fuel cell r&d at vtt · fuel cell research supports industry product development by maintaining...

8
www.vtt.fi Fuel Cell R&D at VTT Fuel Cell R&D at VTT

Upload: lykhuong

Post on 22-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

www.vtt.fi

Fuel Cell R&D at VTTFuel Cell R&D at VTT

fuelcellresearchsupports industryproductdevelopmentbymaintainingadevelopmentplatformcomprisingalargeselectionofresearchfacilities,aselectionofdevelopedmodellingtoolsandknow-howencompassingdifferenttechnologiesthroughouttheentirebusinesschain.

Thegoalofallactivitiesistosupportindustrialdevelopmentwork.Networkingwithindustryisdonebyundertakingcontractwork,andbyundertakingresearchprojects,inwhichindustrialenterprisesare

encouragedtoparticipate.Mostlytheseresearchprojectsareco-fundedbytheFinnishFundingAgencyforTechnologyandInnovation,theEuropeanresearchprogrammes,industryandVTT.Atpresentmorethan30differentcompaniesareinvolvedinthevariousprojects.

Alargenetwork,especiallywithinuniversitiesandindustrywithinFinlandandEurope,canbeutilised

2

VTT

Fuel cells can be applied everywhere that electricity is needed. Typical applications are replacement of batteries in the W-power range, back-up power in the 1 kW-100 kW range, power for transport and speciality vehicles and power production from 1 kW residential to the stationary power of several MW. Therefore, it is expected that a major new industrial sector will emerge in the coming decades around fuel cells and their application. However, the technology is complex and requires both research and development work in order to reach maturity with regard to durability and cost.

toconveneresearchgroupsofhighcompetencetosolvedifferentproblems.

VTTparticipatesactivelyinEuropean

projectsandEuropeanandinternationalnetworks.

ThemainresearchareastodayarePEFC,SOFCandmicrofuelcellsincludingsystems,applications,demonstrations,stacks,componentsandmaterials,asdescribedinthisleaflet.

Fuel Cell R&D at VTT

3

ThepurposeoftheSOFCresearchatVTTistodevelopnewtechnologyandtoprovideinformationforindustrialenterprisesinordertosupportdevelopmentworkonSOFC-basedpowerplants.Italsosupportsthedevelopmentofbalanceofplant(BOP)componentsandtheapplicationofSOFCpowerplants.OnepurposeisalsotoincreasetheunderstandingofthefundamentalsofSOFCscienceandsystems.WorkatVTTcanbedividedintomanyparts:

Steady-state and dynamic system modelling and simulationareperformedatbothcomponentandsystemlevel.Modellingisusedinsystemdesignandoptimisation,automationandcontroldesignandtesting,failureanalysis,andstateestimation.Thereliabilityofthemodellingisverifiedbycomparingtheresultstoother,moredetailedmodelsandparticularlythemeasurementdataobtainedfromin-houseoperatedexperimentalfacilities.Thelarge-scaledynamicsystemmodelspreparedatVTTcanbeoperatedinreal-timeorfasterusingstandardPCs.Thisenables,e.g.theswiftscreeningofthebehaviourofthestudiedprocessesandreal-timebasedcontrolhardwaretesting.

In cell and stack research,themainfocusisondegradationissuesandfuelcomponentstudies.VTTiscapableofconductinglong-termtestingunderwelldefinedgasatmospheresincludingtheinsertionoffuelandoxidantimpurities.Measurementsystemsenablebothin-situdegradationandcontaminationexaminations,aswellaspostmortalcellanalysis.VTTisalsodevelopingtogetherwithotherresearchinstitutesanduniversities,measurementprotocolsforharmonisingtestpractices.VTTcanprovidereliableandneutralallianceswithbothcellandstackdevelopers.

In stack development,themainfocusisondevelopingverifiedstacklayoutsinmulti-kilowattstacksizes.Researchanddevelopmentisfocusedonchromiumevaporationbarriercoatingsonsteelinterconnects,onsealing

materialsandonstackdesignissues.TheelectricalperformanceoftheVTTstackdesignisvalidatedtobeinatthestate-of-the-artlevel.

Fuel production chainsareassessedinordertoensurethatthemostrelevantfuelsforSOFCpowerplantsarechosen.Specialemphasisisonrenewablefuels,likebiogases,syntheticnaturalgas(SNG),gasificationgas,Fischer-Tropsch-diesel(FTD),andmethanol.Themainissuestoconsiderincludetheavailabilityoffuel,compositionandimpurities,aswellasfuelcleaningandprocessingforSOFC.Theavailabilityoffuelisdeterminedbythematurityofproductiontechnology,legislation,competitionoffuelsbetweenenergysectors,andsustainabilityaspects.Inordertoevaluatethetotalcostsofproductionchains,theintegrationandsafetyissues,chainefficiency,andexistinginfrastructurearealsoconsideredinadditiontotheabove-mentioneditems.

In system development and demonstrationthefinalgoalistoachievelong-termexperiencefromahighlyintegrated5kWSOFCCHPsystemconnectedtogas,heatandelectricitygrids.Thiskindofworkwillprovidethepossibilitytodeveloptherequiredtechnologyanddemonstrateitinarealsystemandinarealenvironment.Technologydevelopmentcontainsthemostimportantbalanceofplantcomponentslikeautomationandcontrolsystem,fuelreformer,afterburner,heatexchangers,insulation,hightemperatureblowersandcurrentconditioningdevices,etc.

VTTcanprovidereliableservicesandpartnershipforstackmaterialdevelopers,stackdevelopersandBOP-componentdevelopers,aswellasforSOFCsystemintegrators.

SOFC

Fuel Cell R&D at VTT

Thepolymerelectrolytemembrane(PEM)fuelcellresearchisperformedinclosecollaborationwithpartnersfromuniversitiesandindustry.Thedevelopmentworkcanbedividedintothefollowingcategories:applicationofPEMpowersources,developmentofpowersources,anddevelopmentofmaterialsandcomponentsforfuelcells.

ThemaingoalofthisworkistosupportFinnishindustryinordertodeveloptheirproducts,eitherbyapplyingfuelcells,orbyproducingsystemsorcomponents,includingsoftware.Therefore,morethan20industrialenterprisesparticipateinthedifferentprojects.Possibleapplicationsincludetheelectrifyingofworkingmachines,suchasminingmachines,militaryvehicles,harbourtransportersortractors.Otherpossibleapplicationsinvolvelightvehicles,back-uppowerforelevatorsandtelephonetransmitterstations,andbatterychargersorbatterysubstitutes.Oneofourtasksistodemonstratetheseapplications.

ThepurposeofsystemdevelopmentistodeepenthecompetenceinFC-powersourceconstructionandtodevelopfuelcellpowersourcesatapowerlevelof10kW.ThecompaniesinvolvedmayformajointventuretoutilisetheresultsandtocommercialisetheFC-powersource.TheexpectedresultsaimtocreatebasicsolutionsapplicabletoseriesproductionofPEFCpowersources.

Controlsystemsaredeveloped,whilemostotherBOPcomponentsarepurchased.

InadditiontostackandsystemdesignVTThasdevelopmentprogrammesforallmajorPEFCstackcomponentsexceptthemembrane,i.e.catalysts,gasdiffusionlayers,bipolarplates,endplatesandcurrentcollectors.ThemaindriversbehindthesedevelopmentsaretoimprovethedurabilityanddecreasethecostofPEFCstackstailoredfordifferentapplicationsandoperating

conditions.Thekeycompetenciesappliedinthedevelopmentworkarethemolecularmodellingofcatalyststructures,productionofmetallicnanoparticles,dispersionofcarbonnanotubesintodifferentmatrixpolymersandthesynthesisandapplicationofconductivepolymers,aswellasthesurfacetreatmentandcorrosionprotectionofdifferentmetalsandalloys.Basedonthisknowhow,bothcarbon-basedandmetalliccomponentsaredevelopedinparallel.

4

Multisinglecell research

The reliable durability testing of materi-als requires extensive testing times. Also, different measurement procedures (random measurement errors) for differ-ent samples lead to poor reproducibility of results.

The output of a material’s research can be increased by up to 10-20 times using Multisinglecells.

In Multisinglecell measurement one com-mon humidifier and common electronic load are used. The gases are splittented before cells, which are coupled in series. The individual sampling of exhaust water (fluoride, corrosion products) is possible in every cell. Also, the clamping pressure is the same in all cells. The experiment history (load changes, flows, current density, thermal cycling) will be the same for all of the samples.

PEFC materials and components

PEFC

Fuel Cell R&D at VTT

Thedevelopmentofdistributedenergygeneration(DG)ingeneralandinthebuildingsectorisdrivenbytheopeningofelectricitymarkets,environmentalissues(greenvalues),developmentofsmallpowergenerationsystems,costofpowerandheattransmissionandincreasedpowerqualityandreliabilitydemandsofend-users.TheoptimalimplementationanduseofDGsystemsandtheirintegrationintopublicenergydistributioncanbeaverychallengingtaskandmayrequiremanynewproductsandsystems.

BuildingsconsumeaboutonethirdofallprimaryenergyusedinFinland.ThereisasignificantenergysavingpotentialinthesectorandDGisassumedtoopennewpossibilities,e.g.

5

ifusedincombinationwithdistrictheating-westudiedthefeasibilityoftradingnotonlyelectricitybutalsoheat.Wefoundthatheattradingtheoreticallycouldbeafunctionalwaytodevelopdecentralisedenergysystems.Thereisapotentialadvantagetobeutilisedwhenbuildingswithconsumptionprofilesdifferentinshapeand/ortimingareconnectedthroughadistrictheatingnetwork.

VTTparticipatesinanInternationalEnergyAgencyimplementationagreementEnergyConservationinBuildingsandCommunitySystems.Withinthisactivityaninternationalcollaborationeffort,Annex42(TheSimulationofBuilding-IntegratedFuelCellandOtherCogenerationSystems)wascarriedoutduring2003-2007.TheobjectivesofAnnex42weretodevelopsimulationmodelsthatadvancethedesign,operation,andanalysisofresidentialcogeneration

Fuel cells in a distributed generation

Fuel cells are an example of the dis-tributed generation of energy that is attracting increasing attention. The complexity of a distributed generation environment requires new tools to handle the sophisticated multi-production and multi-consumption phenomena in the transmission networks to enhance the quality of the design and to optimise the use of the energy system.

The services can be summarised as follows:

• The calculation and simulation analysis of the building’s energy usage combined with the FC- system. - FC-solutions can be modeled virtually to support the seamless design of the FC-unit combined with the building service systems - sub-hourly profiles of the heating, electricity and cooling energy - CO2 emissions of the building• The performance measurements of the FC-system - on site - in laboratory

VTT actively develops and applies mod-els and smart computing techniques (semantic modelling and ontology languages) that enable unprecedented dynamic simulations on the basis of a strong knowledge of the background processes and phenomena. For ex-ample, buildings with fuel cells, district heating networks and power plants can be simulated as being synchronised as a whole system. Also, the annual simulations of fuel cell functioning in an

interactive connection with building’s energy systems can be performed and studied aiming at energy efficient dimensioning and optimised operating strategy. The performance of different system configurations applied in differ-ent geographical or technical contexts can be assessed.

systems,andtoapplythesemodelstoassessthetechnical,environmental,andeconomicperformanceofthetechnologies.

Weforeseethatsimulationwillsoonnotonlybeaninstrumentforresearchersbutalsoforotherdifferentusersintheirdailytasks.Wecontributetofacilitatethistransitionbydevelopingtoolsthatareeasiertouseyetpowerful.Wecurrentlydevelopagenericsimulationframeworkwherethemodelsofdifferentengineeringdisciplinescanbedeveloped,configuredandused.Afteratestingphase,theframeworkwillbepublishedasanopensourcesothatcompaniesanduniversitiescanalsoadd,useandpublishtheirmodelsaspartoftheframework.

Fuel Cells in the building sector

Fuel Cell R&D at VTT

Printedelectronicswithanintegratedpowersourcehasremarkablemarketpotentialinseveralmass-marketedconsumerproducts,e.g.aspackageintegratedfunctionalities.Thepowersourceshouldbebiodegradableormadepossibletoincineratewithnormalhouseholdwaste.Also,theproductioncostsshouldbereasonable.Asanalternativepowersource,theminiaturisedbiologicalfuelcellhasthepotentialtobedevelopedtomeetthesedemands.Themaingoalofourresearchistodevelopaprintablefullyenzymaticbiofuelcellbasedontheuseofenzymesasacatalystonbothcathodeandanodeelectrodes.Thepowersupplydevelopmentaimstomeetthedemandsof,forinstance,activeRFIDtags.

Awidevarietyofdifferentoxidoreductasescanbepotentiallyappliedasbiocatalystsinbiofuelcellsconvertingchemicalenergyfromrenewablechemicalstoelectricitywithahighoverallefficiency.TheworkcarriedoutatVTTfocusesparticularlyontheconstructionofprintableenzymeelectrodes.Thecathodeelectrodeisbasedonfungallaccasesasbiocatalysts.Bacterialdehydrogenasesarestudiedasbiocatalystsfortheanodehalfcell.

Thechallengesencounteredwiththeenzymaticelectrodesarerelatedtothemaintenanceofenzymaticactivityintheprintable,conductiveink.Suitablewatersolubleinkswereoptimisedorexperimentallydevelopedtoobtainprinted,enzymeelectrodesexpressingoptimisedenzymaticactivityaswellasgoodelectrochemicalproperties.

Theenzymaticactivitycanberetainedandmaintainedevenformonthsindifferentconductiveinksdependingonthestorageconditions.Asealedfuelcellisabletogeneratepowerforseveraldays.Ithasalsobeendemonstratedthatthebiofuelcellscanbemanufacturedonanindustrialscalebyutilisingsilkscreen-printingintheproductionofenzymaticallyactivelayers.Theotherfunctionalpartsofthefuelcell,like

currentcollectorsandseparators,couldalsobeproducedbyprocessesthatareusedinthepaperconvertingandpapermanufacturingindustry.

Thelowpeakcurrentcapacityofanenzymaticfuelcellcanbeimprovedbyintegratingthecellwithaprintedcapacitor.Thedevelopmentofprintedcapacitorsrequireschangestomaterialselectionsandredesigningofconfiguration.Also,thenon-toxicityofmaterialsisimportantintheprintedcomponent.Boththebindermaterialandelectrolyteshouldbeharmless.

6

ThedevelopmentofprintedbiofuelcellsisstudiedintheTekesfundedproject“PrintedEnzymaticPowerSupplywithIntegratedCapacitor”beingcarriedoutbyVTTincollaborationwithHelsinkiUniversityofTechnologyandÅboAkademi,actingascoordinator.

Enzyme catalysed & printed fuel cells

Fuel Cell R&D at VTT

VTT fuel cell research is based on a large network of partners both inter-nationally and within Finland. The principle is to realise most projects in cooperation with both Finnish and international partners.

In Finland, we cooperate with several universities, mainly Helsinki University of Technology, Tampere University of Technology, Lappeenranta University of Tech-nology and Åbo Akademi. We have a large number of industrial partners, 33 at present. Most of our domestic projects are funded jointly by the Finnish Funding Agency for Technology and Innovation (Tekes), industrial partners and VTT.

VTT has a strong participation in European programmes. We participate in five FP6 projects:

• Large-SOFC

• Real-SOFC

• SOFC600

• FCTESQA and

• BIOMEDNANO

VTT has also participated actively in the writing of European hydrogen- and fuel cell research strategies and the FP7 implementation plan. Bilateral cooperation is also active particularly with France (CEA), Germany (FZJ), Netherlands (ECN) and Sweden (Chalmers and Sandvik).

The international exchange of information is mainly organised through participation in the work of the International Energy Agency (IEA) Advanced Fuel Cells Imple-mentation Agreement. VTT participates in several working groups, particularly PEM, SOFC, Stationary applications and portable applications.

Networking

7

Additional information

Rolf RosenbergChief Research ScientistTel. +358 20 722 5298Email: [email protected]

SOFC-DevelopmentJari KiviahoChief Research ScientistTel. +358 20 722 5298Email: [email protected]

PEFC-DevelopmentJari IhonenSenior Research ScientistTel. +358 20 722 4217Email: [email protected]

PEFC-Materials DevelopmentPertti KauranenSenior Research ScientistTel. +358 20 722 3575Email: [email protected]

Enzyme Catalysed & Printed Fuel CellsMatti ValkiainenSenior Research ScientistTel. +358 20 722 6380Email: [email protected]

Maria SmolanderSenior Research ScientistTel. +358 20 722 5836Email: [email protected]

Anu KoivulaSenior Research ScientistTel. +358 20 722 5110Email: [email protected]

Distributed Generation in the Building SectorJari ShemeikkaSenior Research ScientistTel. +358 20 722 4921Email: [email protected]

Krzysztof KlobutSenior Research ScientistTel. +358 20 722 4647Email: [email protected]

VTTFuel CellsBiologinkuja 5, EspooP.O. Box 1000FI-02044 VTT, Finland

www.vtt.fi/fuelcells

Fuel Cell R&D at VTT

P

P

P

P

P

PP P

P

P

T K K

P

P

P

=

P

T F

P

P

HAGALUNDINTIE

MEN

NI N

KÄIS

ENTI

E

TEKNIIKANTIE

KARHUSAARENTIE

BETON

IMIEH

ENKUJA

KEMIS

TINTIE

VUORIM

IEHENTIE

LUOLAMIEHENTIE

METALLIMIEHENKUJA

TIETOTIE

BIOLOGINKU

JA

OTA

KAAR

I

OTAK

AARI

OTAKAARI

SERVINKUJA

SERVIN-MAIJANTIE

KONE

MIE

HENTI

E

PUUMIEHENKUJA

SÄHKÖMIEHENTIEVAIS

ALAN

TIE

OTA

RANT

A

JÄMERÄNTAIV

AL

N

T

P

TO ANIEMENTIE

ANIEMENTIE

O

KEHÄ l P

P

TAPIOLANTIETAPIO

LA

P

P

P

LÄMPÖ

MIE

HEN

KJ.

K C L

A N IE M I

P

RAKENTAJANAUKIO

POUTAPOLKU

KIVIMIEHENTIE

MIESTENTIE

TAPIOLA

HELSINKI

DIPOLI

HELS

INKI

KIMMELTIE

INNOPOLI

CENT

RE

HOTELRADISSON

SAS

VTT́ s facilities

MÄN

TYVI

ITA

HELSINKI-VANTAAAIRPORT

HÄMEENLINNA

PORI

KEHÄ III

KEHÄ I

TURKU

OTANIEMITAPIOLA

HANKO

ESPOO

HELSINKI

PORVOO

LAHTI

VTTMain building

VTTFuel Cells

Espo

o12

.3.2

009

VTT TECHNICAL RESEARCH CENTRE OF FINLANDVuorimiehentie 3, EspooP.O. Box 1000, FI-02044 VTT, FinlandTel. +358 20 722 111, fax +358 20 722 7001www.vtt.fi

• VTT is the largest multitechnological research organisation in Northern Europe • VTT develops new technologies, creates new innovations and adds value thus increasing customers’ competitiveness • VTT produces research, development, testing and information services for companies and the public sector •

Helsinki

Tampere

Oulu

Espoo