corning IncorporatedCorporacion EMADanfoss, LLCDelta Controls, Inc.DNV GLEcoCosm, Inc.Ecosystem Energy Services

USA, Inc.Ecotech Global SolutionsEcovaElectrical & Mechanical Services

Dept.EMD MilliporeEmissions Consult, LLCEnbridge Gas DistributionenerG MagazineEnergy Alliances, IncEnergy Dynamics LTDEnergy Systems GroupEnergyCAP, Inc.Engineered Systems & Energy

Solutions, Inc,Enovity, Inc.Ensight Pty LTDEnvironmental Systems, Inc.Florida Power & LightThe Fulcrum GroupGardinerGDF SUEZ Energy ResourcesGDS Associates, Inc.General MillsGHT LimitedGSA / HOTD

Harmonics Limited by Jefferson Electric, Inc.

Hartford Steam Boiler Inspection & Insurance Company

Honeywell InternationalIBM Corporation International District Energy

AssociationJR Simplot CompanyKaiser Permanente National

Facilities Services Knoxville Utilities Board Lutron ElectronicsLyles Mechanical CompanyM.C. Dean, Inc.M.E. Group, Inc.McKinstryMelink CorporationMidwest IlluminationMKK Consulting Engineers, Inc.Munters CorporationNALMCONational Energy Consultants -

Egypt (NECE)Navitas, LLCNew York UniversityNexmatix, LLCNORESCONorthern Energy ServicesThe Ogni GroupONICON IncorporatedOnicx Energy, LLCParsonsPenn Power Group, PPS,

NES,WESPNC BankPower Engineers, Inc.

Precision-Paragon Lighting (P2)Refrigeration Service Engineers

SocietyReynolds, Smith & Hills, Inc.Robert Bosch, LLCRocky Mountain InstituteSain Engineering Associates,

Inc.Salas O’Brien Engineers, Inc.Salt Lake Community CollegeSecoviSEEL, LLCShanghai Society of Energy

ResearchSpirax SarcoSustainable Energy FundTarget EnergyTetraTechTexas A&M University - Utilities

& Energy ServicesTHG Energy SolutionsTLV CorporationTozour Energy Systems, Inc.United States Energy

AssociationUniversity of California Davis

ExtensionU.S. EPAU.S. Green Building CouncilUtility Management Services,

Inc.Vermont Energy Investment

CorpWB Engineers | Consultants

PLLCYes Energy Management

AMEC

Ameren Corp.

Dallas/Fort Worth Intl. Airport Board

Duke Energy

General Motors

Goodyear Tire & Rubber Company

IISWBM – Indian Institute of Social Welfare & Business Management

Johnson Controls, Inc. Johnson & Johnson

Kuwait Institute for Scientific Research

Leidos

Merck & Company, Inc.

Online Energy Manager, LLC

Pacific Controls Systems, LLC

PSE&G - Public Service Electric & Gas Co.

Quality Attributes Software, Inc.

Rooms to Go

Seven-Utility Management Consultants, Ltd. Southern California Edison

Southern Company

State of Missouri

Supermarket Environment Services Company

Tennessee Valley Authority

Water Furnace International

Life Corporate Members

Page 5: Full Issue PDF Volume 113, Issue 6

2017 ENERGY SHOWS PHILADELPHIA • LONG BEACH • ATLANTA

www.aeeprograms.com/shows | 770-447-5083

Association of Energy Engineers

March 22-23, 2017 Pennsylvania Convention CenterPhiladelphia, PA www.globalconevent.com

June 7-8, 2017 Long Beach Convention CenterLong Beach, CA www.energyevent.com

September 27-29, 2017 Georgia World Congress Center Atlanta, GAwww.energycongress.com

Page 6: Full Issue PDF Volume 113, Issue 6

5

From the Editor

Shake, Rattle, and Roll

WhenIstartedasEditor-in-ChiefforEnergy Engineering, I let you knowthatIwouldtrytoshakethingsupfromtimetotime(From the Editor,Vol.113,No.3).Apparently,Ihavebeensuccessful(maybetoosuccessfulwhenyoureadthelastpartofthismessage). In Energy Engineering(Vol.113,No.4),Iwrote“Decisionsaremadebythosewhoshowup.”MygoalwastostimulatereaderstobecomemoreinvolvedintheAssociationofEnergyEngineers(AEE).Themes-sagedefinitelystruckachordinsomereaderswhoreachedouttoaskformoreinformationaboutstartinglocalchaptersofAEE.DavidHinesfromtheGainesville,Florida,areaaskedaboutstartinganAEEchapterinGainesville.AEEhasseveralchaptersaroundtheUnitedStates,butsurprisinglyonlyoneinFlorida(andthatoneisnotclosetoGainesville).Isaysurprisinglybecauselastyear(September30-October2,2015)AEEhosted the World Energy Engineering Congress in Orlando, Florida. Gainesville,homeoftheUniversityofFloridaGators,isalargepopula-tioncenterandshouldeasilybeabletosupportanactiveAEEchapter. Meanwhile,KanchanaMarasinghe,CMVP(whoplanstoobtainhisCEM),notedthatattendingAEEeventsisabitdifficultgivenhisloca-tioninEdendale,NewZealand.WantingtobecomemoreactiveinAEE,Mr.Marasignhealsoaskedaboutstartinga localAEEchapter. WhileAEEhasseveralchaptersaroundtheworld,noneisclosetoEdendale,whichisonthesouthernendofthesouthernisland(Southland)ofNewZealand. IfyoutooareinterestedinstartingalocalAEEchapter,Irecom-menddownloadingandreviewingoneoftheAEEstart-upkitsforlocalchapters.Start-upkitsare locatedathttp://www.aeecenter.org/i4a/pages/index.cfm?pageid=3312. Ifyouare interestedinhelpingeitherMr.HinesorMr.Marasinghe,sendmeyourcontactinformation,andI’llpassiton.StartingalocalAEEchapterisnotcomplicated,butitdoestakeeffortanddevotion.IhavespokenwithseveralAEEmembersre-sponsibleforstartinglocalchapters,andtheyallattesttotheeffortbutmoresotothesatisfactiononcethechapterbecomesself-sustaining.

Page 7: Full Issue PDF Volume 113, Issue 6

6 Energy Engineering Vol. 113, No. 6 2016

As I write this message to you, it is mid-June 2016. The weather startedcoolingofflastmonth(yea!)asweenterthelocalcoolseason.Betteryet,themigratinghumpbackwhaleshavereachedthelocalwa-ters.Thenext fewmonthsshouldhavesomeawesomeshowsas themalewhalesbreach(showingoff)tocapturetheattentionofthefemales.Forthoseofyouunaware,MyraandIbegananewadventureinearly2015movingtoEcuador.IgenerallywritethesemessageswhileonmydeckoverlookingthePacificOcean. EcuadortoppedthenewscycleonApril16,2016,whenthecountrywasrockedbyamassive(magnitude7.8)earthquake.SeveralcitiesandtownsinnorthwesternEcuadorweredecimated.Sincethen,theareahasbeenrockedbyscoresmorequakes(aftershocks)rangingfrommagni-tude4.0to6.9.Talkaboutshake,rattle,androll!Thingshavequieteddownlately;ithasbeen10dayswithoutameasurableaftershock.Ire-memberthegroundrollingundermyfeetwhenthequakehit.Wewere(andcontinuetobe)lucky. WhenwemovedtoEcuador,weinitiallylivedinacitymuchclosertothequake’sepicenter.Infact,thefirsttwobuildingswelivedin(aswesearchedforamorepermanenthome)arenowcondemnedasaresultofearthquakedamage.(ImustadmitthatIwasimpressedbytheoutpour-ingofsupportfromtheEcuadoriangovernment, thelocalEcuadoriancommunities,thelocalexpatcommunities,andtheworldwidecommu-nitywhichcametolendahandtothoseaffectedandcontinuetoassistinthereconstructioneffort.)Ourcurrenthomewasundamagedbythequakes.AsIsaid,wearelucky. WhenIsaidthatIwantedtoshakethingsup,Imeantitmorefigu-ratively,notliterally.Still,alittleexcitementstimulatesthesoul.IwishallofyouwellandhopeyouareasluckyasIam.Ithinkitistimeformetowalktothebeachandwatchforwhales.

Steven Parker, PE, CEMEditor-in-Chief, Energy Engineering

[email protected]

Page 8: Full Issue PDF Volume 113, Issue 6

7

Measurement and Verification ofIndustrial Equipment: Sampling

Interval and Data Logger ConsiderationsAndrew Chase Harding, PE, CEM

Darin W. Nutter, PhD, PE

ABSTRACT

Measurementandverification(M&V)ofenergyefficiencyprojectsisan importantactivity forenergymanagers,governmentagencies,building owners, and utility representatives. Misapplication ormisunderstandingofM&Vprotocolrequirementscancausesignificanterrorinenergysavingscalculations.Additionally,incompleteknowledgeofhowcommondataloggersfunctioncancreateconfusionaroundthemeasurementsbeingtakenandtheresultsbeingreported.Thisarticleseeks to further theunderstandingofdatacollection intervals,M&Vcosts,andM&Vplanuncertainty.Additionally,adetaileddescriptionofhowseveral typesofelectricaldata loggers function ispresented,showingtheadvantagesandpotentialdisadvantagesofeach.

INTRODUCTION

Measurementandverification(M&V)ofenergysavingshasbeenan important topicamongenergymanagers,governmentalagencies,buildingowners, andutility representatives since the first energycrisis in themid-1970s.And,asutility incentiveor rebateprogramsbecomemoreubiquitousacrosstheU.S.,moreindustrialcompaniesarepursuingviableenergyefficiencyasawaytoreducebottomlinecosts.Theutilityincentivescanreducethesimplepaybackofthesemeasurestobecompetitivewithothercapitalprojectswithinthecompany,suchasnewproductdevelopmentandprocessefficiencyimprovements.TheutilityprogramsrequireM&Vtoqualify theprojects for therebatesandincentives.Furthermore,theseindustrialenergyefficiencyprojectsincludevariableswhichcanbemorecomplexthancommercialbuildingprojects, suchasvaryingproductionoutput,workschedules, shift

Page 9: Full Issue PDF Volume 113, Issue 6

8 Energy Engineering Vol. 113, No. 6 2016

efficiencies,andothers.Theseareaddedto thecommoncommercialsectorvariablessuchasweatherandoccupancyloads. Giventheabundanceofinformation,itisworthytonotethatthereisstill significantconfusionamongenergymanagers regardingdatacollectionmethods,developmentofM&Vplans,anderrorsassociatedwithapplicationofM&Vprotocols,whetherproperornot.ThismaybeduetothefactthatM&Visnotacommonpartofday-to-dayoperationsformostenergymanagers,butratherdonepossiblyonceortwiceayeartojustifyaprojectorprocurearebate.TheauthorshaveobservedthattheinfrequencyofdataloggingandM&Vtechniquesleadtoimproperapplicationsoruseofout-of-date informationand/ormethods.Also,because power and energymeasurements typically require someknowledgeofelectricalandmechanicalsafetyprocedures, it isquitecommonforanenergymanagerorenergyengineers todevelop theM&Vplan,whichinturn is implementedbyatechnician,suchasanelectrician.Withoutgoodcommunicationsbetweentheengineerandtechnician, thedatamaynotrepresent the intentof theproject.Thiscaneitherbecausedbymistakesby the technician incarryingoutaproperlydesignedM&Vplan,butmorecommonlycanbearesultofthetechnicianfollowingapoorlydesignedM&Vplan,developedbyanengineerwithinsufficientknowledgeofdatagatheringtechniques. This article seeks to explain howdata logging intervals arecommonlymisapplied,andwhattheperceivedandactualrequirementsarewithinthegoverningM&Vframework.Thediscussionandguidanceprovided should lead readers to an understanding that will lead to betterM&Vplandesignandimplementation.Further, thearticlewillproviderelevantinformationonseveraltypesofavailableelectricaldataloggers,theircapabilities,theircosts,andtheimplicationsofusingeachforpre-andpost-retrofitM&Vofenergyefficiencyprojects.

BACKGROUND

A brief history ofM&V is given in the EnergyManagementHandbook,chapter27[1].Inthe1980s,M&Vofenergysavingsbecameimportantwhenutility incentive, rebate, and loanprogramswereprevalent.Inaddition,severalUSDepartmentofEnergy(DOE)programstargetedresidentialandcommercialbuildings.Theseprogramsrequiredproofthattheimplementedenergyefficiencymeasureshadperformed

Page 10: Full Issue PDF Volume 113, Issue 6

9

asexpectedandachievedthesavingsthatwerepromised.Successfulandnot-so-successfulenergyefficiencyprojectshavebeenwelldocumentedbyWaltz[2],Roosa[3],McBride[4],andothers.Notethatsavingscannotbedirectlymeasured,becausesavingsisthereductionofusage,soovertimeperformancecontractorsandenergyengineersdevelopedmethodsthatprovideahigh levelofconfidence inprojectionsorestimatesofsavings,oftenbasedonmeasurablequantities. TheNorthAmericanEnergyMeasurementandVerificationProtocol(NEMVP)wasfirstpublishedin1996,andlaterexpandedandre-namedtheInternationalPerformanceMeasurementandVerificationProtocol(IPMVP)[5].ThissetofmeasurementprotocolsgivesguidanceonthetypeofM&Vrequiredtoquantifyandreportenergyorcostsavings. More recently, the InternationalStandardsOrganization (ISO)released ISO50001:2011,which is theoverarching standard foranenergymanagement system[6]. ISO50015:2014“MeasurementandVerificationofOrganizationalEnergyPerformance—GeneralPrinciplesandGuidelines” [7] is a companion standard thataddressesM&V.This standard is similar to IPMVP in that it provides an overview or frameworkofhowM&VshouldbeconductedandwhatM&Vplansshouldinclude.ISO50015includesguidanceonM&Vplanconstruction,datagathering,uncertainty,andreporting. Whilemanyexamplesaregiven fordifferent typesof energyefficiencymeasures,facilities,andsavingsgoals,nospecificM&VplansaredefinedwithinthecurrentIPMVPframeworkorISO50015.Infact,theIPMVPprefacespecificallystatesthat“EachusermustestablishitsownspecificM&Vplanthataddressestheuniquecharacteristicsoftheproject.”[5] SpecificguidanceonM&VplanswasofferedbytheDOEwhentheypublishedaguidetitled“TheUniformMethodsProject:MethodsforDeterminingEnergyEfficiencySavingsforSpecificMeasures”[8]inApril2013.Thisguideoffersspecificguidelinesthatshouldbefollowedformanyspecificenergyefficiencymeasures, includingcommerciallighting,residentialboilers,andseveralothermeasuresthatarecommonlyimplemented as energy efficiency improvements. The informationpublishedintheUniformMethodsProjectincludesdirectionsfortypes,levels,anddurationsofmeasurement,equipmenttypes,datahandling,andmeteringmethods.However,only7specificmeasuresarecoveredin detail, and these measures are largely related to the residential and commercialsectorsonly.Therearenoindustry-specificmeasurescovered.

Page 11: Full Issue PDF Volume 113, Issue 6

10 Energy Engineering Vol. 113, No. 6 2016

Chapter9ofthatdocumentdiscusses“Meteringcross-cuttingprotocols”atahighlevel,butdoesnotincludespecificsforthesetypesofmeasures.Related,ASHRAEGuideline14[9]addresses thetechnicalaspectsofcommercialbuildingM&Vingreatdetail.

IPMVP OPTIONS

IPMVPprovides fouroptions forM&V.OptionA is“partiallymeasuredretrofitisolation,”wheremanyparameterscanbestipulated.OptionB is“retrofit isolation,”whereallparametersaremeasured.OptionCis“wholefacility,”wheredatafromtheutilityrevenuemetersareused todeterminesavings fromallmeasurescombined.OptionD is“calibratedsimulation,”where, forexample,abuildingenergymodelingprogramsuchaseQuest[10]isusedtodeterminethesavingsfromoneormoremeasures. Goodsavingsestimatesofsimplemeasureswithconstantenergyusage (e.g. lighting retrofits) canbedeterminedwith singlepowermeasurements,takenpre-andpost-retrofit,andknownannualoperatinghours.Littleguidance isneededondeterminingsavingswith thesemeasures,whichuseIPMVPoptionA;andinfact,someutilityprogramsallowprescriptive rebates,withoperatinghours, fixturewattage,andotherparametersallbeingstipulated. In thesecases,nameplateinformationandacountofthepre-andpost-retrofitunitsisallthatisrequired. Multiple measures with system, weather, and productioninteractionsmay requiremulti-variable regression analysis, andmeteringindividualmeasuresmaynotprovidesufficientinformation.Kissock[11]describesmethodstoperformthiscomplexanalysiswithrelatively simple inputs.TheDepartmentofEnergyEnPI tool [12]isanotherexampleofsuchregression-basedanalysis.Thesemodelstypicallyconformtousewith IPMVPoptionC,usingdata fromtheutility revenue meters. IPMVPoptionD is intended foruse in commercial buildingsimulationmodeling,anddoesn’thavebroadapplicationinindustrialenergyefficiency.Industrialsimulationcanbedone,andisusedforsomeselectedindustrieswherethesimulationprovidessignificantbenefitstoproductionefficiency,output,andothermeasures.Thecomplexityofdoingindustrialprocesssimulationfor individualfacilitiesmakesthe

Page 12: Full Issue PDF Volume 113, Issue 6

11

endeavortoocostly tobe justifiedforenergyefficiencyprograms,soIPMVPoptionDisrarelyusedforindustrialfacilities. Othermeasuresrequiredataloggingatspecificintervalsoversetperiodsof time.Thesemeasuresmaybesmall incomparison to theoverallenergyusageof the facility,haveno influence fromweatherpatterns,orbemeasureswhereitisrelativelyeasytoaccessandmeasureindividual energy usage. These measures will use IPMVP option A or B.Asmentionedabove,M&VplansthatuseoptionAmayhavesomeparametersloggedandothersstipulated,eitherthroughtheuseofspotmeasurements,facilityinputs,engineeringexperience,oracombinationof these.OptionBrequires thatallparametersbemeasured,sodataloggingismoreprolificinoptionBM&V. ForallM&Vplans thatuseoptionAorB,properapplicationofM&Vmethodscan increase theefficacyofmeasuresbyreducingtheoverallM&Vcostsassociatedwith themeasures.However, theimproper application ofM&Vmethods can inaccurately estimatesavings,therebyeitherinflatingtheclaimedsavingsandprovidinganimproperassessmentoftheprojectcosteffectiveness,orunderestimatingthesavings,whichreducestheapparentcosteffectivenessoftheproject.

THEM&VPLAN

TheguidingprinciplesofM&Vthatareset forth in IPMVPareintendedtoprovidereasonableaccuracyinthedeterminationofactualenergy savingsgiven themanyvariables that could takeplace inanyenergyefficiencyproject.Theseprinciples include“M&Vcostsshouldnormallybesmallrelativetothemonetaryvalueofthesavingsbeingevaluated,”and“Accuracytradeoffsshouldbeaccompaniedbyincreasedconservativeness inanyestimatesand judgments” [5].Totheseends,theM&VplanshouldconsiderthecostofanyrequiredM&VactivitiesanddeterminethelevelofM&Vthatreducesuncertaintyinthesavingsestimateswithoutunnecessarilyreducingtheefficacyoftheenergysavingsproject.

The Cost of M&V Costsavingsisnottheonlygoalofenergyefficiencyprojects,butitisusuallythemostimportantdriveroftheprojectsinthecommercialandindustrialsectors,soexpensiveM&Vplanscanact toreducetheimplementationratesoftheseprojects.Quantitativeuncertaintyanalysis

Page 13: Full Issue PDF Volume 113, Issue 6

12 Energy Engineering Vol. 113, No. 6 2016

canbeusedtodeterminetheproperlevelsofM&Vthatareacceptableforeachproject,andMathew[13]hasshownthatthiscanbesimpletointegrateintotheplanningstagesofanyenergyefficiencyproject. Oftentimes,anM&Vmethod is selectedand theM&Vplan isdeveloped based solely on the measure being implemented, without regard to the costofM&Vcompared to the savingsof theproject.Considercompressedairefficiencyprojectsforexample;itiscommontoseeoptionBselected,with2weeksofdataloggingrequiredregardlessofscaleorscope.However,theDOECompressedAirSourcebookstates,“Energysavingsfromsystemimprovementscanrangefrom20to50percentormoreofelectricityconsumption”[14].Clearlytheelectricityconsumptionofthesystemisrelatedtothesizeofthesystemandtheoperatinghoursofthesystem,sosavingsavailableforacompressedairprojectisrelatedtothosevariables. Asanexample,considera fully loaded,continuouslyoperatingcompressedairsystemwithasingle50-hpaircompressor.Thissystemmayhavetheopportunity toreduceoperatingcostsby50%,withanannualsavingsofaround$15,000(basedon$0.065/kWhand$10/kW-mo).Adifferentcompressedairsystemmayhavethesameopportunitytoreduceoperatingcostby50%,butifthesecondsystemismuchlarger,withasingle500-hpcompressor,thesavingscouldbe10timesasmuch.Inthesetwosystems,thesameM&Vplanmighthaveexactlythesamecost,butitsimpactontheoverallprojectcostmightbe10timesgreater. Forthesmallersystem,thiscouldmeanthatanexpensiveM&Vplanreducestheefficacyoftheprojecttoalevelthatmakestheprojectuntenabletothedecisionmakers.Forthelargersystem,thelessexpensiveM&Vplanmightprovideaveryhighuncertainty level, in termsofdollars.Thishighcostuncertaintymayequaloroutweighthepotentialsavingsoftheproject,makingtheM&Vplaninadequatefortheproject.Therefore,measurementuncertaintyforanyM&VplanshouldalsobedeterminedandbothshouldbeconsideredduringtheproperselectionoftheM&Vplanforeachindividualproject.

METHODS FOR ESTIMATING ENERGY SAVINGS

Therearefivemethodsavailablefordeterminingtheparametersneededtoestimateenergysavings.Thesearestipulation,spotchecking,current logging,energy logging,andpower logging.Thesemethods

Page 14: Full Issue PDF Volume 113, Issue 6

13

have increasingaccuracyand increasingcosts, fromstipulationwithlowaccuracyandlowcost, topower loggingwithhighaccuracyandpotentiallyhigh costs.Because loggingenergyand loggingpowerrequireverysimilarequipmentandhavesimilaraccuraciesover longperiodsof time, theseareconsideredequivalent for thepurposeofdetermininguncertaintyandcost. Becausesavingscan’tbemeasured,eventhemostrigorousM&Vplanhassomeuncertainty.Take thecaseofanM&Vplanwhereallparametersare loggedfora fullyearbeforeanda fullyearafter theimplementationofanenergyefficiencyproject.Evenwhenthedataisnormalizedforproduction,weather,andallothervariablesthataffectenergyintensity, thedifferencebetweenthetwomeasuredperiods isstillanestimateofsavingswithsomeerror.Thaterrormaycomefromcalibrationofdevices,unplannedoutages,equipmentmaintenance,otherproductionrelatedeffects,oranynumberofothersources.Thisisthebaselineuncertainty. LessrigorousM&Vplansadduncertaintytothisbaseline,whichisreferredtoas“additionaluncertainty”withinthisarticle.Lee[15]showedthatstipulatingoperatinghourscanadd30%additionaluncertainty.TheAmericanNationalStandards Institute (ANSI) standard forvoltagegivesanacceptable tolerance forutilizationvoltagesof -13%to+6%[16].DooleyandHeffington[17]showedthatactualservicefactorsofelectricmotorscanrangefrom6%to109%ofratedhorsepower,sospotcheckingofvaryingloads,orstipulatingelectricmotorloadsbasedonnameplate ratingscanadduncertaintyofup to94%.Baldorelectricmotorspecificationsshowthat thepowerfactorofpremiumefficientelectricmotorscanvaryfrom11%to17%acrosstheirnormaloperatingrange,sostipulatingapowerfactororspotcheckingthepowerfactoronavaryingloadcanaddthismuchuncertainty.Basedontheseaddeduncertainties, thecostuncertaintyassociatedwithasinglemeasureenergyefficiencyprojectcanbeestimated.

Proper Sampling Intervals AstheM&VplanisbeingdevelopedpertheIPMVPframework,specialattentionshouldbegiventothemeasures thatwillbe loggedper option B and how the logging will be implemented. This is an area wherelittleexpertiseandsignificantopportunityformistakesmayexist.Themostcommonmistakesoccurwithchoicesofdata loggingandsampling intervals.

Page 15: Full Issue PDF Volume 113, Issue 6

14 Energy Engineering Vol. 113, No. 6 2016

As an example, logging motor energy usage at 1-minute intervals is oftenrequiredbyutilityincentiveprogramswhenmeasuresuseIPMVPoptionB.This isusuallybecauseofamisinterpretationof theactualIPMVPrequirements.Section4.7.3states;“Themethodofmeasuringelectricdemandonasub-metershouldreplicatethemethodthepowercompanyusesfortherelevantbillingmeter”[5].Further,itspecificallystates that if theutilityusesafixed15-minutedemandwindow“therecordingmetershouldbeset torecorddata for thesame15-minuteintervals”[5].Thissectiongoesontodiscussslidingdemandwindowsandmakesthegeneralstatementthat ifaslidingwindowisused,thedemandwindowcanbeestimated“…byrecordingdataon1-minutefixedintervals…”[5]andthenrecreatingtheslidingwindowduringthedataanalysisphase.Dataloggingintervalsof1-minutearementionedintwootherplacesinthetext,oncetodescribeaspotcheckofasimplemeasure,andonce in thesamecontextasabove.Theprotocolneverspecificallystatesthatdatamustbecollectedat1-minuteintervalsforanypracticalpurposeofdeterminingactualmotorenergyusage. Infact,intervalsof1minutemayormaynotactuallycapturethetrueoperatingcharacteristicsofsomemotoroperatedsystems.Forinstance,anaircompressorwithload/unloadcontrolsmaycycle in lessthan1minute,andthedatacollectedat1-minute intervalsmayonlyrecordthefullyloadedorfullyunloadedpowerforsignificantperiodsoftime.Ratherthanspecifyingadatacollectionrate,datashouldbecollectedattheproperintervalstodefinethedynamicperformanceofthesystem. Alternately,whenfinesamplingdataisnotrequired,adataloggerwith the ability to oversample (meaning that data is sampled more times thanarerecorded)andrecordaveragescanbeselected.These typesof loggersmaysampledataatveryhighfrequencies,butonlyrecordtheaverageofthosesamplestomemoryataspecifiedinterval. Inthecaseoftheload/unloadcompressor,somedataloggersmaybeabletooversampleat1secondintervals,andthenrecordtheaverageofthosereadings at 15-minute intervals, giving true average power or true energyconsumption.Inthiscase,agraphoftherecordeddatawillnotbetrulyrepresentativeofpowerovertime,butwillrepresentaveragepower over time. This is the same methodology that utility meters use, andwillproducethesameresultsasusingautilitymeter. Several typesofdata loggersareavailableonthemarket today,withdifferentcapabilities,accuracies,andconsiderationsregardingease-of-use.So,properapplicationofeachtypeorstyleofdatalogger

Page 16: Full Issue PDF Volume 113, Issue 6

15

reliesonasolidunderstandingofhowtheyworkandhowtheycanbeappliedtomeasuringpowerandenergyusage.Thenextsectionpresentsadiscussionof three typesofdata loggersystems: current loggers,energy loggers, and power loggers.

EQUIPMENTCONSIDERATIONS

Thespecificdevicesthatareusedtomeasureandmonitorenergy,power,andothernecessarydata forM&Vplansshouldbe installedbyknowledgeable techniciansperthemanufacturer’s instructionsforeachdevice. Installationinstructionsaretypicallyquitethoroughandcomplete,andequipmentmanufacturers typicallyprovidesupport toendusersoftheirequipmentasneeded. Areviewoftheliteratureshowsthatapplicationsandusesofdataacquisitionsystemshavebeenwelldocumentedsincethe1970s[18-20].Dataacquisitionsystemsareoftenpermanentlyinstalledinanindustrialfacility,andthesearemeanttoprovidereal-timedatatoplantoperationspersonnel.Thesesystemscantypicallyprovidedata logs thatcanbeanalyzedoff-linefordifferentpurposesandthesedatashouldbeusedwheneverpossibleforM&Vactivitiesbecausethedataisavailableandaddsnocosttotheprojectbudget. Today,portabledata loggersarewidelyused forM&V.Thesedevicescanbe inexpensive,easy to installandoperate,andprovidethenecessaryprecisionandaccuracyforM&Vactivities.Thesedevicesrecordand storedata,which can laterbe extractedandanalyzed.Moderndata loggershavesignificant storagecapacity,highsamplerates,smallsize,andhighdurability.Thelargenumberofmanufacturersmeans thatdata loggersarereadilyavailable formostprojectneeds.Stateequipmentloanlibraries,utilityplanimplementers,andutilitiesthemselvesmaybeabletoprovidedataloggingequipmentforanM&Vprojectwithoutdirectlyaddingcosttotheproject.Thechoicesaremany,soitisuptotheM&Vprofessionaltoensurethattheproperdataloggersareselectedfortheproject,andthattheseareutilizedcorrectly.

CURRENT LOGGING

Loggingelectricalmeasurementsisrelativelystraightforward,andcanbeaccomplishedwithnon-destructivemeansatalowcost.Current

Page 17: Full Issue PDF Volume 113, Issue 6

16 Energy Engineering Vol. 113, No. 6 2016

canbe loggedwithacurrent transducer (CT)andadata logger.Thecurrent transformerhasbeenusedtosuccessfullymeasureelectricalcurrent since itwaspatentedbyEdwardWeston in1888 [21].Theportabledataloggerisamoremodernconstruct,havingbeenintroducedinthe1980storeplacechartrecorderswithsolid-statedevicesthatcouldcapturevoltageandcurrentsignalsandstorethemdigitally. Typicalcurrent transducersaresolidcorecurrent transformers,splitcorecurrenttransformers,andRogowskicoils.SolidcoreCTsarecommonlyused inpermanent installations,because theyrequire theconductortobepassedthroughthecenterofthedevice,requiringthecircuittobeopenwhiledoingso.SplitcoreCTsarethemostcommontransducerusedto temporarilymeasureandlogcurrent.Thesehavereasonableaccuracies,buttheirlargesizeandrigidspacelimitationsareadisadvantage.Additionally,CTshaveastrictcurrent limitation,andtheoutputsignalsaturatesatthatlimit,meaningthatanycurrentabovethelimitcannotbedetermined. Rogowskicoilsareanothertypeofcurrent transducerthathaveariseninrecentyearsasthetransducerofchoiceforM&Vprofessionals.TheRogowskicoil isaflexibletransducerthatproducesascaledtimederivativeof theprimarysignal [22].This signal requires thedataloggeror transducerset tohavesomecomputationalcapabilities intoreproduce theprimarycurrentsignal inanunderstandable form.Moderndataloggershaveallthecomputingpowernecessarytoperformthisfunction. Theflexible transducer isamajoradvantageoverrigidCTsandislikelytheprimaryreasonthattechniciansprefertoinstallRogowskicoils.TheothermajoradvantagethatshouldbeconsideredisthaterrorinRogowskicoilsisafunctionoftheprimarycurrentbeingmeasured[23],whereerror inCTs isa functionof full-scaleratedcurrent.ThismeansthatCTsmustbeselectedbasedonthemagnitudeofthecurrentbeingmeasured;amaximumcurrent toensure that theCTdoesnotsaturate,andaminimumcurrenttoensurethatCTerrorisacceptable.BecauseRogowski coils donot saturate, themaximumcurrent islimitedonlybythediameteroftheconductorbeingmeasured,andtheminimumcurrentisnotalimitingfactorbecausetheerrorscaleswithcurrent. OnedisadvantagethatshouldbeconsideredistheRogowskicoil’sneedforpowertoproduceasignal that the loggercanrecord.WhentheRogowskicoil isusedasastand-alonecurrent transducer, itwill

Page 18: Full Issue PDF Volume 113, Issue 6

17

likelyrequireeitherabatteryor110-VACsource.Inanindustrialsetting,thismayrequireanextensioncordtoberoutedfromawallreceptacletotheelectricalpanelwiththetransducer,andthismayverywellbeunacceptabletothefacilityoperators,not tomentioninconvenienttoinstall. Whilecurrent logsarevaluable toengineersandmaintenancepersonnel,thegoalofmostelectricalM&VplansistomeasureenergyusageinkWh.Threephasecurrentisrelatedtoenergybytheformula:

kWh=V*A*PF*sqrt(3)*OH/1000

Whencurrent is logged, theother independentvariablesvoltage(V),powerfactor(PF)andoperatinghours(OH)canpresentsignificantuncertainty. Theuncertainty related to actual operatinghours isdifficulttomanage,becauseplantemployeeworkinghoursandequipmentoperatinghourscandiffersignificantly.Lee[15]showedthat incorrectassumptionsregardingoperatinghourscanaffectsavingscalculationsbyupto30%.Luckily,thedatalogswillprovideaverypreciserepresentationof theequipmentoperatinghoursduringtheM&Vperiod,andthesecanbecomparedtoanystatedoperatinghours.Projectingtherecordedoperatinghoursoverthecourseofayearisasimplearithmeticproblem,producinganestimateofannualoperatinghours.Holidaysandplantshutdownsmustbeconsideredbecauseany interruptions innormalactivityduringtheloggedperiodwillreducetheloggedoperatinghoursandcouldproduceanunreasonablylowestimateofannualoperatinghours.Conversely, if theequipmentnormallyshutsdownfor someperiodoutsideoftheloggedperiod,nottakingtheseshutdownhoursintoaccountcouldproduceanunreasonablyhighestimateofannualoperating hours. Any assumptions regarding operating hours should be clearlystatedandjustifiedintheM&Vreport. Voltage,particularlyinanindustrialfacility,canvaryduringthecourseofanormaldayasplantequipmentloadschange,HVACloadschangewithtemperature,orutilitygridloadschangeforvariousrea-sons.TheWesternSystemsCoordinatingCouncil (WSCC),agroupof86westernutilities,requirementforutilitysupplyvoltagestability[16]givessometoleranceonvoltagesuppliedbytheelectricutility.Withoutloggingvoltageover time, it is impossible topreciselydeterminethepower,andthusenergyusageofanypieceofequipment.

Page 19: Full Issue PDF Volume 113, Issue 6

18 Energy Engineering Vol. 113, No. 6 2016

However,iftheloggedequipmentissmallrelativetothesizeofthetransformersupplyingpowertoit,andifthesupplyvoltageis“stiff,”*itisreasonabletocheckvoltagewhenthedataloggerisdeployedandusethatvoltagereadingfortheenergycalculation.Ifadditionalvoltagereadingscanbetakenwhentheloggerisremovedorduringtheloggedperiod,thesecanbeusedtoestimatetheaveragevoltage.Anyassump-tionsregardingvoltageshouldbestatedandjustifiedintheM&Vreport.Note,itisrarelyreasonabletoassumethattheoperatingvoltageisequalto the nominal supply voltage. Power factor isameasure that isdifficult toobtainwithout thepropermeasurement.Becausethis isaderivedmeasurement,apowermeterorpowermonitorthatsimultaneouslymeasurescurrentandvolt-ageisrequiredtodeterminepowerfactor.Withoutthistypeofmeter,currentandvoltagemeasurementscanbetakenseparatelybutsimulta-neously,andthenthepowerfactorcanbecalculated,butthemathin-volvedisdifficultandlikelybeyondthescopeofmostM&Vtechnicians.Powermetersareavailablefromseveralmanufacturersatpricesrangingfromafewhundredtoseveralthousanddollars,andat leastasimplepowermetershouldbepartofanyelectricalM&Vtechnician’stoolbox.It iseasytostate thatpowerfactor isassumedtobe80%or90%,butthisisrarelycorrectandcanintroducesignificanterrorintotheannualenergycalculation,becausepowerfactorlinearlyinfluencesthecalcula-tion.It issometimespossibletoobtainareasonableestimateofpowerfactorofaspecificmotorbyestimatingtheloadfactorandreferencingthemanufacturer’sdatasheets for thatmotor.Motor load,age,andmaintenancepracticescansignificantlychangetheactualpowerfactorfromthemanufacturer’sstatedvalues.Alowestimateofpowerfactorismoreconservative,andbarringanyothermeanstoobtainactualpowerfactor,alowestimateshouldbeused.

ENERGY LOGGING

Energy loggingbeganinthe late19thandearly20thcenturyaselectricutilitiesneededawaytochargetheircustomersfortheservicesthattheyrendered,namelyprovidingcheap,reliableelectricitytohomes

*Ieeexplore.ieee.org,IEEEStandardsDictionary:“Theabilityofanareaelectricpowersys-temtoresistvoltagedeviationscausedbyadistributedresourceorloading.”

Page 20: Full Issue PDF Volume 113, Issue 6

19

andbusinesses [24].Utilitygrade revenuemetersarepermanentlyinstalledon theelectrical service,andprovideameasureofenergyused.Originally, thismeant thatadialwould incrementasaunitofenergywasconsumed,andthisdialhadtobemanuallyreadforbillingpurposes.Modernsmartmeterscantransmitdata,whichcanbereadin real time, and have the ability to measure energy, power, and other parameters. Loggingenergy“directly”actuallymeansloggingvoltsandamps,andusingthosemeasurementstocalculatepowerfactorandpower,andthencalculatingenergybasedonpowerovertime.Theenergyloggerapparatuswill include,ataminimum,acurrenttransducer,avoltagelead, and a data logger. On three-phase systems, there will be 3 or 4 sets of transducersandleads,andthesecaneitherbeattacheddirectly tothelogger,orattachedtoan“integratorbox”thatdoesallofthemathandsendsoutenergymeasurementsas“counts”or“pulses.”Energyor“kWh” loggersetswithRogowskicoils typicallyuse thevoltageleadsnotonlytomeasurevoltage,butalsotopowertheRogowskicoilwaveformgeneratorcircuit,eliminatingtheneedforanexternalpowersource.Theenergyusedbythiscircuitisusuallyverysmallcomparedtotheenergybeinglogged,andcanthereforebeneglected,orcompensatedforintheenergymeasurements[23]. This typeof logger/transducercanbeveryaccurateover longdurations,butcanbeveryinaccurateovershortdurations.Itiscommonforthesetransducersetstohaveselectabledipswitchesthatcanbesettorecorda“count”orpulseat1kWh,0.5kWh,0.25kWh,or0.1kWhintervals.Whenusingthistypeofdevicetomeasuredataat1-minutedataintervalstheindividualdatapointscanbewildlyinaccurate. Forexample, ifacontinuallyoperating, fully loaded20-hp loadis logged at 1-minute intervals with a pulse type kWh meter that is set torecord1pulseper1kWh,thedatasetdoesnotaccuratelyrepresenttheactualenergyusage.Infact, thedataappearstoshowthatduringmanyofthe1-minuteintervals,noenergyisused.Thisobviouslyisnotthecase,becauseweknowthat20-hp,or14.92kW,isbeingconstantlyrequired.Figure1showsthepulse-typemeterdataoverlaidwiththeactualenergyconsumed. Theactualenergyconsumptionduringeach1-minuteinterval is0.249kWh.Forthisconfiguration,thepulse-typemeteronlyincrementsthecountafterafullkWhisconsumed,soduringthefirstfourintervalsthereportedenergyusageiszero.Attheconclusionofthe5thinterval,

Page 21: Full Issue PDF Volume 113, Issue 6

20 Energy Engineering Vol. 113, No. 6 2016

theactualenergyusagehasbeen1.243kWh,soacountof1isrecordedduringthisinterval.The0.243energyusageiscarriedovertothenextinterval,andzeroscontinuetoberecordeduntilthe9thinterval,whenthe2ndkWhisconsumedandanother1countisrecorded.Theprocesscontinues,recording1counteachtimeafullkWhisconsumed. Manyofthesepulsetypeenergytransducersetshavetheabilitytoreportcountsinfinerincrements.Forinstance,itiscommontoseedipswitchesonthecurrenttransformerthatallowsenergytobereportedas1.00,0.50,0.25,or0.10kWhperpulse.Atthehighestsettingof0.10kWhperpulse,thedatafortheabovecasewouldshow1-minuteintervalus-ageof0.2,0.2,0.3,0.2,and0.2kWhforthefirst5intervals.Thisdataisshown in Figure 2.

Figure 1. 20-hpe constant load energy consumption. Actual versus 1 kWh/pulse metered data.

Page 22: Full Issue PDF Volume 113, Issue 6

21

Becausenoadditionaldataisrecordedbythisstyleoftransducer,it iseasytomistakethisdata forbeingrepresentativeofpowerovertime.IfthedataaboveismistakenlyconvertedfromtheapparentunitofkWh/minutetokW,theresultantpowercurvesdonotaccuratelyreflectthetruepowerbeingconsumed.ThethreecasesareshowninFigure3. The20-hpconstantloadpresentedaboveisprovidedforillustra-tive purposes only, and is not intended to represent a real-world exam-ple.Letusconsidertherealcaseofa100-hpaircompressorbeingdataloggedforM&Vpurposes.Thiscompressormayhaveavaryingloadthatpeaksataround78kWwhenthecompressorisfullyloaded,andmayhavealowloadconditionofaround30kWwhenthecompressorisidling.Thiscompressormayalsoshutdownonnightsandweekends.Apossiblelogoftheactualpowerversustime,in15-secondintervals,overaperiodof2hoursisshowninFigure4.

Figure 2. 20-hp constant load energy consumption. Actual versus 0.1 kWh/pulse metered data.

Page 23: Full Issue PDF Volume 113, Issue 6

22 Energy Engineering Vol. 113, No. 6 2016

Acountingmeter,set torecord0.10kWhpercountat thesame15-secondintervals,wouldprovidethefollowingdatalogforthesameperiod (Figure 5). Theenergycalculatedfromthepowerdata inthe2-hourperiodis157kWh.Theenergycalculatedfromthepulse-typeenergyloggerisalso157kWh,showingthatovertime,thetwomethodsareequivalent.However,lookingat1-minuteintervalsthestoryismuchdifferent,withthepowerloggershowinganaveragekWforthefirstminuteof75.6kW(whichiscorrect),andtheenergyloggercounting12pulses,whichisequivalentto1.2kWh/minuteor72-kWaveragepower.Thisisadiffer-enceof4.7%. Longertimeintervalsof5and15minutescanbeanalyzedtoshowthatthepulse-typemeterismoreaccurateoverlongerintervals.Inthefirst5-minuteinterval, thekWloggershowsanaveragepowerof76.1

Figure 3. Power versus time for 20-hpe constant load.

Page 24: Full Issue PDF Volume 113, Issue 6

23

Figure 4. Directly logged power for a theoretical 100-hp air compressor over a 2-hour time period.

Figure 5. Indirectly logged power data for the same compressor, converted from a pulse type logger recording at 0.1 kWh/pulse at 15-second intervals.

Page 25: Full Issue PDF Volume 113, Issue 6

24 Energy Engineering Vol. 113, No. 6 2016

kW,andthepulsemeterrecords63pulses,whichisequivalentto75.6kW,adifferenceof0.7%.Inthefirst15-minuteinterval(acommonutilitydemandwindow),thekWloggershowsanaveragepowerof76.2kW,andthepulse-typeloggerrecords190pulses,whichisequivalentto76.0kW,adifferenceof0.3%.DataforthevariousloggertypesandsettingsarepresentedinFigure6forcomparison. Ifthedataaretobeusedforsimplyestimatingenergyusageoverthecourseof1-year,theerrorineachshorttimeintervalisinconsequen-tialbecausethetotalenergyovertheloggingperiodisveryaccurate.Ifthedataaretobeusedforadditionalenergyauditingandanalysispur-poses, the short time data provided by a pulse-type logger may provide verylittleinsightandmaynotbeusefultotheauditoratall.

Figure 6. The same data from Figures 4 and 5 overlaid with 5-minute and 15-minute pulse logger data converted to kW. The data period in this figure is 1 hour of the total data from the other figures above.

Page 26: Full Issue PDF Volume 113, Issue 6

25

kW LOGGING

Directly loggingpower isa thirdoption,which ispreferred inalmost every scenario, if economically feasible.Power loggersarerelatively new, andhave arisen as computingpower and storagehaveincreaseddramaticallywhilecostshavedroppedinthemoderncomputingera.WhileenergyloggersstorekWhreadings,powerloggersstore instantaneouskWreadings,aswell askWhandotherusefulinformationthatiscalculatedfromvoltsandamps. The kW logger set up is similar to the kWh logging apparatus, with acurrent transducer,voltage leads,andadata logger.Theexceptionis that these loggers typicallydonothavean integratorboxorotherelectronics thatareseparate fromthedata logger,so thecurrentandvoltage informationis loggeddirectlywithouttheuseof“counts”orotherrepresentativemeasures.Becausepower inkWisderivedfromvoltageandcurrent, this typeof loggercanproduceaveryaccuraterepresentationofpowerovertimeaswellastotalenergyused. Power loggers that can recordmultiple channels, includingmeasuredvoltage,measuredcurrent,calculatedpowerfactor,calculatedpower,calculatedreactivepower,andothermeasuresareuseful.Theseloggershaveonlyrecentlybecomeavailable,asaresultofthememoryrequirementsofloggingmultiplechannels.Thebenefitisthattheactualcurrentovertimedataisstoredinthelogger,whichisexactlythesameasthatrecordedbyasimplecurrentloggerdescribedpreviously,aswellastheactualmeasuredvoltageovertime.Thisreducesanyuncertaintyintroducedbyspotchecksofvoltage,orassumingaconstantvoltage. BecausethedatapointsusedtocalculatethederivedvaluesofPF,kW,kVAR,andothermeasuresarestoreddirectly,thedatacanbemuchmoreaccurateovershort intervals.Onetradeoffisthatthenumberofrecordeddatapoints ismultipliedbythenumberofchannels,sodatasetscanbemuchlargerandrequiremorecomputingpowertoanalyze.Moderndesktopandevenlaptopcomputersshouldhavetheabilitytohandlelargeamountsofdata,sowithrelativelyinexpensiveupdatestocomputinghardwarethisshouldnotbeanissue. Another consideration is that the cost of thesemodern kWloggersmaybemanytimeshigherthanacomparablecurrent logger.OrganizationsthatperformsignificantM&Vactivitiesshouldfindthatthisincreaseinfirstcostwillreducethelong-termcostofdataanalysis,becausealloftherelevantdataiscollectedandavailable.

Page 27: Full Issue PDF Volume 113, Issue 6

26 Energy Engineering Vol. 113, No. 6 2016

EQUIPMENTANDDEPLOYMENTCOSTS

Theloggingequipmenttypesdescribedabovearerapidlyevolv-ing,withdatastoragecapacityandwirelessdatatransfercapabilitiesin-creasingdramaticallyoverthelastfewyears.Thecostsoftheindividualpiecesofequipmentmaybesubject tochange,andcertainlywillnotremainconstantovertime.TotheextentthatequipmentcostfactorsintothecostofM&V,severalobservationsarewarranted.First,measuringdevicesareessentialfortheM&Vprofessional,andwhilecostisimpor-tant,noM&Vcanbeperformedwithoutthesedevices.TheminimumM&Vprofessionaltoolkitmustincludedevicesthatcanmeasurevoltage,current,andpowerfactor;orpowerdirectly,aswellassometypeofdataloggerwiththesamecapabilities.Thedataloggertypesdiscussedabovecanhaveawiderangeofprices,withcurrentloggers(includingsmallbat-terypowereddataloggerandcurrenttransformer)costingafewhundreddollars,andenergy/powerloggerscostingatleastthreetimesasmuch(since3currenttransducersarerequired).ThesecostsmaybefactoredintothecostofanM&Vplan,ifnecessaryequipmentisnotavailable.Ad-ditionally,ifloggingenergyorpowerdirectlyreducesuncertainty,thenthepurchaseofmoreadvanceddata loggingequipmentmaybewar-ranted.Becausethisequipmentisdurable,thecostofequipmentmaybeamortizedoverseveralM&Vprojects. Thelong-termcostofM&Vactivitiesshouldincludelaborcosts,asqualifiedtechnicians(suchaselectricians)mustdeploythedevicesinasafeandeffectivemanner.ThecostofM&Vactivitiesshouldalsoincludeengineeringtime,becausecalculationsarerequiredtodeter-minetheannualenergyusageof theequipmentbeforeandafter themeasure is installed.Table1shows theestimatedadditionalcostofM&Vactivities,usingthecasewhereallparametersarestipulatedasthe lowestcostscenario. Inotherwords,M&Vcannotcost less thanthecasewhereeverythingisstipulatedandnothingismeasured.Thisbaseline (stipulated)alsopresents thehighestamountofuncertainty.Theestimatesassumethat the technicianalreadyhasbasic tools formeasuringvoltsandamps.Thecostofpurchasingadevicetomeasurepowerfactorandanydata loggers isaddedto theM&Vcost for theproject.Techniciantimeisestimatedas$50perhour,andengineeringtimeisestimatedas$100perhour. Becausemeasurementsaretakenonplantequipment,oftenwhiletheequipment isoperating, thetimerequiredtoobtainanynecessary

Page 28: Full Issue PDF Volume 113, Issue 6

27

Tabl

e 1.

Est

imat

ed c

ost

for

diff

eren

t M

&V

act

ivit

ies

and

equi

pmen

t. Th

e st

ipul

ated

val

ue

scen

ario

repr

esen

ts th

e ba

seli

ne c

ase

wit

h no

add

ed c

ost.

This

doe

s no

t im

ply

that

the

acti

v-it

y is

free

of c

ost,

but t

hat n

o ad

diti

onal

cos

ts a

re in

curr

ed.

Page 29: Full Issue PDF Volume 113, Issue 6

28 Energy Engineering Vol. 113, No. 6 2016

permissions,dress in theappropriateprotectivegear,openelectricalpanelsorcabinets,andrestoretheworkareatoasafestateafterwardscanbesignificant.Theactualtimetoinstallthemeasurementdevice(s)issmallincomparison.Whileitmaytakesubstantialplanningtoscheduleandprepareforadata logger installation,theactual installationtypi-callyonlytakesafewminutes.Thisistrueforspotchecks,single-phasecurrentlogging,andthree-phaseenergy/powerloggingalike.InTable1,thisisestimatedas1technicianlaborhourtoperformalloftheneces-saryfunctionstoacquireonespotcheckedpowermeasurement.Assum-ingthatthetechniciandidnotalreadyownapowermeter,thisactivitywouldcost$950morethanstipulatingallparameters,butmayreducetheadditionaluncertaintybyagreatamount. Thecostdifferencebetweenspotcheckingofmeasurementsanddeploymentofdataloggers,fromalaborperspective,resultsfromtheneed for thedata logger tobebothdeployedandbe removedoncetheloggingperiodiscomplete.Again,thetimetoactuallyremovethedeviceisverysmallincomparisontothetimethetechnicianmusttaketodoitsafelyandproperly. Engineeringcalculationalsorequiressomeminimum,orbaseline,amountoftimeandeffortregardlessofthemethodusedtodeterminetheparameters.Stipulatingalloftheparameters, therefore,representsthezeroaddedcostscenario.Spotcheckingofmeasurementsprovidessinglevalues for theparameters (suchasvolts, amps, etc.), so thecalculationtimeforthisscenarioissimilartostipulationofparameters.Data loggingtypicallyrequiresanalysisof largedatasets,whichcantakeseveralhourstoseveraldays,dependingontheamountofdata.Forthepurposeofcomparison,asinglemeasureprojectwithasingledataloggerdeploymentshouldgenerateasingledataset,whichmaytaketwohourstointerpret.InTable1,ascenariowhereonecurrentdataloggerisdeployedwouldcostanestimated$1,400morethanthecasewhereallparametersarestipulated.Thecasewhereonepowerloggerisdeployedwouldcost$2,800morethanthecasewhereallparametersarestipulated. Theseestimatedadditionalcostscanthenbeused,alongwiththeestimatedadditionaluncertaintiespresentedpreviously, todeterminewhichM&Vmethod ismost cost effective for aparticular energyefficiencyproject. Asanexample,consideracompressedairprojectwithanestimatedsavings of 100,000 kWh annually.At $0.10/kWh, this represents

Page 30: Full Issue PDF Volume 113, Issue 6

10%

Online Discount

Use Code JR10

Indicate shipping address: CODE: Journal 2016

NAME (Please print) BUSINESS PHONE

SIGNATURE (Required to process order) EMAIL ADDRESS

COMPANY

STREET ADDRESS ONLY (No P.O. Box)

CITY, STATE, ZIP

MEMBER DISCOUNTS—A 15% discount is allowed to AEE members (discounts cannot be combined).

AEE Member (Member No._____________________)

Make check payablein U.S. funds to:

AEE ENERGY BOOKS

10.00

TO ORDER BY PHONEUse your credit card and call:

(770) 925-9558

INTERNATIONAL ORDERSMust be prepaid in U.S. dollars and must include an additional charge of $10.00 per book plus 15% for shipping and handling by surface mail.

Send your order to:AEE BOOKS P.O. Box 1026Lilburn, GA 30048

Quantity Book Title Order Code Price Amount Due

Complete quantity and amount due for each book you wish to order:

GUIDE TO ENERGY MANAGEMENT, 8th Edition 0714 $145.00

BOOK ORDER FORM

Select method of payment:CHECK ENCLOSEDCHARGE TO MY CREDIT CARD

VISA MASTERCARD AMERICAN EXPRESS

CARD NO.

Expiration date Signature

"———CONTENTS———

GUIDE TOENERGY MANAGEMENT

8th EditionBarney L. Capehart

Wayne C. Turner, and William J. Kennedy

Completely revised and edited throughout, the latest edition of this best-selling reference includes four new chapters covering electrical distribution systems; motors and drives; building commissioning; and the impact of human behavior on facility energy management. Also updated are chapters on lighting, HVAC systems, web based building automation and control systems, green buildings, and greenhouse gas management. Written by three of the most respected energy professionals in the industry, this book examines the fundamental objectives of energy management, and illustrates techniques and tools proven effective for achieving results. Guide to Energy Management continues as one of the leading educational resources, both for individuals who are currently active as an energy managers or energy professionals, as well as for those just entering the field. It is the most widely used college and university textbook on the topic, as well as one of the most extensively used books for professional development training in the field, with well over 17,000 energy professionals having used it as a part of their training. Additional topics covered include energy auditing, energy bills, life cycle costing, electrical distribution systems, boilers, steam distribution systems, control systems and computers, energy sys-tems maintenance, insulation, compressed air, renewable energy sources and water management, distributed generation and creating green buildings.

6 x 9, 749 pp., Illus., Hardcover

Non-Member Price: $145.00Order Code: 0714

ISBN: 0-88173-765-8

TO ORDER BY FAXComplete and Fax to:

(770) 381-9865

INTERNET ORDERINGwww.aeecenter.org/books

(use discount code)

Applicable DiscountGeorgia Residentsadd 6% Sales Tax

Shipping $10 first book$4 each additional book

TOTAL

1

2

3 4

1 – Introduction to Energy Management; 2 – The Energy Audit Process: An Overview; 3 – Understanding Energy Bills; 4 – Economic Analysis and Life Cycle Costing; 5 – Electrical Distribution Systems; 6 – Lighting; 7 – Electric Motors and Drives; 8– Heating, Ventilating and Air Conditioning; 9– Understanding and Managing Boilers; 10 – Steam Distribution Systems; 11 – Control Systems and Computers; 12 – Energy Systems Maintenance; 13 – Insulation; 14 – Compressed Air Systems and Process Energy Management; 15 – Renewable Energy Sources and Water Management; 16 – Distributed Generation; 17 – Web-Based Build-ing Automation Controls and Energy Information Systems; 18 – Creating Green Buildings; 19 – Greenhouse Gas Emissions Management; 20 – Commissioning for New and Existing Buildings; 21 – Human Behavior and Facility Energy Management; Appendix, Index

Page 31: Full Issue PDF Volume 113, Issue 6

www.aeecenter.org/ondemand

ON DEMAND SEMINARS

presented by

•EarnCEUs•Prepareforcertificationprograms•Viewondemand,onyourschedule

Bolster your knowledge

Page 32: Full Issue PDF Volume 113, Issue 6

31

anannual savingsof$10,000.Stipulatingallparametersmayhaveadditionaluncertaintythat isveryhigh.Simplystipulatingoperatinghourscanadd30%uncertaintytothesavingsestimate,or$3,000,whichshouldruleoutstipulationofallparametersaswellasspotchecking,whichrequiresstipulationofoperatinghours.Data loggingcurrentrequires thatvoltageandpower factorbespotchecked,whichadds16.5%to22.9%additionaluncertainty,representingupto$2,290,foracostof$1,400.Loggingpower(orenergy)reducesadditionaluncertaintytozero,foracostof$2,800,orabout$1,400morethanloggingcurrent.Inthiscase,loggingpowerdirectlyreducesuncertaintyby$2,290foracostof$1,400.Determiningifthebenefitisworththecostislefttothereader,recognizingthatthecostofpurchasingsomeoftherequiredequipmentmightbeneglectedoramortizedoverseveralprojects.

CONCLUSIONS

Measurementandverificationofenergysavingshasbeenandwillcontinuetobeanimportantactivityforenergymanagers,governmentagencies,buildingowners,andutilityrepresentatives.UnderstandingtheM&Vprocess, theimportanceoftheM&Vplan,thelimitationsoftheM&Vequipment,andtheprocessofdeterminingenergysavingsarekeysforasuccessfulenergyefficiencyproject. M&Vplans should follow the IPMVP framework, taking intoconsiderationthecostofM&Vactivitiesandthepotentialreductionsinuncertainty relatedwithdifferent levelsofM&V.Estimatesandjudgments shouldbe sufficiently conservativewith regards to theaccuracyoftheM&Vmethodsthatarespecified. Finally, loggingelectricaldataaspartof IPVMPoptionAandoptionBM&Vplanscanbeaccomplishedwithseveralavailablestylesofdataloggers,andeachofthesestyleshasadvantagesandlimitations.Current loggersare inexpensive,butcareshouldbetakentomeasurevoltageandpower factorappropriately.Pulse styleenergy loggerscanprovidesimplelong-termmeasurementsofconsumedenergy,butshouldnotbeused tocollect short-time intervaldata,because theiraccuracyinshortintervalscanbepoor.Loggersthatmeasureandrecordcurrentandvoltage,andthencalculateothermeasuressuchaspowerfactor,power,andkVARaremoreexpensive,butcanprovideaccuratedataforbothshortandlongintervals.

Page 33: Full Issue PDF Volume 113, Issue 6

32 Energy Engineering Vol. 113, No. 6 2016

Understandingthesecomplexbutnecessaryconceptscanprovideahighdegreeofconfidenceinenergysavingsprojects.

References [1] Haberl,JeffandCharlesC.Culp,“MeasurementandVerificationofEnergySav-

ings,” Chapter 27, page 685, Energy Management Handbook, 8th Edition, Fairmont Press, Lilburn, GA 2013

[2] Waltz,J.P.,2002,“WhenEnergyMeasurementandVerificationisWRONG,whatdoYoudo?”Strategic Planning for Energy and the Environment, 22(1) pp. 38-50.

[3] Roosa,S.A.,2002,“Measurement&VerificationApplications:Option”A”CaseStudies,” Energy Engineering, 99(4) pp. 57-73.

[4] McBride,J.R.,Bohmer,C.J.,andPrice,S.D.,1998,“SharedSignals:UsingExistingFacilityMetersforEnergySavingsVerification,”Energy Engineering, 95(1) pp. 40-54.

[5] EfficiencyValuationOrganization,2012,“InternationalPerformanceMeasure-mentandVerificationProtocol,”EfficiencyValuationOrganization,EVO10000-1:2012.

[6] InternationalStandardsOrganization,2011,“EnergyManagementSystem,”Inter-national Standards Organization, ISO 50001:2011, Geneva.

[7] InternationalStandardsOrganization,2014,“MeasurementandVerificationofOrganizationalEnergyPerformance—GeneralPrinciplesandGuidelines,”Inter-national Standards Organization, ISO 50015:2014, Geneva.

[8] Jayaweera,T.,andHaeri,H.,2013,“TheUniformMethodsProject:MethodsforDeterminingEnergyEfficiencySavingsforSpecificMeasures,”Contract, 303 pp. 275-3000.

[9] ASHRAE,2002,“Guideline14-2002:MeasurementofEnergyandDemandSav-ings,”AmericanSocietyofHeating,RefrigeratingandAir-ConditioningEngi-neers, Atlanta, GA.

[10] Hirsch,J.J.,2006,“eQuest,theQUickEnergySimulationTool,”www.DOE2.com/equest/.

[11] Kissock,K.J.,andEger,C.,2008,“MeasuringIndustrialEnergySavings,”Applied Energy, 85(5) pp. 347-361.

[12] U.S.DepartmentofEnergy.2014.“EnergyPerformanceIndicator,”Washington,DC.

[13] Mathew,P.A.,Koehling,E.,andKumar,S.,2006,“UseofQuantitativeUncertaintyAnalysistoSupportM&VDecisionsinESPCs,”Energy Engineering, 103(2) pp. 25-39.

[14] U.S.DOE.1998,“ImprovingCompressedAirSystemPerformance,aSourcebookforIndustry,”PreparedfortheUSDepartmentofEnergy,MotorChallengePro-grambyLawrenceBerkeleyNationalLaboratory(LBNL)andResourceDynamicsCorporation (RDC) .

[15] Lee,A.H.,2000,“VerificationofElectricalEnergySavingsforLightingRetrofitsusing Short-and Long-Term Monitoring,” Energy Conversion and Management, 41(18) pp. 1999-2008.

[16] Abed,A.M.,1999,“WSCCvoltagestabilitycriteria,undervoltageloadsheddingstrategy,andreactivepowerreservemonitoringmethodology,”PowerEngineer-ingSocietySummerMeeting,1999.IEEE,1pp.191-197.

[17] Dooley,E.,andHeffington,W.,1998,“IndustrialEquipmentDemandandDutyFactors,”TwentiethNationalIndustrialEnergyTechnologyConference,Anony-mous Energy Systems Laboratory (http://esl.tamu.edu), 20 pp. 198-207.

Page 34: Full Issue PDF Volume 113, Issue 6

33

[18] Brown, J.,1976,“ChoosingBetweenaDataLogger (DL)andDataAcquisitionSystem (DAS),” Instruments and Control Systems, 49(9) pp. 33-38.

[19] Januteniene,J.,Lenkauskas,T.,andDidziokas,R.,2012,“Energysavinginindus-trialprocessesusingmoderndataacquisitionsystems,”20122ndInternationalConferenceonDigital InformationProcessingandCommunications, ICDIPC2012,July10,2012-July12,AnonymousIEEEComputerSociety,KlaipedaCity,Lithuania, pp. 124-126.

[20] WillisJr.,G.W.,1981,“DataAcquisitionSystemforEnergyAuditFieldApplica-tions.” v 18, Anonymous ISA, Indianapolis, IN, USA, 27 pp. 569-574.

[21] Keithley,J.F.,1999,“Thestoryofelectricalandmagneticmeasurements:from500B.C. to the 1940s,” IEEE Press, New York, pp. 240.

[22] Dupraz,J.,Fanget,A.,andGrieshaber,W.,2007,“Rogowskicoil:exceptionalcur-rentmeasurementtool foralmostanyapplication,”PowerEngineeringSocietyGeneral Meeting, 2007. IEEE, pp. 1-8.

[23] IEEEWorkingGroup,2010,“PracticalAspectsofRogowskiCoilApplicationstoRelaying,”IEEEPSRCSpecialReport.

[24] Moore,A.E.,1935,“TheHistoryandDevelopmentoftheIntegratingElectricityMeter,” Journal of the Institution of Electrical Engineers, 77(468) pp. 851-859.

————————————————————————————————ABOUT THE AUTHORS Andrew Chase Harding, PE, CEM, is staff engineer in theUniversityofArkansas’DepartmentofMechanicalEngineering.Heisresponsible for theday-to-dayoperationsof theArkansas IndustrialEnergyClearinghouse.Chase received his Bachelor of Science inMechanicalEngineeringfromtheUniversityofArkansasin1999.HeisaregisteredprofessionalengineerinArkansas.Chasehasbothutilityandmanufacturingexperience.HestartedhisengineeringcareerworkingforEntergyOperations insystemsengineering, followedby10yearsofmanufacturingexperienceworkingattwoArkansasmanufacturingbusinesses, includingCooperPowerSystemsinFayetteville.Chase isaCertifiedEnergyManagerandaDOEQualifiedSystemsSpecialistinAirMaster+ and PHAST. Email: [email protected]

Darin W . Nutter, PhD, PE, isaprofessor in theUniversityofArkansas’DepartmentofMechanicalEngineering.He is thedirectorof theArkansas IndustrialEnergyClearinghouseandanaffiliateofthe Industrial Assessment Center. Over the last 25 years, Dr. Nutter’s research interests have been encompassedwithin the broad areaofenergyconservation.His focushasbeenon the improvementofHVAC&Rsystemsandmanufacturing/processingplants,withregardtooperation,energyefficiency,andsustainability.Email:[email protected]

Page 35: Full Issue PDF Volume 113, Issue 6

34 Energy Engineering Vol. 113, No. 6 2016

Virtual Audits:The Promise and The Reality

John M. AvinaSteve P. Rottmayer

ABSTRACT

A good energy audit is a valuable owner’s guide to making the bestenergyefficiencyinvestmentdecisions.Whenthebestenergycon-servationmeasures(ECMs)areidentifiedandimplemented,thefacilityownerwillmakethesmartestchoices,andreceivethegreatestreturnoninvestment.WhenthebestECMsarenot identifiedandimplemented,thentheopportunityforreducingutilitycostshasbeensquandered,andthefacilityownersuffersfinanciallyasaresult.Traditionally,develop-ingenergyaudits involvedhiringprofessionals to identifyandcom-municatetheECMs.Typically,themoreseasonedandskilledtheenergyauditor, the better the energy audit. With theadventofadvanceddatabasesand theavailabilityofelectricity intervaldata,newsoftwareandservicesarenowavailablethatprovidesomeimpressiveanalysisofbuildingenergyusage.Oneofthesenewservices,virtualaudits,oftenofferinexpensiveenergyaudits,attractivewebgraphicsandthecapabilitytoprovidefastanalysisofin-dividualbuildingsaswellasaggregatesofbuildingswithoutanenergyauditorhavingtosetfootonsite. Thequestionaddressedinthispaperiswhetherthesecompaniesthatprovidevirtualauditsaremakingclaimsthatareunsupported.Themainclaimisthatavirtualauditcanproduceanactionableenergyauditwithouthavinganenergyauditorsetfootonsite.Thisarticleendeavorstoevaluatethesepotentiallyoverreachingclaimsbyconsideringthedif-ferencesbetweentraditionalandvirtualaudits.

THE PROMISE OF VIRTUAL AUDITS

Analytics-basedaudits,orvirtualaudits,fillamarketneed,asen-ergyauditscanbeperceivedtobeexpensive.Thehighpriceofanenergy

Page 36: Full Issue PDF Volume 113, Issue 6

35

auditoftenservesasabar,preventingmanyfacilityownersfromhavingthemdone.Atraditionalauditmightcostbetween$8,000and$30,000fora500,000squarefootofficebuilding,dependingonthelevelofdetail.Theauditormightspendoneormanydaysonsite,andwouldrequirehoursofthefacilitystaff’stime,whichitselfcostsmoney. Severalcompaniesarenowofferingvirtualauditswhichcandra-maticallycutthenumberofengineeringhoursandcostassociatedwithperforminganenergyaudit.Thesevirtualauditsaremostlybeingusedbyutilitiesandthefederalgovernment(whichhastensofthousandsofbuildings). The claim is thatvirtual auditsprovideuseful energyauditswithout having to send energy auditors on site to evaluate the build-ing.Theseauditsrequireonlyelectricintervaldata,gasbills(whichareoptional),andtheaddressofthebuilding.Thesevirtualauditsarerela-tivelyinexpensiveandsellforafractionofthecostoftraditionalaudits.Inaddition,virtualauditsdonottieupbusyfacilitystaffforhours.Thevirtualauditsmaybepresentedonawebportalwithattractivegraphics,goodutilityusageanalysis,benchmarking,andevenmeasurementandverificationcapacity. Toevaluatetheeffectivenessofavirtualaudit,wemustfirstdefinewhat a good energy audit is.

WHATISA“GOOD”ENERGYAUDIT?

Energyauditscantakeamultitudeofforms,andwhethertheauditis“good”dependsonthegoalsoftheproject.Withthedifferentgoalsinmind,ASHRAE(theAmericanSocietyofHeating,Refrigerating,andAir-conditioningEngineers)hasdefinedthreeenergyaudit levels.ASHRAELevel1auditsprovideanoverviewofthebuildingandgiveguidancetowardareasofinefficiency.ALevel1auditincludesalistofmeasures,butdoesnotprovideenergysavingsorcostsforeachmea-sure.ASHRAELevel2and3auditsaremuchmoredetailedwiththegoalofprovidingthefacilityownerwithanactionableplanthatcanbeusedtoreduceenergyuseatthebuilding.Table1liststhereportdeliv-erablesassociatedwiththedifferentlevelsofenergyauditsbasedontheASHRAEProceduresforCommercialBuildingEnergyAudits. Manycompaniesthatsellvirtualauditsclaimtoprovidedetailedaudits thatenabletheuser to immediatelystartworkwithacontrac-

Page 37: Full Issue PDF Volume 113, Issue 6

36 Energy Engineering Vol. 113, No. 6 2016

tor to begin implementation. Based on Table 1, this is, at minimum, an ASHRAELevel2audit,whichiswhatweconsidera“good”audit.Sowhatshouldbeincluded?Firstandforemost,theauditshouldincludeacomprehensivelistofenergyconservationopportunitiesthatprovidesacleardescriptionofwhatneedstobedone.Eachoftheefficiencymea-suresneedstodescribe:

• Whatistheproblem• Whichunitsareaffected• Howdoesitwasteenergy• Howshoulditberemedied• Howmuchenergyandcostscanbesaved• HowmuchwillitcosttoimplementtheECM• FinancialmetricstoevaluatetheECMsagainsteachother.

Table 1. ASHRAE Audit Deliverables

Page 38: Full Issue PDF Volume 113, Issue 6

37

Inaddition, theenergyauditwill considerwhether therecom-mendedmeasurescanbeimplemented,andwhetherthemeasuresarecosteffective.Forexample,ifamechanicalroomisalreadytoofull,ad-ditionalequipmentcannotbeaddedtothemechanicalroom,andthismaynecessitatebuildinganotherone.Anotherexample, ifnaturalgasserviceisnotavailableontherooftop,naturalgaslineswillneedtoruntothenewpackageunitsthatarebeingrecommended. Level3audits includeadetailedscopeofworksothecontractorwhoimplementstheefficiencymeasurewillknowexactlywhattodo.Thescopeofworkdescribesclearlywhatthecontractormustandmustnotdowhenimplementingthemeasure.Thescopeofworkwillpreventthecontractorfrom

• repairing/replacingthewrongunit,• repairing/replacingtoomanyunits,• installingtheunitbutnotprovidingappropriatecontrolstrategies

to ensure that the units save energy• addingonadditionalunwantedservicesandequipment.

Havingdefinedtheobjectiveofa“good”detailedaudit,letusex-aminethevirtualauditapproach.

HOW THE ANALYTICS MODEL WORKS

Althoughtheirmarketingmaterialmaystressthevalueofanalyt-ics,thenewdevelopmentsincomputerpowerandthesuccessfulutili-zationofintervaldata,themethodsemployedbythesecompaniesrelyheavilyonanoff-sitesurveythatissimilartoatelephoneaudit.Usingaquestionandanswerformat,theyseektouncoverenergyefficiencyop-portunities.Forexample,“areyoucurrentlyemployingachilledwaterreset?”Iftheanswerisno,thenanECMhasbeenfound,achilledwaterreset. Virtualauditsuseaquestion-andanswer-typeprocesswithfacilitypersonneltouncoverECMs,andthenoftenuseintervaldatatobackupthefindingsfromthedialog.Sometimestheintervaldatamaypointtoissuesindependentofdialog.Thedialogmaybeintheformofanonlinesurveyoratelephonesurvey.Thesesurveysaskmanyquestionsaboutthefacilityincluding:constructiontype,ageoffacility,occupancyhours,

Page 39: Full Issue PDF Volume 113, Issue 6

38 Energy Engineering Vol. 113, No. 6 2016

buildingautomationsystem(BAS)type,ageofBAS,whatcontrolstrate-giesareinplace,etc.Certainlythesetypesofphonecallsorsurveyscanbeusefulandcanidentifyenergysavingsopportunities.Easytoiden-tifyopportunitiesmightinclude:equipmentscheduling,nightsetbacks,lightingretrofits,andsomecontrolstrategies.

Analysis Virtualauditsemploysoftwaretoanalyze15-minuteelectric in-tervaldata.Thesoftwareusessophisticatedalgorithms,oftenwithas-sistancefromaperson,tobreakoututilityusageintoenduses,suchaslighting,pumping,Heating,ventilating,andairconditioning(HVAC)fans,etc.ThesoftwarecanalsopointtopotentialECMs.Themodelcaneasilyidentifysomepotentialareasofwaste,suchaslightingandHVACscheduleproblems,aswellasinefficientlightingorcooling. Themodelproducesanoutputthatistheninterpretedbyanenergyengineer,whodigsdeeperintothedatatofindmorepotentialmeasures,anddisqualifyanythatthemodelinappropriatelyrecommended.Dur-ingthisstage,theenergyengineermayalsocontactthefacilitymanagerorengineertotalkthroughquestionsthatpresentthemselves.

Measure Review Onceananalysishasbeencompleted,andalistofmeasureshasbeencreated,thevirtualauditorsmeetwiththeclient(usuallyinawebconference)todiscussthemeasuresfoundandthenextstepstheclientshould take.

Implementation Afterthemeasuresarepresented,itissuggestedthattheclientcallanappropriatecontractor to implement themeasures.Thecontractorwilldeterminecountsofequipment tobereplaced,or insomecases,theexactissue(s)causingtheexcessiveenergyusage,andwillthenputtogetheraproposalandpricetoremedythesituation.

STRENGTHS OF VIRTUAL AUDITS

Analyticsoftware,withtheirsophisticatedalgorithms,isapower-fulanalysistool.Throughtheuseofthistool,virtualauditshavesomesignificantstrengths.

Page 40: Full Issue PDF Volume 113, Issue 6

39

Cost-Effective Analysis of Large Data Sets Thedataavailable toanalyze facilityenergyusehas increasedsignificantlyinthelastdecadeandcontinuestoincreaseasthecostofmonitoring,storingandanalyzingdatadecreases.Thelistofusefuldataincludes:

1) Intervalenergyandweatherdatathatcanbeusedtogaininsightintothedailyoperation.Sub-metersatfacilitiesfurtherenhancesthis insight.

2) Databases(EnergyStar,CBECS*,etc.)containingabreakdownofthetypicalfacilityenduse,groupedintostandardbuildingcatego-ries,canhelpidentifyareasofinefficiencytotarget.

3) Databasesofpastenergyefficiencyprojects,suchastheDatabaseforEnergyEfficientResources(DEER),containingtypicalsavingsandcostsforspecificmeasuresthatcanbeusedtohelpcreatemea-sures.

Theexistenceofsomuchdataprovidesanopportunitytoimprovethevalueofenergyaudits,but italsopresentsaproblembecause itbecomesmoreandmoredifficulttoincorporatedataintotheanalysis.Effectivelyidentifyingthepatternsandanomaliesinallthisdatatakesapersonlongerandlongerandbecomeslessandlesspossible.Insum-mary,analyzingbuildingshasstartedtobecomeabigdata† problem. Analytictoolsprovidethebestmeansofcost-effectivelyfindingthepatternspresentinthatdata.Analyticsarenowusedinmanyindustriesincludingfinancial,retail,andevensports.Utilizingthispowerfulap-proachmakessenseforenergyefficiencyaswell.

Presentation of Data from Multiple Buildings Most, ifnotall,customersof thevirtualauditcompaniesarere-sponsibleforalargeportfolioofbuildings.Tryingtoreviewandtrack

*CommercialBuildingsEnergyConsumptionSurvey(CBECS),apublicationoftheU.S.EnergyInformationAdministration(EIA),http://www.eia.gov/consumption/commer-cial/†Bigdata,asdescribedbyMetaGroup(nowGartner)ina2001researchreport,referstolargedatasetsthataresocomplexthattraditionaldataprocessingtechniquesdonotwork.Althoughenergyauditingmaynotquitebeonthe levelofsayanalyzingsocialmedia,moreandmoreitappearstobeheadingtowardthatlevelofsophistication.

Page 41: Full Issue PDF Volume 113, Issue 6

40 Energy Engineering Vol. 113, No. 6 2016

energyefficiencyprojects fromastackofseparatereports isdifficultandtimeconsuming, ifnotoutrightimpossible.Virtualauditingtoolscompile thevirtualauditreportdata intoonepowerful interfacethatprovidesmanagersaneasiermethod to reviewand track theECMsandenergyusagecharacteristicsoftheirportfolio.Imaginehavingonethousandbuildingstotrack,andbeingabletoseeanaggregateenergybalance,whichbreaksoutenergyusageintolighting,cooling,etc.ThesewebinterfacescanalsoreportthefrequencyofECMtypes,whichtypesofbuildingsorregionsareassociatedwithdifferentECMs,etc.Thein-formationpresentedonthesetoolshelpsmanagersprioritizesites,trackprojectsandevaluatetheresults.

Potential Issues are Highlighted Mostfacilitypersonnelareverybusyandhaveverylimitedtimeandresourcesavailable tospendwithenergyauditors.Rather thanspending hours walking on site, auditors around the building, an online surveyortelephonesurveywiththevirtualauditorsprovidesaquickandeasymethodtoconveyinformationaboutthebuilding.Thissurveythen helps the virtual auditors understand the building remotely so they caninterprettheanalyticsmodelandidentifyareasthatneedattentionsuchas:

• Equipmentoperatingmorehoursthannecessary• Outsideaireconomizersnotfunctioningoptimally• Simultaneousheatingandcoolingisoccurring.

Althoughtherearemanypossibilitiesofcauses,simplyidentifyingtheproblemscanhelpimprovethecost-effectivenessofanyfollow-upanalysis.

Straightforward Measures are Identified Quickly Energyefficiency isoneofmanyresponsibilitiesunder thepur-viewoffacilityoperators.Andgiventherelativelylowcostofelectricitycomparedtothecostofemptyfloorspaceorlostproduction,energyef-ficiencyistypicallyalowprioritycomparedtosafety,comfortandmain-tenance.Thisleadstosituationswhereevenstraightforwardmeasuresare overlooked. Recently,whenwewerepresentingalistofECMstoafacilityman-ager,wesuggestedthattheyscheduletheirair-handlingunits(AHUs),

Page 42: Full Issue PDF Volume 113, Issue 6

41

becausetheAHUswererunningallweekendconditioninganemptybuilding. The manager angrily told us that we were wrong, that this was his building, and that he knew the AHUs ran only during weekdays. WeshowedhimpicturesoftheBASschedulingscreenprovingthatthattheAHUshadbeenscheduledtorunallnight.Thefacilitymanager,asitturnsout,hadnotlookedcloselyatthecontrolsforyears,becausehehadbeenpromotedtomanagerforafewsites.Allalongthefacilitycrewthatnowrunsthebuildinghadbeenoverridingtheschedulesandset-pointshehadsetyearsago.Thiswasacasewherethefacilitymanagerused to know how the building operated, and he thought he still did know.Asurveyalonewouldnothavecaughtthatmeasure,butcoupledwithanalytics,anddiligentfollow-upwithsitestaff,thismeasurelikelycouldhavebeenidentifiedwithouttimespentonsite.

SHORTCOMINGS WITH VIRTUAL AUDITS

Althoughanalyticsareapowerfultool,usingthisapproachexclu-sivelytoreplacetraditionalauditshassignificantweaknesses.

Problems with the Survey/Interview Acriticalcomponentofthevirtualenergyauditisthesurvey.Inatypicalsurveyafacilitymanager(oroperator)answersaquestionnaire,either online or by phone, about the building energy using systems. The questionnaire isrelativelyshort,coveringthemajorcharacteristicsofthemainend-usesystems*.Therearemanyshortcomingswiththisap-proach:

1) Many Important Follow-up Questions Get Left Out Thesurveysdonotalwaysidentifythedistinctivecharacteristicsofbuildingsandtheirenergy-usingsystems.Buildingsareoftensouniquethatitisimpossibletoidentifyalloftheimportantquestionstoaskinadvance.Oftentheanswertoonequestionleadstoanotherquestion.Forexample:

*Forthetraditionalenergyauditprocess,thissamestepistaken,however,intheformofaliveinterview.Buttypically,aftertheequipmentandBAShavebeeninspected,theauditorhasaseriesoffollow-upquestionseithertogainmoreinformation,ortohandleinconsis-tenciesbetweentheinterviewandwhattheauditorfoundinthefield.

Page 43: Full Issue PDF Volume 113, Issue 6

42 Energy Engineering Vol. 113, No. 6 2016

How is your data center cooled? It iscooledbycomputerroomairconditioner(CRAC)unitsand

AHUs.

In the winter, which does most of the cooling? The CRAC units or the AHUs?

The CRAC units. The AHUs only provide ventilation.

Do the AHUs bring in 100% outside air? AHU-1does,butAHU-2doesnot,becausewehadproblemswith

humidity.

So AHU-2 has a damper that modulates the amount of outside air? No,itisbringinginafixedamountofoutsideair,maybe10%.

And the AHUs are delivering air to the ceiling of the building? No,AHU-1deliversair intotheunderfloorarea,AHU-2delivers

air to the battery room and other auxiliary areas.

Oh, and the size of the motors? Well,wereshivedAHU-1sothatitnowdelivers30%ofitsoriginal

CFM.

Why did you do that? Tosaveenergy.Wehadtodehumidifythehotair inthesummer

andtohumidifythecoldairinthewinter.Thisway,withlessout-side air, we were able to avoid that.

The CRAC units, they have their own compressors right? No,theygetchilledwaterfromthechillers.

Somuchcomplication!Butmanybuildingsareuniqueinthisway.In this example, the survey would likely have missed:

• thatoneAHUisdeliveringairunderfloor• thatoneAHUwasreshived• that theCRACunitswereactuallycomputer roomairhandler

(CRAH) units• thattheywerehavingproblemswithhumidification.

Page 44: Full Issue PDF Volume 113, Issue 6

43

Becausebuildingsarecomplicatedandunique,thesurvey-basedapproachoftencannotgainacompleteunderstandingofthebuilding,norconsequentlyof theECMopportunities.Furthermore,anonlinesurveythatattemptedtocaptureallpossiblescenarioswouldbecomeexceedinglylong,tediousandunlikelytobecompleted.Anexperiencedauditorisabletoguidetheprocessefficientlytocorrectpossibleerrorsandidentifyuniquesituations. Energyauditsareaninherentlyiterativeprocess.Firstthereisaninterviewofthefacilityoperator,thenaninspectionoftheBASandtheenergy-usingequipment.Typically,therewillbeanotherdiscussionwiththefacilityoperatorasnewquestionsarisethatneedtobeanswered. Forexample,werecentlyauditedastrangebuildingthathadverylarge internalcooling loads,andrequiredcoolingatall times. In thewinterthechillerswereturnedoff,andoutsideairwasusedtocoolthebuildingthrougheconomizersontheAHUs.However,someareaswerecooledbyfancoilunitsthatdidnothaveaccesstooutsideairforcool-ing.Ratherthanhavethechillerproducechilledwaterforthefancoilunits,theoutsideairdampersfortheAHUswerefullyopen,andchilledwaterwascreatedfromthecoldambientairusingthecoolingcoilsin-side the AHUs. The AHU supply air heated some in the AHUs, and then reheatedinthezonalvariable-airvolume(VAV)boxes.Wouldanoff-sitesurveyuncoverthistypeofoperation?Evenasinglephoneconversationmightnotuncoverthisone,becausethefacilityoperatorsdidnotthinkto mention this until we had analyzed the BAS and started asking ad-ditionalquestions.

2) Facility Managers Limited Availability Most facilitypersonnelareverybusy,which isanegativewhenrelyingonasitesurvey.Therearealwaysmoreprojectstoundertakeandproblemstosolvethantheyhavetimefor.Theseoverburdenedfacilitypersonneloftenaddresstheenergyauditasquicklyastheycan.Forsomeprojects,wehavesentoutpre-sitevisitquestionnaires,andwehaveseenquestionnairesreturnednearlyblank,withverylittleefforttaken.Whentheenergyauditoristhereinperson,it iseasiertogettheattentionoffacilityoperators.Thefacilityoperatorisabletorespondtoarealpersonaskingquestions,andthesurveyisfollowedbyatourofthesite.*

*Sometimesfacilityoperatorswillnotevenparticipateinthisstepandthisshouldmaketheauditorquestionthelikelihoodofanymeasuresactuallybeingimplemented,whichisusuallyanevenmorelabor-intensiveprocess.

Page 45: Full Issue PDF Volume 113, Issue 6

44 Energy Engineering Vol. 113, No. 6 2016

Whentheauditinvolvesanonlinesurvey,therewillbemanyfacil-itymanagerswhowillanswerthesurveyasquicklyaspossible,andintheirhurry,mayeithermisinterpretquestions,orskipthequestionsthatrequiremoretime.Ifthesurveyistoolong,thefacilitymanagerwillbelesslikelytocompleteit.Ifthesurveyistooshort,lessbuildinginforma-tioncanbecollected.

3) No Independent Confirmation that the Survey is Accurate The other problem with online surveys and telephone-based as-sessmentsisthatthefacilitymanager’sdescriptionisnotverifiedbyac-tualobservations.Aseveryseasonedauditorknows,facilityoperators’understandingoftheirbuildingsvariesgreatly.Someareveryknowl-edgeable,havingworkedattheirbuildingformanyyears,and(we)en-ergyauditorsarehappytolearnfromthem;butmanyarenotintimatelyfamiliarwiththeirbuildingbecausetheyarenewortoobusytostayontopofallthechanges. Theon-sitesurveyoften identifiesmistakes fromthe interviewand,insomecases,exposesanengineertryingtoconcealtheirinexperi-enceorlackofknowledge.*Wehaverunacrossfacilityoperatorsgivingtheanswersthattheythinkwewanttohearbyguessingand,inrarecas-es,outrightlying.Afterthein-personinterviewabouttheenergy-usingsystems,wetheninspecttheBASandtheHVACequipment,andthatiswherewefindouthowaccuratethefacilitymanagerhasbeen.Howisanonlinesurveyoratelephoneauditgoingtodeterminetheaccuracyoftheanswers?Ananalytics-basedenergyauditishighlydependentontheassumptionthattheanswersaccuratelyrepresentthebuilding.Inalargepercentageofbuildings,thisisjustnotso. Onecommonproblemwithmilitarybasesisthatthefacilityopera-torsormechanicsrotateevery2or3years.Onmilitarybases,thefacilityoperatorsoftenhavemanybuildingstomaintain,andnevergetthetimetoactuallylearnhowtheywork.Manyofthesefacilityoperatorsdonotknow their systems. Wehaverunacrossmanybuildingswherethepersonwhoknewthesystemshadjustretired;infact,thatiswhymanagementdecidedtogetanenergyaudit.Therewerenodrawingsofthebuildings,sparserecords

*Itisnottheintentofanenergyaudittotellmanagementthattheirfacilitystaffiseitherincapableorignorantofhowtoefficientlyrunabuilding,butsometimesitisperceivedthatway.Theindustry’suseoftheterm“audit”probablydoesnothelp.

Page 46: Full Issue PDF Volume 113, Issue 6

45

ofalltherenovations,andnobodyknewanythingabouttheHVAC. Ineitherofthesecases,whoisgoingtoanswerthesurvey?Whatvaluewill theybeable toprovide?Ananalytics-basedauditwouldlikelyofferveryfewsuggestionsforenergyefficiency. Insum,whenthemajorityof thedatacollectionassociatedwiththevirtualaudit isassociatedwithanonlinesurveyortelephonecall,thereisagreatlikelihoodthatthecollectedinformationwillnotgiveanaccuraterepresentationof thebuildinganditsenergy-usingsystems.Theproblemwiththismethodofdatacollectionisthatthevirtualaudi-torwillneedtorelyonthefacilityoperators,whomaynotknowtheinformation,ormaynottakethetimetoprovideaccurateandcompleteanswers.Thiscanbecompoundedbysomeonewhomayguessorpro-videoutrightfalseinformation.Ifthevirtualauditor’sknowledgeofthebuildingisbasedoninaccurateor incompleteinformation,howisthevirtualauditortodevelopalistofECMsappropriateforthebuilding?

Issues with Identifying Which Items are Problematic Anotherissuewithavirtualauditisthelikelihoodoffalsepositivesandmisdiagnoses.Supposethatananalyticsbasedenergyauditidenti-fiesthatthereisnotenoughfreecoolingbeingutilizedinthebuilding.Althoughthisisusefulinsight,therearestillmanyquestionsthatneedtobeansweredconcerningtherootcauseoftheproblem.Coulditbethat:

• Theductsaretoosmalltoallowinsufficientoutsideair?• Theeconomizerdampersarerustedinplace?• Thedamperlinkagesaresomehowfaulty?• Theactuatorsarebroken?• Thepneumaticshavebeendisconnectedfromtheactuators?• Theeconomizerprogrammingisfaulty?• TheeconomizersetpointsintheBAShavebeenoverridden?• Theoutsideairtemperaturesensorisnotreporting?• TheBASisnotcommunicatingwiththeAHUcontrollers?

Itcouldbeanyoneorseveraloftheserootcauses.Eachofthesedifferentissueswouldleadtotheeconomizersnotprovidingfreecool-ing.Therangeincostsforaddressingtheseissuesgoesfromvirtuallyfree(resettingtheoverriddencontrolpoint)toprohibitivelyexpensive(theductingistoosmalltoprovidesufficientoutsideair).Aremoteauditcouldnotmakethatdetermination,andthisiswheretheaddedexpense

Page 47: Full Issue PDF Volume 113, Issue 6

46 Energy Engineering Vol. 113, No. 6 2016

ofatraditionalauditprovidesrealvalue. Furthermore,itisnotunusualforalargebuildingtohave50AHUs.SupposealargenumberoftheseAHUshaveeconomizerissues,andthatthevirtualauditisabletoidentifythatthereisinsufficientfreecooling.Notonlywilltheremoteauditornotknowwhattypesofeconomizeris-suesneedtobeaddressed,theremoteauditorwillnotevenknowwhichofthe50AHUshaveeconomizerissues.Howisthevirtualauditgoingtocostthismeasurewhentheydonotknowwhathastoberepaired,norhowmanyunitsneedworkdoneonthem?

Issues with Identifying the Root Cause of the Problem Analyticsisoftenabletodeterminewhetherafacilityisusingtoomuchenergyforcooling.Althoughtheanalysisshowsthatthecoolingsystemisinefficient,itisdoubtfulwhethertheremoteauditorcandeter-mineexactlywhatiscausingtheproblem.Thefollowingrootcausescanleadtoexcessivecoolingusage:

• Lowchilledwatersetpoints• Lowzonetemperaturecoolingsetpoints• LowAHUsupplyairtemperaturesetpoints• Openwindowsinsummer• Oversizedsupplyfans• Toomuchoutsideair• Undersizedcoolingtower• Excessivefoulingincoolingtowerfill• Poorlyperformingcoolingtower• Inefficientchiller• Buildingoperatoroverridesoncondenserwater, chilledwater,

AHU and/or zone setpoints• Poorchillerstaging• Chilledwaterleaks• Leakingpreheatcoilvalvesalongwithnoboilerlockout• Stuckchilledwatervalve• NocommunicationbetweenBASandAHUcontrollers• Uninsulatedchilledwaterpipes.

And there are many more possible reasons. Someof theproblems listedabovecanbe identifiedduringaninterviewwiththefacilitymanager.Manyothers,though,canonlybeidentifiedbysomeonewhoisonsite.

Page 48: Full Issue PDF Volume 113, Issue 6

47

Limited List of Measures Therearesomemeasures thatarenearly impossible to identifywithonlyintervaldataandanoff-sitesurvey.Someonereallyneedstoseetheproblemwiththeirowneyes.Thelistofthesepossiblemeasuresisactuallyquitelongandonlyafewarelistedhere.

• Temperaturesensorsoutofcalibrationorpoorlyplaced• Poorlyprogrammedcontrolstrategies• Stuckchilledwaterorhotwatervalves• Daylighting• Datacentermeasuressuchasisolatingwarmaislesandcoolaisles• Replacing/repairingicedovercompressors• Waterorsteamleaks• Missingceilingorunderfloorinsulation• Disconnectedpneumatics,compressedairleaks• Fumehoodleaks• Uninsulatedchilledwater,steamorheatinghotwaterpiping• Throttledchilledwaterorheatinghotwaterloops• Inefficientkitchenequipment• Stripcurtains,doorclosers,electroniccommutatedmotorsand

evaporatorcontrollersinwalk-incoolers

We have seen three virtual audits point, and they had three, three, andsixECMsidentifiedinthereports. Incontrast,whenweperformenergyaudits,wetypicallyhaveadifficult timekeepingthenumberofECMsunder15,andhaveturnedinreportswithover30.Providingacomprehensivelistofmeasures isacriticalcomponentofanyaudit.Becauseanenergyauditorisnotonsite,virtualauditscannotproduceacomprehensivelistofECMs.

Poor Measure Descriptions ECMdescriptionsinvirtualauditsarenotoriouslyshort.AtypicalECMdescriptionwillhaveoneortwosentences.ThesedescriptionsarelikelyshortbecausethereisnotenoughdetailknowntoprovidefullerECMdescriptions.Manytypesofinformationaremissing:whatequip-mentistobeinstalled,adescriptionofthesequenceofoperationtobeprogrammed,andwhichpiecesofequipmentneedtobeaddressed(i.e.,whichlights,whichAHUs). TheshortECMdescriptionscanleadtoimproperimplementation

Page 49: Full Issue PDF Volume 113, Issue 6

48 Energy Engineering Vol. 113, No. 6 2016

ofthemeasures,whichcanseverelyhurtreturnoninvestment.Asimpleexamplemaybe“ReplacefluorescentlightingLEDs.”Thiswouldbeagoodmeasure,butiftheobjectoftheenergyauditistocosteffectivelyreduceexpenses,thenthefluorescentsshouldonlybereplacedinthoseareaswherelightsburnthousandsofhourseachyear.Janitorclosets,mechanicalrooms,andabandonedspacesshouldprobablykeeptheirfluorescents,becauseitisnotcosteffectivetoreplacethefixtures.Be-cause theyareusedsorarely, theymost likelywillnotburnoutanytime soon. Anotherexamplemightbe:“Installoccupancysensors inofficespacesandrestrooms.”Onthesurface, thismeasure isagoodECM.However,therearesomehiddenproblemsassociatedwiththismeasure.Occupancysensorswillnotoperateproperlywithinstantstartballasts.The20,000-hourlamplifecanbeshortenedsodramatically,thatthead-ditionaloperationsandMaintenance(O&M)costofreplacingburnedoutfluorescent tubescanbecomegreater thanthecostof theenergysavings.Thisinformationisnotgiveninthevirtualaudits.Inaddition,dependingonthecostofelectricity,occupancysensorsareonlycostef-fectivewhenthereareseveralfixturesononeoccupancysensor.Manyprivateofficeswouldnotbecost-effectivechoices foroccupancysen-sors.Butthevirtualauditorwouldnotbeabletoidentifywhichspacesshould have sensors installed.

Inaccurate Measure Pricing Accuracyinestimatingenergysavingsis importantinanenergyaudit,butwhatisoftenoverlookedisthataccuracyinpricingtheECMsisequallyimportant.OftenwhatreallymatterswhendeterminingwhichECMstoimplementissomefinancialmetric,suchassimplepaybackorlifecyclecost.Thesefinancialmetricsarecalculatedusingbothenergysavingsandcosts.Foraccuratefinancials,youneedaccurateenergysav-ingsandaccuratecosting.* Todetermineaccuratecosting,theauditormustknowwhatexactly

*Ifall thatmatteredwasenergysavings, thenanenergyauditwouldneedonlyrecom-mendanoffgridsolarphotovoltaic(PV)systemforeverybuilding.Thenallelectricitycanbesaved.Therewouldbenopoint investigatingcomplicatedHVACcontrolsmeasures.Thereasonthesesystemsrarelymakeit intoenergyauditreports is thepoorfinancialsassociatedwithoffgridPV,especiallywhencomparedtoretro-commissioningandotherenergyefficiencyretrofitswhicharemorethanthreetimesfinanciallyattractivethanoffgrid PV.

Page 50: Full Issue PDF Volume 113, Issue 6

49

needstoberepaired,replacedorinstalled,andhowmanyunitsneedtobeaddressed.Aswehavealreadystated,avirtualauditcannotprovidethisinformation.Insteadofprovidingagoodestimateofcosting,virtualauditsprovideacostrange.Inourpreviousexampleabouteconomizers,thecostrangewouldbebetweenreleasingBASoverridesofoutsideair%(perhaps$25each)toreplacingrusteddampers(uptoseveralthou-sanddollarseach).Stillworse,inthisbuildingof50AHUs,howmanyofthemneedtobeaddressed?Thecostrangeforthisexamplecanrangefromafewhundreddollarstotensofthousandsofdollars.Widecostrangeslikethisrenderthefinancialmetricsoflittlevaluetothefacilityowner. Evenassumingthattheremoteauditteamcanidentifytheequip-mentthatneedstobereplaced,iftheremoteauditteamhasneverbeenonsite,howwill theybeabletoestimatecostsofpiping, thecostsofdemolitionandremovalofoldequipment, thecostsofplacingnewequipment intomechanicalrooms?Toreasonablypriceanefficiencymeasure,theenergyengineermustknowconstraintsthatwillaffectthecost.Theseconstraintsinclude:

Access:Somemechanicalroomscanonlybereachedthroughnarrowhallways,orafterclimbingordescendingstairways.Occasionallyaboil-ermayhavetobeeithermothballedinplace,orcutintopiecesbeforebeinghauledout.Sometimesnewenclosureshavetobebuilttohousethenewequipment.

Energy Supply:Someroofs(orevenbuildings)donothavenaturalgaslines,andmusthavethelines installed.Someelectricalpanelscannothandlethecurrentrequiredtoimplementelectricdomestichotwater,orelectricreheats.Thesecostsneedtobeintegrated.

Controls Integration: It is important to understand the existing HVAC controlsystemtodeterminehownewequipmentwillbeabletoconnectto it.Sometimes,specialdriversorcontrollersarerequiredtoconnectnewequipmenttothecontrolsystem.Thisaddsextracost.

Theauthorshopethatwehaveconveyedthedifficultyofattempt-ingtocosttheECMsidentifiedinaremoteaudit.Again,howistheclienttoknowwhethertheECMiscosteffectiveifthereisnoreasonablepriceestimatefortheECM?

Page 51: Full Issue PDF Volume 113, Issue 6

50 Energy Engineering Vol. 113, No. 6 2016

Construction Contractors Are Not Energy Experts Oneanalyticscompanyonceexplainedtousthatafteraproblemisfound,thentheclientwouldpayacontractortoidentifytheunderlyingissues,provideaquote,andthenimplementtheremedy.Forthisreason,thereisnoneedtoprovidespecificECMdescriptionsbecausethecon-tractor,anexpertinhisfield,willdeterminewhatneedstobedone. Askanyenergyengineerwithadecadeormoreofexperience,andhewilltellyouthatmostcontractorsarenottrainedtoidentifyandimplementenergyconservationmeasures.Theydoknowhowtoinstallaspecificpieceofequipmentandhowtomakeitwork;however,theyneedthedetailsonhowtomake itworkefficiently. In theaforemen-tionedcase,whereavirtualauditidentifiesexcessivecoolingusagebutisunabletoidentifytheproblem,achillercontractormightrecommendanewchiller,acontrolscontractormightrecommendnewcontrols,etc.Contractorsaretypicallynottherightpeopletoidentifyenergyefficiencystrategies.Theyareveryknowledgeableabouttheirfield,oftenknowingmoreintheirspecialtythantheenergyauditor,buttheirareaofexpertiseisnarrow.Someoneisneededwithabuilding-wide,systematicapproachwhotakesintoaccountallofthesystems.Onlythencantheproblemsbeidentifiedandremedied.Thisisthejobforsomeonewithexperienceinenergyefficiencyandauditing,whichisnotatypicalcontractor.

CONCLUSIONS

Althoughdataanalyticscanbeapowerful tool, therearestillanumberof reasonswhytraditionalauditingmethodsarestillneces-sary.Oneofthebiggestweaknessesofvirtualaudits(andpoorlydonetraditional energy audits) is that the best ECMs are usually missed. This hastwonegativeimpacts.First, thefacilityownerwill focusvaluableresourcesonmeasuresthatarenotgoingtoprovidethebestresults.Ifthefacilityownerplansonactingonthevirtualauditrecommendations,whenthebestECMsareoverlooked,thefacilityownerwillendupin-vestinginsecond-tiersolutionsandreceivelessreturnoninvestment.Second,thefacilityownermaybeleftwithasensethattheirbuildingisactuallyquiteefficientwithlimitedopportunitiestosaveenergy.Theowneris, inessence, leavingmoneyonthetablebynotimplementingECMsthatasub-parauditdidnotproperlyidentify.Virtualaudits, intheircurrentform,willlikelyperpetuatetheseproblems.

Page 52: Full Issue PDF Volume 113, Issue 6

51

Theinabilityofvirtualauditstospecifyaccurateestimatesofen-ergysavingspotentialorcoststoinstallECMscontributestoauditsofquestionablevalue.VirtualauditscanidentifysomeECMs,butcannotaccuratelyestimate theenergysavingsorcosts,becausethespecificsoftheproblemathandarenotknown,suchascountsofequipmenttoreplace,thetruenatureoftheproblem,andimplementationdifficultiesthataddtocost.Sosavingsandcostestimatesaregivenasarangeofvaluesinstead.ThisinaccuracymakesitdifficultforthefacilityownertodeterminewhichECMswouldbecosteffectivetoimplement,againwiththeresultthat, thefacilityowner,heedingtheadviceoftheauditmayendup implementingECMswithhighsimplepaybacks,while thosewithlowsimplepaybacksareoverlooked. Althoughvirtualauditscanbeavaluableaid,theseauditscannot,asofyet,replaceanexperiencedenergyauditor.RevisitingtheASHRAEdeliverablesshowninTable1,virtualauditsdocompletetheASHRAELevel 1 tasks, but there is a high probability that a virtual audit will miss alargenumberofcost-effectiveenergyefficiencymeasures, thatevena traditional ASHRAE Level 1 audit would provide. The virtual audits thatwe’veseencertainlydonotprovideanASHRAELevel2orLevel3audit.Withthisinmind,careshouldbetakennottooverreachandstraintoolcredibility.Theseoverreachingclaimsnotonlyhindertheuseofothergoodproducts,butdamagethecustomer’sperceptionofthevalueofanenergyaudit,andharmthecustomers,whoareleftwithanincom-pleteanalysis,andconsequentlyendupmakingpoorenergyefficiencyinvestments,andmissingopportunitiesforreducingutilitycosts. Anenergyaudit,bydefinition,providesexpertguidancesothatthefacilityownermakesthebestenergyefficiencyinvestments. If theenergyauditprovidespoorguidance,andtheownerismisledintomak-ingsecond-tierinvestments,thentheauditprovedtobe,ifanything,adetrimenttotheowners’soundfinancialdecisionmaking.Whenrelyingsolely on a virtual audit, an owner is very likely to be led into making poorinvestmentdecisions.Inthiscase,theauditprovidestheoppositeofitsintendedfunction,tothepointthattheownermighthavebeenbet-teroffwithnoauditatall.

References1. ASHRAE.2011.ProceduresforCommercialBuildingEnergyAudits,SecondEdition.

DevelopedbyASHRAETechnicalCommittee7.6,BuildingEnergyPerformance.2. “BigData.”Wikipedia:TheFreeEncyclopedia.WikimediaFoundation, Inc.Re-

trieved September 30 2015. https://en.wikipedia.org/wiki/Big_data

Page 53: Full Issue PDF Volume 113, Issue 6

52 Energy Engineering Vol. 113, No. 6 2016

————————————————————————————————ABOUT THE AUTHORS John Avina, CEM, CMVP, CxA, has worked in energy analysis andutilitybilltrackingforover19years.DuringhistenureatThermalEnergyApplicationsResearchCenter,JohnsonControls,SRCSystems,SiliconEnergyandAbraxasEnergyConsulting,Mr.AvinahasmanagedtheM&Vforalargeperformancecontractor,managedsoftwaredevel-opmentforenergyanalysisandM&Vapplications,createdM&Vsoft-warethatisusedbyhundredsofenergyprofessionals,taughtover250energymanagementclasses,createdhundredsofbuildingmodelsandutilitybilltrackingdatabases,modeledhundredsofutilityrates,andhaspersonallyperformedenergyauditsandRCxonover25millionsquarefeet.Mr.AvinahasaMSinMechanicalEngineeringfromtheUniversityofWisconsin-Madison.Mr.Avinamaybecontactedatjohnavina@abrax-asenergy.com.

Steve Rottmayer, P.E.,hasbeenworkingintheenergyefficiencyfieldforover15yearsandhas ledenergyassessments inoverahun-dredbuildings, includingscoping-levelwalk-throughassessments,detailedenergystudiesandretro-commissioninganalyses.Manyofhisenergy-efficiencyprojects includedstart-to-finish implementationthatculminatedwithmeasurementandverificationof theachievedenergysavings.Hespecializes inenergyaudits,retro-commissioning,design-buildscopeofworkdevelopment,designreview,constructionassistance,fielddatacollectionandmeasurementandverification.HeconductedenergyassessmentsforavarietyofcustomersincludingtheSFPUC,PG&EandAlliantEnergy.Mr.Rottmayerhasworkedwithallpartiesinvolvedinretrofitssuchascompanyenergymanagers,buildingpropertymanagers,buildingoperationsandmaintenancestaff,designengineers,contractorsandutilityrepresentatives.Mr.RottmayerhasaMSinMechanicalEngineeringfromtheUniversityofWisconsin-Madi-son.Mr.Rottmayermaybecontactedatsteverottmayer@abraxasenergy.com.

Page 54: Full Issue PDF Volume 113, Issue 6

53

How Microgrid isChanging the Energy Landscape*

The Honorable William C. (Bill) Anderson

ABSTRACT

For thevastmajorityofpeoplearoundtheworld, theirelectricpowerisdeliveredviaasystemthatreliesoncentralizedpowergenera-tioncoupledwithsignificanttransmissionanddistributioninfrastruc-turetodeliverelectricalpowerfromthesiteofgenerationtothepointofuse.Thatsystemhasprovidedreliableandrelatively inexpensivepowertomuchoftheworldforwelloveracentury.However,anewsetofconcernsandrequirementspointustowardsanalternativeapproachtopowergenerationanddistribution.Thatalternativeismicrogrids.Tomany,microgridsappearasanewandnovelidea.But,inrealitythecon-ceptdatesbacktotheoriginsoftheelectricindustry.Thisoldideathatisnewagainofferspromiseintermsoftacklingsomeveryrealandverycurrentenergyissues,andpromisestochangetheenergylandscapeofthefuture.Microgridtechnologiesofferrealsolutionstoaddressthesig-nificantissuesof(1)accessibility,(2)recovery,(3)resiliency,(4)economyand (5) sustainability.

INTRODUCTION

Theearlydaysof theelectricity industrypitted two industrialtitansagainsteachother.Theinventor,ThomasEdisonbattledtheen-trepreneur,GeorgeWestinghousetosetthegroundrulesbywhichtheelectricityindustryhasplayedformorethanacentury.Westinghouse’svisionofacentralizedsystem,madepossiblebythedevelopmentofapowergeneratorcapableofproducingalternatingcurrentwonoutoverEdison’sdistributedgenerationmodel.EconomiesofscalehadabighandintippingthescalesinfavoroftheWestinghouseapproach.

*OriginallypublishedatGlobalcon2015

Page 55: Full Issue PDF Volume 113, Issue 6

54 Energy Engineering Vol. 113, No. 6 2016

Thecentralizedsystemhasservedtheworldwellformorethan120years,andwilllikelycontinuetobeacornerstoneofpowergenerationanddistributionformanyyearstocome.However,averysignificantsetofnewly-emergingissues,aswellaslongstandingweaknessesassoci-atedwiththecentralizedmodel,suggeststhatadifferentapproachmustbeadoptedtodeliverassured,reliableandaffordablepowertoeverycorneroftheglobe.Thatdifferentapproachismicrogrids…theconceptdevelopedbyEdison…althoughheneverusedthatterm. Thearrayof issuesthatrequiresignificantandimmediateatten-tionspanasignificantgamut…fromcosttonationalsecurity.Microgridsofferoneverypowerfuloptiontoaddressidentifiedweaknessesinthecurrentelectricalsystemeffectivelyandeconomically.Themostcriticaloftheseissuesareoutlinedbelow.

ACCESSIBILITY

Thestarkrealityisthatourworldis…andisexpectedtocontinuetobe…energypoor.That isnottosaythatwelackthetraditionalandrenewablefeedstocksnecessarytomeetglobaldemand.Whatislackingistheinfrastructureandinvestmentdollarstodeliverenergytothepointofuseinmanypartsoftheworld…predominantlyemergingeconomiesandremotelocations. Over1billioninhabitantsofthisplanethavenoaccesstoelectric-ity.InSub-SaharanAfrica,forexample,70%ofthepopulationiswithoutelectricpower.Eveninoneofthemostenergy-richregionsontheplan-et…Alaska…accesstoreliableandcost-effectiveelectricityiscurrently

Page 56: Full Issue PDF Volume 113, Issue 6

55

outofreachtomanyAlaskanNativevillagesintheState.Remoteness,lackofinfrastructure,andtheharshenvironmenthaveprofoundeffectsonenergyneeds,costs,andaccessibility. Theareasofgreatestconcernarenormallynotwithinthereachofelectricaltransmissionanddistributionsystemsthatcouldcarryelectric-ityfrommegapowerplants longdistancesaway.Greatdistancesandsparsepopulationsdonot lendthemselvestoafinanciallysustainablesolutionsetofcentralizedgenerationandlongrangetransmission. Certainrudimentaryrequirementsforelectricalpowerinemergingmarketsandremotevillagesarecurrentlysatisfiedviadieselgeneratorsets.Reliability,cost,coverageandthe fuelsupplychaincontinue tochallengethepracticalityofthissolutionset.The“plugandplay”natureofhybridmicrogridsallowsformultipleelectricalgenerationsourcesselectedonthebasisoflocally-availableenergyfeedstocks.Thiswillal-lowforgreaterlocalautonomyoverpowergenerationassetsandfarlessrelianceonfuelsupplylineswelloutofthecontroloftheuser. Thesignificanceofmicrogridtechnologiesinchangingtheenergylandscapefor those1billion-pluspeoplewithoutaccess toelectricityisnotaboutoptionsandeconomy.Thesignificanceis thathybridmi-crogridscurrentlyprovidetheonlyviablesolutiontodeliveradequateandreliableelectricalpowertoasubstantialpercentageof theglobalpopulation.

RECOVERY

Probablynoeventmorepoignantlyillustratesboththecriticalityandfragilityofourcritical infrastructuremorethananaturaldisaster.Electricitycanbescarce,generatorstoughtoacquire,andfuelsuppliesforthosegeneratorsuncertainatbest.Lackofpowerlimitswaterpump-ingandpurification,waste treatment,sterilizationofmedical imple-ments,rechargingofcommunicationdevices,andahostofotherissues.Thosewithlimitedmeanstofleeareforcedtorelyonshelterstosustaintheir lives. AcaseinpointisNewOrleansinthedaysandweeksafterHur-ricaneKatrina.Estimatesvarywidely,butsufficeit tosaythattensofthousandsofNewOrleansresidentsandvisitorswereforcedtoseekrefugeintheSuperdome…afacilitydesignatedbythenNewOrleansMayorRayNaginasashelteroflastresort.

Page 57: Full Issue PDF Volume 113, Issue 6

56 Energy Engineering Vol. 113, No. 6 2016

KatrinaleftmostofsouthernLouisianawithoutpower,includingthecentralbusinessdistrictofNewOrleanswheretheSuperdomeislo-cated.Theairconditioninginthearenafailedimmediately.Somelight-ingwasmaintainedviaanemergencygenerator,butthatunitquicklyfailed.Aback-upgeneratoralsosoonfaltered.Thecity’swatersupplyheldonabitlongerbutfinallygaveout,sotoiletsintheDomebecameinoperableandbegantooverflow.Afacilitythatwaspressedintoser-vicepresumablyasasafehavenforthosewithoutthemeanstofleethedisastersoonspiraledintochaosandlawlessness,puttingcountlessin-nocentsurvivorsofthehurricaneatperil. ThisstoryrepeateditselfintheaftermathofSuperstormSandy.InNewYorkCity,thelossofpowerandtheabsenceorfailureofbackupgenerators, translated into (1) theshutdownofheatingsystems, lifesupport,andothertechnologiesthatwerevitaltopeople’ssurvival;(2)morethan1,000patientshavingtobeevacuatedfromNewYorkmetroareahospitals;and(3)thelossofpowerpresentedadistinctthreattopeople living in high-rise apartments. The elevators stopped working, andpeoplephysicallyunabletodescendthestairwaysweretrappedfordays and even weeks. Toaddressthesesignificantrisks,emergencyrespondersintheU.S.havehistorically,andcontinueto,relyonapatchworkofsmallemer-gencygeneratorstoprovidecriticalemergencypower.Thissolutionisnotcapableofprovidingthesignificantamountsofpowernecessarytoprovideadequaterelief in largermetropolitanareas. Inaddition, thisapproachreliesonasupplychainofliquidfuelstorunthegenerators…ata timewhentransportationroutes…roads,railandairports…havelikelybeenseverelycompromisedbythesamecatastrophicevent.Untilrecently,emergencyback-upgeneratorsweretheonlysolution.Recentdevelopments inmicrogridtechnologies,however,provideanoppor-tunitytochangetheplayingfieldintermsofrecoveryoftheelectricalsysteminanimpactedregion. Thesolutionsetcontemplatedhererequiresashiftinthinkingfromourcurrentmindsetofutilizingtemporarystandbypowergenerationequipmentdedicated toasingleuser toasolutionprovidingcriticalpowertomultipleusersfromonesource.Attheheartofthisapproachwouldbeadvancedhybridmobilepowersystemsthatcanbedeployedeasilyandrapidlytoimproveresilience.Thesesystemswouldbespecifi-callydesignedtobeabletoleverageexistingenergyassetsthatrecoveryworkersfindwhentheyarrive in the impactedarea,andcanbeaug-

Page 58: Full Issue PDF Volume 113, Issue 6

57

mentedbyadditionalgenerationequipmenttransportedtotheregionaspartoftherecoveryeffort. OverthepastfewyearstheDepartmentofDefensehassupportedanumberofmicrogriddemonstrationprojects.Thelessonslearnedfromthoseprojects,whencombinedwitheffortsundertakenbytheprivatesector,providethebuildingblockstodesignandconstructanewclassofadvancedhybridmobilepowergenerationanddistributionsystemstoassistinprovidingthelevelofcriticalpowertrulynecessarytosupportdisasterresponseefforts.Thiscouldbeaccomplishedthroughauniqueandprovenapproachthatdeliverselectricalpowerbytying into thesurvivingcomponentsofexistingelectricalgridinthe impactedarea.The utility grid operates at higher voltages (23, 13.8, 13.2 or 4 Kilovolts) necessarytomanageandmovethelargequantitiesofpowernecessarytosupportlargerislandsofrefugeaswellascriticalutilitieslikewater/wastewaterneededtosupportrelieflocations.Generatorsusedforback-uppower(generallyoperatingat480or208volts)cannotdirectlyfeedintoexistingutilitypowergrids.Therefore, toappropriately leveragethesegeneratorsinanintegratedsystem,electricalpowercoordinationisrequired.Inadditiontotheabilitytodrawfrommultiplegenerationsources…bothalreadyon locationandthosebrought inpost-event…thesesystemswillprovidethekeyfeaturesofsourcemanagement,dis-tributionprotectionandloadmanagement. Systemscannowbedesigned tobecompletely self-contained,readily transportable,andinaplugandplayconfigurationforquickcommissioningbylocalelectriciansandutilityworkersThesesophisti-catedsystemscanbedesignedtointegratemobiledistributedgenera-tioncontrol,renewableenergygenerationsources,energystorage,dis-tributionbusprotectionandload.Functionalityofferedbythesesystemsnecessarytomaximizetheeffectivenessofpowerdeliveryandcontrolintheaftermathofamajoreventinclude:

1. Directstart-stopofgenerationassetstoensureefficientuseoflim-itedfuelsources.

2. Comprehensiveloadmanagementtoinsurecontinuedsafepowerdistributionbysheddingloadsbasedonpriority,resourceavail-abilityandreservecapacity.

a. Loadscanbeshedandrecoveredaccording tocontingencytype,disruptiondurationandonlinegenerationcapacity.

Page 59: Full Issue PDF Volume 113, Issue 6

58 Energy Engineering Vol. 113, No. 6 2016

3. Communicationcapabilityensurestheenergystoragecomponentshavethecapacityandstateofhealthtoprovidepowertothemi-crogridfortransientmitigation,peakshavingofgenerationassetsand stand-alone operation.

a. Additionally theenergystoragecanbemanagedasa loadduringchargingtoensurethedemandisappropriateformaxi-mumgeneratorefficiency.

Theapproachasdetailedaboverequiresadevice toseamlesslyintegratevariouspowergenerationassetsandstoragedevices,connecttoavailablesurvivinggridinfrastructureandtoeffectivelymanageloadrequirementstosafelyprovidepowerasneededtoadequatelysupportrecoveryefforts.OnesuchsolutionistheModularIntegratedTransport-ableSubstation(“MITS”),whichcanserveasa“universaladapter”tointegrateintoanygrid(utilityorcommercial).

Modular Integrated Transportable Substation. Photo courtesy of EATON

TheMITSsystemwillallowforaspeedyconnectiontothegridandtherestorationofpowerinasafetemporarymanner.Themobilityofthissolutionallowsforflexibility indeliveringelectricalpowertoaffectedcommunities.MITSprovidestheflexibilitytoconnecttothegridbasedontheavailableutilityvoltages inanyaffectedarea.Theunitcanbemountedonatraileroraskidtoallowforeasytransportbyroad,railorair.Designedforquicksetupandconnection,theunitcanbeoperationalwithin4to8hoursofdeliverytothesite.Eachunitcansupplyenoughpowertosupport theequivalentof400homes.Andoncethecrisis isover,theseunitscanbedisconnected,removedandstagedforuseagainforresponseatthenextcrisis.

Page 60: Full Issue PDF Volume 113, Issue 6

59

RESILIENCY

TheelectricalgridintheUnitedStatesisvulnerabletowidespreadandlong-termserviceoutage.Thesevulnerabilitiescomebothfromthecomplexityandageofthesystem,aswellasfromtherapidlyincreas-inguseofadvancedelectronicsandcomputers tocontrol thesystem.Threatstothegridcancomefromnaturalandmanmadeevents,bothofwhichhavebeenexperiencedintherecentpastacrossthecountry. Alarmbellsarebeing soundedbyelectedofficialsandseniorAdministrationpersonnel.FormerSecretaryofDefenseLeonPanettawarnedthata“cyber-attackperpetratedbynationstatesorextremistgroup[wouldbe]asdestructiveas theterroristattackon9/11.”Onewouldexpectsuchasternwarning toresult inswiftandsignificantactions.However,SenatorSusanCollinshas lamentedthat“inallmyyearsontheHomelandSecurityCommittee, Icannotthinkofanotherissue where the vulnerability is greater and we’ve done less.” In a May 21,2013reportauthoredbythestaffsofCongressmenEdMarkeyandHenryWaxmanitwasacknowledgedthat“in lightof the increasingthreatofcyber-attack,numeroussecurityexpertshavecalledonCon-gresstoprovideafederalentitywiththenecessaryauthoritytoensurethatthegridisprotectedfrompotentialcyber-attacksandgeomagneticstorms.Despite thesecalls foraction,Congresshasnotprovidedanygovernmentalentitywiththatnecessaryauthority.” AccordingtotheU.S.GovernmentAccountabilityOffice(GAO),oftheU.S.DepartmentofDefense’s(DOD’s)34mostcriticalglobalas-sets,31relyoncommerciallyoperatedelectricitygridsfortheirprimarysourceofelectricalpower.A2008DefenseScienceBoardreportnotedthatinmostcases,neitherthegridnoron-basebackuppowercouldpro-videsufficientreliabilitytoensurecontinuityofcriticalnationalpriorityfunctionsandoversightofstrategicmissionsinthefaceofalong-term(several months) outage. Extendedgridoutagesposesignificantchallengestonationalandhomelandsecurity,aswellastheabilityofstateandlocalagenciestoprovidebasicservicestocitizensandcriticallocalinstitutions.Theneedsandresponsesthatwillensureenergysuretyat thefederal,stateandlocal levelsarequitesimilar,whichprovidesopportunitiesforvariousgovernmentagenciesinthesameareatopartnerinthedevelopmentandexecutionofcommonsolutionstotheproblem. Solutionsareavailable todaythatcandeliverassuredpower to

Page 61: Full Issue PDF Volume 113, Issue 6

60 Energy Engineering Vol. 113, No. 6 2016

critical infrastructureduringaprolongedgridoutage.Advancedmi-crogridsserveasthebackboneofthesolution.Distributedpowergen-erationassets,ownedlocallyandoperatedlocally,andfueledbylocally-availableenergy feedstockcanprovideenergyresiliencyandsuretythroughoutanextendedoutage.Incorporatinglocalpowergenerationassetsutilizingmicrogridtechnologies,theseinstallationscanbedevel-opedmaximizingtheuseofcurrentlyinstalledelectricalinfrastructure,while takingadvantageofprivatesector financingandgovernmentgrantsandcreditstoreducetheoverallcostsofinfrastructureupgrades. Recognitionofthedepthandbreadthofthesignificantchallengesassociatedwithbothrecoveryandresiliencyofourcriticalelectricalsys-teminfrastructureandfunctionalityhasgreatlyexpandedoverthepastseveralyears.Anumberofstategovernments…motivatedinlargepartby lessons learned inthewakeofSuperstormSandy…andfundedinpartviafederaldollarsprovidedaspartoftheSandyreliefeffort…havesteppedforwardto incentivizethedevelopmentofsecuremicrogridsintheirrespectivestates.Todate,Connecticut,NewJersey,NewYork,MassachusettsandMarylandhaveestablishedgrantorloanguaranteeprogramsintendedtoaugmentprivatedollarstoacceleratemicrogridprojectdevelopment,witha focusonsecuring theoperationofpre-identifiedcritical infrastructurenecessary toprovideprotectionandsustainmentofthepopulationbefore,duringandafteranycatastrophicevent.

ECONOMY

Theeconomiesofscalethatweighedinfavorofcentralizedsys-tems during the Edison/Westinghouse era still largely maintain their advantagetoday.Itistruethatdeclinesinthecostofmodulartechnolo-gieschallengethestatusquo,butalotofgroundneedstobegainedformicrogridsystemstocometocompletecostparitywithmuch largerfossilplants. Thereare,however,notableexceptionstothegeneralrule.Remotevillages,forexample,oftenpresentscenarioswheremicrogridscannotonlyreachparitywithcurrentenergygenerationsystems,butcanoffersignificantcostsavings.InmanyAlaskanNativevillages,residentspayupto$0.60perkilowatt-hourforelectricity,resultinginbillsforelectric-ityandheatingequaltoonehalfofaveragemonthlyincome.Hybrid

Page 62: Full Issue PDF Volume 113, Issue 6

61

microgridsolutionsholdpromiseforsignificantlylowerenergybillsforresidentsoftheseremotevillages. In regionsof theworldwhereelectrificationhasyet tooccur,the substantial costsassociatedwithpowerplantand transmissionsystemconstructionpresentascenariowheremicrogridsoftenofferasignificantly lowercostsolution.Couplecostadvantageswiththe lo-gisticalchallengesofconstructionofanextensivepowertransmissioninfrastructure,anditiseasytoseewhythePowerAfricainitiativehasacknowledgedthatdistributedmicrogridswillbethecenterpieceoftheoverall program. Islandnationsandstatesfacethesameenergycostchallengesasremotevillages,soalsopresentpromiseasearlyadoptersofhybridmi-crogridsolutions.EvenpartsofthecontinentalUnitedStates…mainlytheNortheastandPacificCoast…whereutility ratesareamong thehighestinthecountry,microgridsystemsarebeginningtobecomecostcompetitive…especiallyinstateswherefundedmicrogridincentivepro-gramsarealreadyinplace. Finally,asdemandchargesbecomea largerpercentageof thecustomer’soverallmonthlyenergybill,microgridsmovetowardsandbeyondcostparitywithgrid-providedpower.

SUSTAINABILITY

Whenwethinkofthedefinitionof“sustainability,”wequitenatu-rallydefault tothinkingintermsofenvironmentalstewardship.And,ofcourse,thatisacriticalcomponentofsustainability.Intheelectricalworld,environmentalsustainabilityisachievedthroughtheintegrationofrenewableenergygenerationsourcesandviaenergyefficiencyinitia-tives.Asrenewableor“green”powergenerationtechnologiesmatureanddevelopmentofrenewableenergyprojectsproliferate,manywilltaketheformofsmallerprojectsinstalledclosetothepointofuse.Mi-crogridsofferanidealplatformtointegratethesedistributedrenewableenergyresourcesintotheoverallgrid,whileensuringgridstabilityandpowerquality.Inaddition,theadvancedcontrolsystemsfoundinmanymicrogrid installationscanmaximize theeffectivenessof thepowergenerationunits,whileatthesametimemanagethedemandsideoftheequation,therebydrivingtheoverallenergyefficiencyofthesystem. But, theconceptofsustainabilityencompassesmuchmore than

Page 63: Full Issue PDF Volume 113, Issue 6

62 Energy Engineering Vol. 113, No. 6 2016

justenvironmentalawareness.Financialsustainability,systemreliabil-ity,resilienceinthefaceofacatastrophiceventandlocalautonomyallcanbeconsidered,weighedandprioritizedwhenamicrogridsystemisdesigned.Becauseofthenatureofmicrogrids…distributedpowergen-erationclosetothepointofuse…theuserssetpriorities,andhavetheopportunitytodesignasolutionsetthatmeetstheirparticularsustain-ability goals.

SUMMARY AND CONCLUSION

Thedemandsandchallengesofthe21stcenturyelectricitymarket-placearedrivingrequirementstoaddressahandfulofcriticalissuesthatrangefromthebasicsofprovidingreliableandcost-effectiveelectricitytolargeareasoftheglobethathavenosuchaccesstoday…allthewaytoprotectingthemostsophisticatedandcriticalnationalsecurityassetsoftheplanet’smostpowerfulnation-states.Thetaskaheadbecomesevenmorechallengingaswearecompelledtofindnewandmoreeffectivewaystoprepareforandrespondtomajornaturalevents that leadtowidespread and prolonged power outages, while at the same time tak-ingconcretestepstoreducethecarbonfootprintofhumankind. Therearefew“silverbullets”thatwehaveatourdisposal.But,intermsofmeetingthemostsignificantchallengesfacingtheelectricpowerindustryinthe21stcentury,microgridscomeasclosetothatsil-verbulletascouldbeimagined.Anenergylandscapethathasseenverylittle intermsofchangeoverthelastcenturyiswitnessingtherebirthofanapproachasoldastheindustryitselfgainingnewrelevanceinitsinherentabilitytoaddressthemostsignificantpowerchallengesofourtime.

————————————————————————————————ABOUT THE AUTHOR The Honorable William C. (Bill) Anderson served as the Assistant SecretaryoftheUnitedStatesAirForceforInstallations,EnvironmentandLogistics,aswellasAirForceSeniorEnergyExecutive,underPresi-dentGeorgeW.Bush.Heisa frequentauthorandrequestedspeakerontopicsincludingnationalsecurity,energy,[email protected].

Page 64: Full Issue PDF Volume 113, Issue 6

63

EnMS and EMIS:What’s the Difference?

Mike Brogan, Ph.D. and Paul F. Monaghan, Ph.D.

ABSTRACT

Thisarticlefocusesonclearlyidentifyingthetwodifferentwaysthattheexpression“energymanagementsystem”iscommonlyusedto-day.Theconclusionisthatfutureconfusionmaybeeliminatedbyuseofthe terms: energy management system (EnMS); and energy management informationsystem(EMIS).

INTRODUCTION

Oftenweaskpeople,“Doyouhaveanenergymanagementsys-tem?”WhatwemeanbythisisafullformalEnMS,likeISO50001orSEP(SuperiorEnergyPerformance).Often, theotherpersonsaystheydo,but what they really mean is that they have a monitoring or energy data analysis system or a building energy management system (BMS/BEMS/EMCS/BAS)forequipmentcontrol. “Energymanagement”isatermthat isbeingusedquitebroadlyat themoment.Clearly, itcanmeanverydifferent things todifferentpeople.Inthisarticleweexplainwhatthedifferenceisbetweenthetwoterms, energy management system (EnMS) and energy management informationsystem(EMIS). WeaimtoexplainhowanEMISispartofacompleteEnMS.Thekeyishowoneintegratesthem! Attheendofthisarticleisalistofdefinitionsofcommonly-usedenergymanagementterms.Eachoftheseiscategorizedas“EnMS”or“EMIS.”

EnMS&EMIS

AnEnMSisaframeworkbywhichanorganizationestablishespro-cessestoachievecontrolandimprovementofenergyperformance—asystematicapproachtoenergymanagement.

Page 65: Full Issue PDF Volume 113, Issue 6

64 Energy Engineering Vol. 113, No. 6 2016

ThinkofanEnMSas theumbrellaunderwhichthoseprocessesrelateand interact.AnEnMSisoftenviewedashavingtwoaspects:“Management”and“Technical.”TherelationshipdiagramillustratedinFigure1supportsthisconcept,usingtheterminologyofISO50001. The leftsideof thediagramillustrates the“Management” typeprocesses involved inanEnMS,suchas,gainingmanagementcom-mitment(e.g.,topmanagementprovidingnecessaryresourcesfortheEnMStobesuccessful),theestablishmentofgoodsystemsforaudits,correctiveactionsandmanagementreview.Italsoguidesanorganiza-tiontowardsnurturingandpromotinganenergyefficientculturebytraining,communicatingandpromotinggoodenergysavingpracticeseffectivelywithallstafffromtopmanagementdownwards. Ontheright, the“Technical”processes involvedare illustrated,suchas,energyplanning (e.g.,establishinganactionplanbasedonrelevantobjectivesandtargets,realizedduringanenergyreview;es-tablishinganenergybaseline,energyperformanceindicators(EnPIs));monitoring,measurementandverifyingactionplanresults.Withinthisanalysis,anEMISdealsdirectlywithmonitoringandmeasure-ment. TheEMIS isacriticalpartof theEnMS.TheEMIScollectsdatathatsupportsmanyaspectsof theEnMS(theenergyreview, thecal-culationofanenergybaseline,EnPIs,and toverify theactionplanresults). However, the EMIS delivers no value unless the right data is collectedanditisanalyzedandusedintherightway. Forexample,wehaveoftenheardthefollowingstatements:• “I never have time to look at the data”• “We are swamped with data”• “Wehave100metersforelectricalconsumptionbutonly1meter

forsteam”• “Ican’trememberhowtogeneratenewenergyreports”• “Idoa lotofworkproducinggreatenergyreportsbutno-one

does anything with them.”

Thesestatementsareclearsignsofanon-systematicapproachtoenergy management. This is where the EnMS supports the EMIS investment. For ex-ample, the EnMS:• ensures that the teamhasobjectivessetand timeallocated for

energy reporting;

Page 66: Full Issue PDF Volume 113, Issue 6

10%

Online Discount

Use Code JR10

Indicate shipping address: CODE: Journal 2016

NAME (Please print) BUSINESS PHONE

SIGNATURE (Required to process order) EMAIL ADDRESS

COMPANY

STREET ADDRESS ONLY (No P.O. Box)

CITY, STATE, ZIP

MEMBER DISCOUNTS—A 15% discount is allowed to AEE members (discounts cannot be combined).

AEE Member (Member No._____________________)

Make check payablein U.S. funds to:

AEE ENERGY BOOKS

10.00

TO ORDER BY PHONEUse your credit card and call:

(770) 925-9558

INTERNATIONAL ORDERSMust be prepaid in U.S. dollars and must include an additional charge of $10.00 per book plus 15% for shipping and handling by surface mail.

Send your order to:AEE BOOKS P.O. Box 1026Lilburn, GA 30048

Quantity Book Title Order Code Price Amount Due

Complete quantity and amount due for each book you wish to order:

Commercial Energy Auditing Reference Handbook, 3rd Edition 0716 $135.00

BOOK ORDER FORM

Select method of payment:CHECK ENCLOSEDCHARGE TO MY CREDIT CARD

VISA MASTERCARD AMERICAN EXPRESS

CARD NO.

Expiration date Signature

"———CONTENTS———

Commercial Energy AuditingReference Handbook

3rd EditionSteve Doty, PE, CEM

This book is designed to serve as a comprehensive resource for performing energy audits in commercial facilities. The fully revised new edition has been updated and expanded throughout, including new chapters on water efficiency, and impact of the human and behavioral aspects of energy management, as well as discussion of regression, use of energy consumption signatures as an operational control, and interval data information. Although there are no “typical” commercial buildings, the book begins with the premise that when commercial facilities are subdivided into categories based on business type, many useful patterns can be identified which become generally applicable to the performance of an effective energy audit. Hence, discussion of procedures and guidelines is provided for a wide range of business and building types, such as schools and colleges, restaurants, hospitals and medical facilities, grocery stores, laboratories, lodging, apartment buildings, office buildings, retail, public safety, data centers, religious facilities, laundries, warehouses, and more. All focal areas of the building energy audit and assessment are covered, including building envelope, lighting, HVAC, controls, heat recovery, thermal storage, electrical systems, and utilities.

6 x 9, Illus., 1100 pp., HardcoverNon-Member Price: $135.00Order Code: 0716

TO ORDER BY FAXComplete and Fax to:

(770) 381-9865

INTERNET ORDERINGwww.aeecenter.org/books

(use discount code)

Applicable DiscountGeorgia Residentsadd 6% Sales Tax

Shipping $10 first book$4 each additional book

TOTAL

1

2

3 4

1. Benchmarking; 2. Analyzing Energy Use Graphs; 3. Energy Saving Opportunities by Business Type; 4. Manufacturing and Unit Operations; 5. ECM Descriptions; 6. Utility Rate Components; 7. Automatic Control Strategies; 8. Building Operations and Maintenance; 9. Quantifying Savings; 10. Sustaining Savings; 11. Mechanical Systems; 12. Motors and Electrical Information; 13. Combustion Equipment and Systems; 14. Compressed Air; 15. Fan and Pump Drives; 16. Lighting; 17. Envelope Information; 18. Domestic Water Heating; 19. Weather Data; 20. Pollution and Greenhouse Gases; 21. Formulas and Conversions; 22. Water Efficiency; 23. Using Feedback for Energy Management; 24. Special Topics; Appendix, Index

Page 67: Full Issue PDF Volume 113, Issue 6

10%

Online Discount

Use Code JR10

Indicate shipping address: CODE: Journal 2014

NAME (Please print) BUSINESS PHONE

SIGNATURE (Required to process order) EMAIL ADDRESS

COMPANY

STREET ADDRESS ONLY (No P.O. Box)

CITY, STATE, ZIP

MEMBER DISCOUNTS—A 15% discount is allowed to AEE members (discounts cannot be combined).

AEE Member (Member No._____________________)

Make check payablein U.S. funds to:

AEE ENERGY BOOKS

10.00

TO ORDER BY PHONEUse your credit card and call:

(770) 925-9558

INTERNATIONAL ORDERSMust be prepaid in U.S. dollars and must include an additional charge of $10.00 per book plus 15% for shipping and handling by surface mail.

Send your order to:AEE BOOKS P.O. Box 1026Lilburn, GA 30048

Quantity Book Title Order Code Price Amount Due

Complete quantity and amount due for each book you wish to order:

Energy Centered Mgmt: Guide to Reducing Energy Consumption and Cost 0707 $115.00

BOOK ORDER FORM

Select method of payment:CHECK ENCLOSEDCHARGE TO MY CREDIT CARD

VISA MASTERCARD AMERICAN EXPRESS

CARD NO.

Expiration date Signature

"———CONTENTS———

ENERGY CENTEREDMANAGEMENT: A GUIDETO REDUCING ENERGY

CONSUMPTION AND COST Marvin T. Howell

This practical, hands-on reference is designed to serve as a guide for any organization in planning, developing, and implementing an optimally effective energy cost reduction and management pro-gram. The information presented is intended, first, to facilitate the achievement of energy reduction deployment (ERD) which includes top management, all employees and onsite contractors. Although ERD, implemented by itself, can indeed render significant energy reductions, the book shows how to accomplish even greater sav-ings by putting in place an energy centered management system (ECMS) which can identify and address additional critical sources of preventable energy waste. It also clarifies specific measures necessary to conform to the ISO 50001 energy management standard. The author has included a useful checklist, information on how to perform an internal audit or self-inspection, and tips on the best ways to create an overall energy awareness organizational culture.

6 x 9, 262 pp., Illus., Hardcover

$115Order Code 0707

ISBN: 0-88173-746-1

TO ORDER BY FAXComplete and Fax to:

(770) 381-9865

INTERNET ORDERINGwww.aeecenter.org/books

(use discount code)

Applicable DiscountGeorgia Residentsadd 6% Sales Tax

Shipping $10 first book$4 each additional book

TOTAL

1

2

3 4

1) Energy Centered Management System; 2) Energy Centered Planning & Development ;3) Energy Centered Waste; 4) Energy Centered Objectives; 5) Energy Centered Projects; 6) Energy Centered Maintenance; 7) Energy Reduction Deployment & ISO 50001; 8) Self-Inspection & Internal Audits; 9) Creating an Energy Reduction/Conservation Culture; 10) IT Power Man-agement; 11) Reducing Office Paper Use; 12) Energy Centered Maintenance & Projects in Data Centers; 13) Building Your Energy Reduction Plan; 14) Drivers of Energy Reduction & Verifying Results

Page 68: Full Issue PDF Volume 113, Issue 6

67

Figu

re 1

. Ene

rgy

Man

agem

ent S

yste

m (E

nMS)

Dia

gram

Page 69: Full Issue PDF Volume 113, Issue 6

68 Energy Engineering Vol. 113, No. 6 2016

• definesthekeydatatobeanalyzedandwhattheimportantEnPIs(energyperformanceindicators)are;

• basedonSEUs(significantenergyuses),definesthekeylocationswhere metering investment is really needed;

• ensures training is well managed;• ensurescontinuousaction isdrivenbykeyperformancedata,

basedonclearpolicyandenergymanagementplans.

CONCLUSION

Thebottomline:EMISisanimportantpartoftheEnMS;EMISdata(properlyused)supportsgoodEnMSdecision-making;theEnMSguidesEMIS design and ensures good return on the EMIS investment. EnMSandEMISarebothimportant.However,incommunication,weshouldbeclearwhentheenergymanagementsystemwedescribeis“EnMS” or “EMIS.”

TERMINOLOGY

BAS: Building Automation Systems (EMIS)BMS/BEMS: Building (Energy) Management Systems (EMIS)EIS:EnergyInformationSystem(EMIS)EMCS: Energy Management and Control System (EMIS)GSEP:GlobalversionofSEPprogram(underdevelopment)(EnMS)M&V: formalmeasurementandverification—M&Vaddsvaluebyin-

creasingthecredibilityofenergyperformanceresults.(EMIS)ISO 50001:anInternationalStandarddescribingaformalenergyman-

agement system (EnMS)ISO 50015:an InternationalStandard thatestablishesguidelines for

measurementandverification,M&V,of (a)energyperformanceand (b) energyperformance improvementofanorganization.(EMIS)

SEP (SuperiorEnergyPerformance):SEPcertificationisaUSprogramthatrecognizesfacilities thatdemonstrateexcellentenergyman-agementpracticesandsustainedenergysavings.SEPincorporatesISO50001butalso includesM&Vandgivesdifferent levelsofawards,basedonamountofenergysaved.(EnMS)

Page 70: Full Issue PDF Volume 113, Issue 6

69

————————————————————————————————ABOUT THE AUTHORS Mike Brogan, PhD,CEOofEnerit,hasover20yearsofexperienceintheareaofenergymanagement.Hehasproject-managemententer-prise-wideISO50001andSEPsoftwaresolutionsdeploymentsthrough-outEuropeandNorthAmerica.MikeisdelegatedtotheISOTechnicalCommittee 242 (Energy Management), as an expert in developing guid-anceforimplementinganISO50001EnMS.Dr.Broganmaybecontactedatmike.brogam@enerit.comoronLinkedInatwww.linkedin.com/in/miketbrogan.

Paul Monaghan, PhD, C.Eng, FIEI,co-founderofEnerit, isa30-yearveteranofenergymanagement throughoutNorthAmericaandWesternEurope.AformertenuredProfessor inMechanicalEngineer-ing,healsohadanenergyconsultingcareerbeforeco-founding theworld’sfirstcompanytoprovidecomprehensiveISO50001software.DrMonaghanmaybecontactedatpaul.monaghan@enerit.comoronLinkedInatie.linkedin.com/in/paulfmonaghan.

Page 71: Full Issue PDF Volume 113, Issue 6

70 Energy Engineering Vol. 113, No. 6 2016

Teaching Pneumatics Controls withNew Tricks: Case Study on Existing

Buildings Getting Intelligent Solutions*

Consolato Gattuso, Leo O’Loughlinm, and Harry Sim

ABSTRACT

Intelligentbuildingspromisetheabilitytosignificantlyimproveenergyefficiencyandreduceoperationalcostsbyconstantlymonitor-ingandoptimizingmillionsofdatapointsfromequipmentandsensors.However,onlynewerbuildingswithmodernautomationsystemscantakefulladvantageofthis.Olderbuildingsthatemploypneumaticandanalogcontroltechnologies,typicallyconstructedbefore1999,mustun-dergoverycostlyanddisruptiveupgradestoenablethemtobesmart. Inrecentyears, innovativenon-invasivetechnologieswereintro-ducedthatsignificantlyreducethecosttoretrofitanexistingbuildingcomparedtoconventionaldirectdigitalcontrols(DDC)upgrade.Thisarticledescribestheprojectat311SouthWackerDrive,a65storyhi-riseacquiredbyZellerRealty inearly2014.This1.4millionsq-ftClassAofficetowerinChicagowasupgradedtoanintelligentbuildingat70%lowercostthanusingDDC,achievinga1.7-yearpayback.

INTRODUCTION

“Intelligentbuildings,”“internetofthings,”“cloudsolutions”….theseconceptsgeneratealotofdiscussioninthebuildingscommunity.Forfacilityoperators,theypromisetheabilitytoremotelymonitorandmanagebuildingstoimproveenergyefficiencyandreduceoperationalcosts.Thistechnologycangathermillionsofdatapointsfromindividualpiecesofequipmentacrossabuildingportfolioandanalyze theminreal-timeusingcomplexalgorithms.When thesystem identifiesananomaly,itcanoftendiagnosethecauseandmakeadjustmentstocor-recttheproblem(Figure1).Costsavingsarerealizedviareducedenergy

*OriginallypublishedattheWestCoastEnergyManagementCongress2015

Page 72: Full Issue PDF Volume 113, Issue 6

71

Figu

re 1

. Int

ellig

ent B

uild

ing

Plat

form

Page 73: Full Issue PDF Volume 113, Issue 6

72 Energy Engineering Vol. 113, No. 6 2016

costs, lowermaintenancecosts,andlongeroperational life forequip-ment.Anintelligentbuildingwouldtypicallycost10%lesstooperatethanaconventionalbuilding.

CHALLENGES FOR EXISTING BUILDINGS

However,onlynewerbuildingsalreadyequippedwithnetworkedsensorsandautomationsystemscantakefulladvantageof intelligentbuildingsoftwareandalgorithms.Olderbuildings(constructedbefore1995generally)arefrequentlyconsideredtonotbegoodcandidatesbe-causetheyemploypneumaticandanalogtechnologiesthatprovidelittleornodatavisibility.Morethanhalfofallexistingnon-residentialbuild-ingsfall inthis lattercategory, includingsomeofthemostprestigiousbuildingsinthecountry. The65-storytowerat311S.WackerDriveinChicagoisonesuchexample (Figure2). It is locatedby theChicagoRiverandboastsanimpressivetwo-level,50-foot-tallglass-ceilinged“wintergarden”withpalmtreesandafountain.Builtin1990,itsbuildingautomationsystemwasupgradedin2000.Yet,virtuallyallofthetenantspacestillreliesonpneumaticthermostatswithnoremotemonitoringorcontrol.Ifaspaceistoohotortoocold,atenantmustalertthefacilitiesstaff.Thebuildingcannotimplementenergysavingsstrategiessuchasnightandweekendsetbacks,optimalstart/stop,auto-demandresponse,ductstaticpres-surecontroletc.

NON-INVASIVE LOWER COST SOLUTION

Immediatelyafteracquiring thebuilding,Zellerconsideredup-gradingtoadirectdigitalcontrol(DDC)system,butfoundthatwouldincurunacceptable cost andalso significantdisruption to tenants,involvingcuttingopenceilingsandwalls.Afterevaluatingdifferenttechnologies,Zellerdecidedtoimplementanovelnon-invasiveretrofittechnologycalledthewirelesspneumaticthermostat(WPT).TheWPTcanbeimplementedinafractionofthetimeandcostofconventionalDDC,butprovidesessentiallythesamefunctionality(Figure3). 950WPTswereinstalledinapproximately6weeks(comparedwithmanymonthsrequiredforDDC)andwerefullyintegratedwiththeJLL

Page 74: Full Issue PDF Volume 113, Issue 6

73

Figure 2. 311 South Wacker Building

IntelliCommandcloud-based intelligentbuildingplatformtoprovideremotevisibilityandcontrolto1.5millionsqftoftenantspace—forthefirsttimesincethebuildingwasconstructed. ThecombinedWPTand intelligentbuildingsoftwarewas thenprogrammedtoimplementadvancedenergysavingsandoptimizationstrategies includingoccupancy-basedsetpoint control,“deadband”setpointcontrol, fanductstaticpressurecontrol,optimalstart/stop,supplytemperatureresets,andmonitoringbasedcommissioning(Fig-ure4).Thesystemalsoprovidesadvanceddashboardsandanalyticstoimprovetheeffectivenessofthebuildingstaff(Figure5). Inthefirstsixmonthsaftertheretrofitwascompleted,thebuildinghasalreadyseenareductioninHVACenergyuseby25%.Basedonthesavingstheprojectqualifiedforrebates fromCommonwealthEdisonfor50%ofthetotalcost,resultinginapaybackperiodof1.7years.The$400,000rebatewasthe largesteverenergysavingsawardgiventoacommercialbuildingbyCommonwealthEdison. The311SouthWackerprojectisanexcellentexampleofhowcost-effectiveintelligentbuildingtechnologiescanunlocktheenergysavingspotentialinherentinthehugeexistingbuildingstock.

Page 75: Full Issue PDF Volume 113, Issue 6

74 Energy Engineering Vol. 113, No. 6 2016

Figu

re 3

. Wir

eles

s Pn

eum

atic

The

rmos

tat N

on-I

nvas

ive

Ret

rofit

Page 76: Full Issue PDF Volume 113, Issue 6

75

Figu

re 4

. Int

ellig

ent B

uild

ing

Plat

form

with

Wir

eles

s Pn

eum

atic

The

rmos

tats

Page 77: Full Issue PDF Volume 113, Issue 6

76 Energy Engineering Vol. 113, No. 6 2016

Figu

re 5

. Rem

ote

Das

hboa

rds

for F

ull B

uild

ing

/ Por

tfol

io V

isib

ility

Page 78: Full Issue PDF Volume 113, Issue 6

77

CONCLUSION

Evenexistingbuildingswithlegacypneumaticandmanualtech-nologiescanberetrofittedtobecomean“intelligentbuilding”atarea-sonablecostwithpaybackperiodsasshortas1.7years.

Further Background and ReferencesZellerRealtyGroup,311SouthWackerDr.;http://www.zellerrealty.com/311-south-

wackerUSGeneralServicesAdministration—WirelessPneumaticThermostatFindings;http://

www.gsa.gov/portal/content/215315SmartBuildingsInstitute—SmartBuildingOverview;http://www.smartbuildingsinsti-

tute.org/JonesLangLaSalle—IntelliCommandSmartBuildingsPlatform;http://www.us.jll.com/

united-states/en-us/intellicommand/CypressEnvirosystems—WirelessPneumaticThermostat—http://www.cypressenviro-

systems.com/products/wireless-pneumatic-thermostat/

————————————————————————————————ABOUT THE AUTHORS Leo O’Loughlin isSeniorVicePresidentforEnergyandSustain-abilityServicesat JLL.Leohasmore than20yearsofexperience incommercialrealestate,specializinginenergyandsustainability,build-ingautomation,andsmartbuildingsolutions.Inhiscurrentrole,Leopartnerswithclientstoimplementenergyandsustainabilitystrategiesthatoptimizetheirrealestateportfolios.Leoisalsotheproductmanagerfor theIntelliCommandSMplatform, JLL’s leadingsmartsolutionforremotebuildingmonitoringandcontrol.LeomaybecontactedatLeo.OLoughlin@am.jll.com.

Harry SimistheCEOofCypressEnvirosystems,acompanythatfocusesonimprovingenergyefficiencyinexistingfacilities.Harrybe-lievesintheneedfornon-invasiveandfastpaybacksolutionstoretrofitexistingbuildings.Hehasbeen involved inallphasesofdevelopingproductsandapplicationsforenergyefficiencyforexistingbuildingsandindustrialplants.PriortoCypressEnvirosystems,HarrywasaVice-President at Honeywell Automation and Control Solutions, working in the Building Automation, Industrial Automation, and Wireless and Sensorsbusinesses.PriortoHoneywell,HarrywasaPayloadDirectoratNASA’sMissionControlCenter inHoustonforSpaceShuttlemis-sion STS-40. He has lived and worked in the US, Canada, Europe and

Page 79: Full Issue PDF Volume 113, Issue 6

78 Energy Engineering Vol. 113, No. 6 2016

AsiaPacific.HarryholdsBSandMSdegreesinMechanicalEngineeringandElectricalEngineeringfromStanfordUniversity,andanMBAfromInseadinFrance.Harrymaybecontactedatharry.sim@cypressenviro-systems.com.

Mr. Consolato Gattuso is theVicePresidentofTechnicalOpera-tionsatZellerRealtyGroup.Withover30years’experienceinengineer-ingdesignandoperations,Mr.Gattuso’scurrentresponsibilitiesincludedevelopingcapitalandengineeringstrategiesforacquisitions,develop-ingbestpracticesfortheportfolio,creatingpoliciesandproceduresfortheengineeringteams,technicaladvisorformanagement,andleadingtechnically-orientedprojects.Mr.Gattusoisacertifiedfacilitatorinde-liveringcustomerservicetrainingmodules.Mr.GattusoparticipatedinthecreationoftheLEEDO&Mexamination,isaLEEDAPOperations+Maintenanceprofessional,GreenGlobescertifiedandaDataCenterEnergyPractitioner(DCEP).Mr.GattusograduatedfromtheUniversityofIllinoiswithaBSinMechanicalEngineering.

Page 80: Full Issue PDF Volume 113, Issue 6

79

Secret Benefit #3Special Tax Benefits for 2016

Eric A. Woodroof, Ph.D., CEM, CRM

ABSTRACT

Ifyour401kcouldyielda35%returneveryyearover7years,wouldthatbeattractive?Ofcourseitwould!Whatifyoucouldfindaninvestmentinyourowncommercialbuildingthatwouldyieldamini-mum35%return,andquitelikelyover50%guaranteed?Itmaysound“too good to be true,” but this has already been done.

INTRODUCTION OF BENEFIT

Mostsimpleenergyefficiencyupgradesyielda35%return,andthere ismuch less risk than trustingyourmoneywith“WallStreet”investors.The“catch”(totakeadvantageofthespecialtaxdeductionsandachieve35%tomorethan50%returns)isthatyoumustimplementprojectsin2016…whichmeansyoushouldstartnow.

CALCULATIONS

Don’tworry,thesearesimpleprojects(likelightingretrofits)thatyoucandoyourself.Evenforsmalloffices,thiscanbea“winner.”Forexample,Table1illustratesarealcasestudyfromKentucky(whereen-ergyratesareverylowcomparedtotheUSaverage).

Table 1. Case study economics for a small 2,000 ft2 office

Page 81: Full Issue PDF Volume 113, Issue 6

80 Energy Engineering Vol. 113, No. 6 2016

Plus, there is a special tax deductionof$1.80perft2,whichwouldbeanadditional$900(minimumtaxdeduction)forthebuildingowner. Ofcourse,thelargerthebuilding,thegreaterthesavings.Inaddi-tion,youcanfinanceprojectssoyoucouldspendzerodollarsupfront.

FOR MORE INFORMATION

Ifyouwouldliketolearnmore,thislinkleadstoafree3.5-minutevideothatexplainsthespecialtaxdeductionsavailablefor2016:http://www.profitablegreensolutions.com/content/2016-special-tax-credits. Thisadditional freevideoshowstheeconomics ina“highbay”LEDretrofit,whichisusefulforindustrialwarehousesandevengymna-siums:http://www.profitablegreensolutions.com/content/ballast-free-led-retrofits. Hope this helps you.

————————————————————————————————ABOUT THE AUTHOR Eric Woodroof, PhD, CEM, CRM,isthefounderofProfitableGreen-Solutions.ComandassociateeditorforEnergy Engineering. He may be [email protected].

Page 82: Full Issue PDF Volume 113, Issue 6

Energy Engineering700 Indian TrailLilburn, GA 30047

Vol. 113, No. 6 Contents 2016

PERIODICAL

5 From the Editor; Shake, Rattle, and Roll

7 MeasurementandVerificationofIndustrialEquipment:SamplingIntervaland Data Logger Considerations; Andrew Chase Harding, PE, CEM and Darin W. Nutter, PhD, PE

34 Virtual Audits: The Promise and The Reality; John M. Avina and Steve P. Rottmayer

53 HowMicrogridisChangingtheEnergyLandscape;The Honorable William C. (Bill) Anderson

63 EnMSandEMIS:What’s theDifference?;Mike Brogan, Ph.D., and Paul F. Monaghan, Ph.D.

70 TeachingPneumaticsControlswithNewTricks:CaseStudyonExistingBuildings Getting Intelligent Solutions; Consolato Gattuso, Leo O’Loughlin, and Harry Sim

79 SecretBenefit#3—SpecialTaxBenefitsfor2016;Eric A. Woodroof, Ph.D., CEM, CRM