fritsch-buttenberg-wiechell rearrangement

49
N OH N OH 2 H + N N H 2 O N OH 2 H N OH H N OH H N O -H +

Upload: juan

Post on 21-Jan-2016

138 views

Category:

Documents


2 download

DESCRIPTION

Fritsch-Buttenberg-Wiechell Rearrangement. Vinylcarbenoid. Vinylcarbene. A Mechanistic Odyssey in the Realm of Vinylcarbenes & Vinylcarbenoïds (Journey through the life of reactive intermediates). Leading references Knorr, R, Chem. Rev. 2004 , 104 , 3795-3849 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fritsch-Buttenberg-Wiechell Rearrangement

NOH

NOH2

H+ N N

H2O

NOH2H

NOHH

NOHH

NO

- H+

Page 2: Fritsch-Buttenberg-Wiechell Rearrangement

Fritsch-Buttenberg-Wiechell RearrangementFritsch-Buttenberg-Wiechell Rearrangement

Ar

Ar Br

H

Ar

Ar Br

K

KOt-Bu

Ar

Ar

- KBr

Ar Ar

Vinylcarbenoid Vinylcarbene

Page 3: Fritsch-Buttenberg-Wiechell Rearrangement

A Mechanistic Odyssey A Mechanistic Odyssey in the Realm ofin the Realm of

Vinylcarbenes & VinylcarbenoïdsVinylcarbenes & Vinylcarbenoïds

(Journey through the life of reactive intermediates)

Leading referencesKnorr, R, Chem. Rev. 2004, 104, 3795-3849

Braun, M. Angew. Chem. Int. Ed. 1998, 37, 430-451

Page 4: Fritsch-Buttenberg-Wiechell Rearrangement

1) General consideration about FBW rearrangement2) Free vinylcarbene formation

GeneralFrom vinyl triflatesFrom diazoalkenesFrom iodonium ylidesFrom vinyl halides

3) Vinylcarbenoids formationGeneral considerationsStrained cycles

OutlineOutline

Page 5: Fritsch-Buttenberg-Wiechell Rearrangement

FBW : GeneralFBW : General

Discovered in 1894 by Fritsch, Buttenberg and Wiechell

Retro FBWPossible in gaz phase at >650C but generaly very disfavored.

Exeption : very strained alkynes

1.5 kcal/mol

47 kcal/mol

H

H

H

H

R1

R2

SP

SP2

+

-

H

Br

KOt-Bu

Page 6: Fritsch-Buttenberg-Wiechell Rearrangement

Vinylcarbenes (alkylidenecarbene) caracteristicsVinylcarbenes (alkylidenecarbene) caracteristics

Spin multiplicity

Electrophilicity/nucleophilicity

Determined by examination of the [1+2] reaction of vinylcarbene with a serie of substituted styrenes.

S0 S1 T1

S0 state confirmed by stereochemistry of addition to double bond and theorical calculations

= -0.75

Vinylcarbene are mildly electrophilic species

Stang, P. Chem. Rev. 1978, 78, 383

Page 7: Fritsch-Buttenberg-Wiechell Rearrangement

Association with Metals

Do not seem to have much influence.

Steric effects

The [1+2] addition of vinylcarbenes is sensible to hinderance on the double bond (tetrasubstitued alkenes reacts slowly)

Vinylcarbenes (alkylidenecarbene) caracteristicsVinylcarbenes (alkylidenecarbene) caracteristics

R R

R R

R

RR R

R R

R

R

Page 8: Fritsch-Buttenberg-Wiechell Rearrangement

ON

O

NO

R2R1

NN

Ph

R1

O

R2

OTf

R

R

H

N2

R

R

H

I

R

R

H

Ph

BF4

X

R

R

H

Generation of vinylcarbenesGeneration of vinylcarbenes

OTf

R

R

H

Base

( elimination) R

R

NitrosocarbonamidesN-(aziridyl)aldimines

Vinyl triflates

Diazoalkenes

Iodonium Ylides1-Halogenoalkenes

Page 9: Fritsch-Buttenberg-Wiechell Rearrangement

Synthesis of vinyl triflatesSynthesis of vinyl triflates

Ar

Ar Ar

N NNAc

Ar

Ar

Ar Ar

OTfTfOH

R

R TfOH H

Ar Ar

OTf

O

RH

Tf2O R

R R

OTf

R R

O

RH

R

R R

OTMS

R R

TMSCl

Et3N

1) MeLi

2) Tf2O

R

R R

OTf

1

2

3

4

Stang, P. J. Acc. Chem. Res. 1978, 11, 108

Page 10: Fritsch-Buttenberg-Wiechell Rearrangement

Deprotonation is effected in polar solvent at or below 0CMost used base : KOt-Bu

R

R H

OTf R

R D

OTf

KOt-Bu

t-BuOD/pentaneX

R

R H

OTf R

R K

OTf

KOt-Bu

X

To know if a deprotonation is at equlibrum, perform the reaction in adequate deuterated solvent and perform NMR of residual starting material

Driving force to high energy carbene is probably the large pKa difference between KOt-Bu and KOTf

pKa (DMSO)

t-BuOH 29.4

TfOH -13

R

R H

OTf+ KOt-Bu

R

R+ KOTf + t-BuOH

Deprotonation of vinyl triflatesDeprotonation of vinyl triflates

Page 11: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from vinyl triflates : Common side-productsCarbenes from vinyl triflates : Common side-products

R

R K

OTf

Ot-Bu

R

RK

OTf

Ot-Bu

negative charge to LG!

R

R Ot-Bu

K

inversion

R

R

R

R

H

Ot-But-BuOH

"OH insertion"

Addition of nucleophilic solvents

THF can act as Lewis base and add on the carbene to gives an oxonium ion that can be opened by alcohols

Me

Me OTf

H KOt-Bu

THF

Me

Me

O

Me

Me O

ROH Me

Me OOR

H

1R

R Ot-Bu

H

via

2

Page 12: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from vinyl triflates : Comparative studiesCarbenes from vinyl triflates : Comparative studies

Me

Me Me

Me

[ 1+2] Me

Me MeMe

Me

Me Ot-Bu

H

t-BuOH

OH insertion

85

:

15

Me

Me

[ 1+2] Me

Me MeMe

Me

Me SiMePhNap

H

HSiMePhNap

SiH insertion

85

:

15

Me

Me

Comparaison between [1+2] and insertion

Page 13: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from vinyl triflates : Comparative studiesCarbenes from vinyl triflates : Comparative studies

General reactivity order:

H & Ph migration > [1+2] > OHinsert = SiHinsert > 1,5-CHinsert

(H)Ph

Me presence oft-BuOH or R3SiH

Me

Me

Me Ph(H)

only product

H

MeH

HHBu H

Me

H

100 : 0

Page 14: Fritsch-Buttenberg-Wiechell Rearrangement

How to prove the intermediacy of carbeneHow to prove the intermediacy of carbene

Like carbenes, carbenoïds can perform OH insertion and [1+2]. Witch one is the reactive species?

Et

Me OTf

H

Et

Me H

OTf

KOt-Bu

KOt-Bu

Et

Me OTf

K

Et

Me K

OTf

Et

Me

E

Z

Products

Product

From E 18.8% 7.3% 31.8% 42.1%

From Z 18.8% 7.7% 32.0% 41.6%

Et

Me

H

Ot-Bu

Et

Me

Ot-Bu

H

Et

Me

Et

Me

If two precursor can lead to product directly or via a common intermediate, an identical products distribution for each is a necessary albeit not sufficient condition for the existence of the common intermediate

Stang, P.J.; Mangum, D.P.F.; Haak, P. J. Am. Chem. Soc. 1974, 96, 4562

Conclusion: Vinyl triflates probably generates free carbenes

Page 15: Fritsch-Buttenberg-Wiechell Rearrangement

How to prove the intermediacy of carbene, part 2!How to prove the intermediacy of carbene, part 2!

Me

Me OTf

H

Me

Me N

H

NTs

KOt-Bu

Me

Me OTf

K

Me

Me

Me

Me

Ratio A

Ratio A

Ratio B

Ph

Ph

Ph

Starting Material

1 1.52

1 1.52

Me

Me N

H

NTs

Me

Me OTf

H

Ph

MeMe

MeMe

Conclusion

Vinyl triflates generates free carbenes

A way to prove a reaction intermediate is to generate it from at least 2 independent sources. If the reactivity of that intermediate remain the same, it is probably real.

Page 16: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from diazoalkenesCarbenes from diazoalkenes

R

R N

H

NX

R

R N2

R

RR

RN2

base

Deprotonated diazoalkenes can be considered as nitrogen complex of carbenes

Synthesis

R1 R2

O

N2

P(OMe)2

O

H+O P(O)(OR)2

R2

R1

N2

N2R2

R1

R1 R2

O

N2

SiMe3H+O SiMe3

R2

R1

N2

N2

R2

R1

Seyfert-Gilbert reagent (DAMP)

Peterson olefination

1

2

Page 17: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from diazoalkenesCarbenes from diazoalkenes

• Similar to carbenes from vinyl trilfates

• H and Ar migrate easily and the alkyne is obtained in good yield. (40 – 90%) Exception:

O2N

(destabilize + charge in the transition state)Side-reactions have enough time to occur.

Me

MeSince alkyl groups do not migrate well, OH & NH insertion reaction can occur in good yield.

R1

R2

OR1

R2

NR2 R1

R2

Owork-up

FBW

Insertion

Page 18: Fritsch-Buttenberg-Wiechell Rearrangement

1,5-CH insertion of vinylcarbenes1,5-CH insertion of vinylcarbenes

Intramolecular 1,5-CH insertion are possible with vinylcarbenes with an appropriate chain.Competition experiments gave the following (not surprising) selectivity:

Primary1

Secondary30

Benzylic76

Tertiary240

fastslow

R H

ORROWorks well :o)

The strange case of amides migration and CH insertionThe strange case of amides migration and CH insertion

The problem: Like H and Ar, amides migrate very well. However, carbenes with tertiary amide do prefer 1,5-CH insertion of primary H

MeN

O

Me

PhN2

N

O

Me

Ph

N

O

Ph

Me

O

N

Me

Ph

35%48%12%

Insertion into chiral CH occur with >99% retention

R

H

RR

Page 19: Fritsch-Buttenberg-Wiechell Rearrangement

The strange case of amides migration & CH insertionThe strange case of amides migration & CH insertion

N

O

Me

HH

H N

O

Me

H

H

H

E

CH3

NH2

O

MeN

Me

Me

MeN

Me

PhMeOCH insertion : 0%Migration : N/A

MeOHAmide group is essential!

Answer comes from conformational analysis

MeN

O

Me

PhN2

1. Dipole minimization

MeN

O

Me

PhN2

MeN

O

Me

N2

Ph

2. Amide conformation

3. Rate of amide rotation is not competitive with the rate of decomposition and CH insertion

Stabilisation of radical transition state

Page 20: Fritsch-Buttenberg-Wiechell Rearrangement

Other sources of diazoalkenes & vinylcarbenesOther sources of diazoalkenes & vinylcarbenes

Nitrosocarbonamides

N-(aziridyl)aldimines

• Carbene are produced in medium yield• SM is difficult to prepare

ON

RR

O

NO Base or

- CO2

- OH- R

R H

N2+

- H+

R

R

N2+ R

R

H

B

NR

R

NO

NR

R

NOH

BH

Not very appealing…

NN

Ph

O

H

R H

N2O

H

R H

toluene, reflux

- styrene

H

N2

O

H

R

H

N2

HO

H

R

- N2

HO

H

R

H

R

OH

>90%

Kim, S.; Cho., C. M. Tetrahedron Lett. 1994, 35, 8405

Page 21: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from iodonium ylidesCarbenes from iodonium ylides

R I

R

R

94º94º"T" Shaped

R

I

Cl

Cl Ph Square Planar

R

R

I

Ph

IR

R

Ph R

R- IPh

Structure Stability

Relatively stable if R = EWGC-I do not have a double bond character

If R is not EWG, compound isn't isolable but can be generated in situ

Page 22: Fritsch-Buttenberg-Wiechell Rearrangement

Iodonium ylides synthesisIodonium ylides synthesis

R

SnBu3 PhIO(CN)OTf

R

IPh

R = CN, Cl, ArSO2, C(O)R, R2NC(O), etc...

The less nucleophilic is the counter ion, the more stable is the alkynyl iodonium species

nucleophile

I Ph

Nu

R

From stannylacetylenes:

R

IPh

Soft site

Hard site

Good nucleophiles: Activated carbonyl, NR2, N3, PPh3, Phenoxydes, sulfonates, phosphonates, carboxylates

Bad nucleophiles: Enolates, alkoxydes, RLi

Page 23: Fritsch-Buttenberg-Wiechell Rearrangement

Iodonium ylides conformational stabilityIodonium ylides conformational stability

Me

Ph

I Ph Me

Ph I Ph?

Me

Ph

I Ph Me

Ph I PhH

H

NaOAcNaOAc

Me Ph

Result: Z ylide form the alkyne 3.7 times faster than E ylideConclusion: No fast equilibrium of ylides

Me

Bn H

IPh

Me

Bn

H

IPh

Me

Bn

Bn

Me

H

SPh

Ph

Bn

Me

H

S

E:Z = 31:69 from A29:71 from B

E:Z = 38:62 from A36:64 from B

SPh2 THT

A B

Carbene formation?Carbene formation?

Page 24: Fritsch-Buttenberg-Wiechell Rearrangement

Vinylic carbocation formation?Vinylic carbocation formation?

R

R

I Ph

H

R

R HI Ph+

?H2O, MeOH

I

H

Ph

H2O, MeOH

H

OH

O

H2O

I

H

Ph

H

achiral

H

H2O

O

Result: Complete retention of configurationConclusion: No vinylic carbocation

One way to choose between two mechanism is to perform a reaction on a chiral substrate that form an achiral intermediate according to one mechanism and not according to the other.

Chiral product = No achiral intermediateRacemic product = Achiral intermediate

IPh is one of the best known leaving group.

• 106 times better than Triflate• 1012 times better than Tosylate

Page 25: Fritsch-Buttenberg-Wiechell Rearrangement

R

H I

H

Ph

Me4NCl

MeCN

R

H H

Cl

+R

H

SNV E2syn

A B

R

H I

H

Ph

R

H I

H

Ph

R

H I

H

Ph

R

H I

H

Ph

ClCl ClCl

Cl- Cl-

R

H H

Cl

R

H

KA[Cl-] KB[Cl-] KC KD

fast

Iodonium ylides in nucleophilic mediumIodonium ylides in nucleophilic medium

Low [Cl-] = B is favored

Medium [Cl-] = A is favored

High [Cl-] = B is favored

Note: For large R, ligand coupling mechanism leads to Cl insertion with retention

Page 26: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes from 1-HalogenoalkenesCarbenes from 1-Halogenoalkenes

R2

R1

R2

R1 H

Br

Base

pKa > 30

The Base :

Base cannot be BuLi because Br-Li exchange is faster than deprotonation

Bad bases = NaH, i-Pr2NEtGood bases = NaHMDS, KHMDS, KOt-Bu

Deprotonation :

R

R H

Br R

R M

Br

base

R

R M

Br

R

R

Page 27: Fritsch-Buttenberg-Wiechell Rearrangement

Bu

Bu

I Ph

HKOt-Bu

KOt-Bu

Bu

Bu

Br

H

Bu

Bu

Bu

2

1Something must accelerate the FBW migration.

: 41

: 1

Competion between Carbene & CarbenoidCompetion between Carbene & Carbenoid

primary CHsecondary CHtertiary CH

154240

130240

Br IPh

Similar ratio show that CH insertion is only performed by the carbene

FBW vs 1,5-CH insertion

1,5-CH insertion : primary vs secondary vs tertiary

X

HH

RR

H3C Pr

RR

CHR2

+base

Me

R2

R1

Br

HHKOt-Bu

FBW + 1,5-CH insertion + OH insertion

Page 28: Fritsch-Buttenberg-Wiechell Rearrangement

Me

R2

R1

Br

HHKOt-Bu

Me

R2

R1

Br

H

Me

R2

R1

H

MeR1R2

FBW

t-BuOH

Me

R2

R1

H

OtBu

H1,5-CH

insertion H

R1R2

Me

Summary of reactivitySummary of reactivity

Page 29: Fritsch-Buttenberg-Wiechell Rearrangement

Half-Meeting traditional question(+ beer time)

Propose a mechanism for the following transformation

700 C

Page 30: Fritsch-Buttenberg-Wiechell Rearrangement

Half-Meeting traditional question answer(beer time is over…)

H

H

H

intramolecular

1,5-CH insertion

Me

H

4electrons

electrocyclicreaction

1,5-H migration

Roger Brownequilibrium

Brown, R. F. C. et al. Aust. J. Chem. 1974, 27, 2373

Page 31: Fritsch-Buttenberg-Wiechell Rearrangement

Ar

Ar Cl

Li

108.7º

137.1º

112.6º

Vinylcarbenoids: GeneralVinylcarbenoids: General

Structure

R

R R

R

R1

R2R

R Cl

Li Li-13C coupling constant show that Li,Br carbenoïds are monomers in THF

RS

RL K

Br RS

RL Br

KX

E Z

RS

RL Cl

Br RS

RL Cl

Li

MeLi

RS

RL Br

Cl RS

RL Li

Cl

MeLi

XResidual SM can catalyse the

isomerisation via fast M-Br exchange.

Stability

Boche, G.; Marsch, M.; Muller, A.; Harms, K. Angew. Chem. Int. Ed. Engl. 1993, 32, 1032Hafner, K. Pure Appl. Chem, 1990, 62, 531

Page 32: Fritsch-Buttenberg-Wiechell Rearrangement

Me

Me Br

Br

MeLi

- MeBrMe Me

Me

Me Me

Br Me

Me Me

H

Me

Me

Me

Me+ + +

Vinylcarbenoids: Common side-productsVinylcarbenoids: Common side-products

Me

Me Br

Br

MeLi

f ast Me

Me Li

Br

MeBr

SN2

slow Me

Me Me

Br

Me

Me Li

Br50% of the reaction+ Me

Li

Me

Me Me

Li Me

Me Me

H

Work-UpMeLi

Me

Me Li

Br Me

Me Li

BrLi

BrMe

MeMe

Me

Me

Me

Me

Me

MeLi

Page 33: Fritsch-Buttenberg-Wiechell Rearrangement

K

BrPartial heterolysis of anti-Br creates "empty" orbital

Product

H

Br

*Br

H

*Br

H*

2.6 : 1

+

How to explain this?

Mechanistic black holeMechanistic black hole

H

Br

KOt-BuBr

H

Br

H1

153

Migration of CMe2 (anti)

Migration of CH2 (syn)

+

trace

D

Br

KOt-Bu

DOt-Bu

Should come from the migration of CH2 without net breaking the C-Br bound.

“Thus, the detailled mechanisms of both syn and anti migrations are open problems.”- R. Knorr -

Erikson, K. L. J. Org. Chem. 1971, 36, 1031Samuel, S. P.; Niu, T.; Erikson, K. L. J. Am. Chem. Soc. 1989, 111, 1429

Page 34: Fritsch-Buttenberg-Wiechell Rearrangement

Strained cycle formationStrained cycle formation

H2C

Page 35: Fritsch-Buttenberg-Wiechell Rearrangement

Expansion from 7 to 8 membered ringExpansion from 7 to 8 membered ring

Usually do not occur. (Remember: alkyl groups do not migrate well…)

Br

H

KOt-Bu Ot-Bu

H

Cl

H

PhLi PhLi Li

Ph

23%

Expansion from 6 to 7 membered ringExpansion from 6 to 7 membered ring

Cyclobutyne is the smallest stable cyclic alkyne

Do not occur.

Pr

Pr

Cl

H

1) PhLi

2) CO2

Pr

Pr

Ph

H

+

15% 19%

Curtin, D. Y.; Richardson, W. H. J. Am. Chem. Soc. 1959, 81, 4719

Curtin, D. Y.; Richardson, W. H. J. Am. Chem. Soc. 1959, 81, 4719

Page 36: Fritsch-Buttenberg-Wiechell Rearrangement

Expansion from 5 to 6 membered ringExpansion from 5 to 6 membered ring

norborynebenzyne

Seem to occur, the cycloalkyne can be trapped with various agentsStrange behavior due to high ring strain

cyclohexyne

t-Bu

t-Bu

H

OTf

t-Bu

t-Bu

t-Bu

t-Bu

* *

*

t-Bu

t-Bu

H

Cl

maybe via Z isomer

Benzyne1

Page 37: Fritsch-Buttenberg-Wiechell Rearrangement

2 Norboryne

Cl

H

Cl

H

t-BuLi

Li

Cl

O

O

Ph

Li

PhLi

PhLi

Cl

H

Li

R

RLi

- LiCl

HR

HR

Expansion from 5 to 6 membered ringExpansion from 5 to 6 membered ring

Page 38: Fritsch-Buttenberg-Wiechell Rearrangement

Expansion from 5 to 6 membered ringExpansion from 5 to 6 membered ring

2 Cyclohexyne

H

Br

KOt-Bu K

Br

K

Br

O

O

Page 39: Fritsch-Buttenberg-Wiechell Rearrangement

Gilbert, J. C.; Baze, M. E. J. Am. Chem. Soc. 1983, 105, 664 Bachrach, S. M.; Gilbert, J. C.; Laird, D. W. J. Am. Chem. Soc. 2001, 123, 6706

Expansion from 4 to 5 membered ringExpansion from 4 to 5 membered ring

Cyclopropyne is so strained that it can be considered as a 1,2-dicarbene(and react like so)

Seem to occur, the cycloalkyne can be trapped with various agentsStill more strange behavior due to high ring strain

N2

- N2

n-BuOH

O

O

O

Ot-Bu

H

Ot-Bu

H

1 : 1

1 : 1

**

Page 40: Fritsch-Buttenberg-Wiechell Rearrangement

Expansion from 4 to 5 membered ring, part 2Expansion from 4 to 5 membered ring, part 2

Br

Br

Br

Br

BuLi

BuLi

TfO

Me3Si

BuLi

TBAF

N2

[2+2] [4+2]

+

Cyclopentyne reactivity depend of the way it is generated

Source [2+2] [4+2]

Organometalic precursor

12 - 54 1

Standard precursor

1 1.5

Explanation: There must be an other intermediate.

Variation of M and X on the organometallic precursor should be done as well as 13C labeling.

. LiBr

Gilbert, J. C.; McKinley, E. G.; Hou, D-R. Tetrahedron 1997, 53, 9891

Page 41: Fritsch-Buttenberg-Wiechell Rearrangement

Expansion from 3 to 4 membered ringExpansion from 3 to 4 membered ring

Expansion from 2 to 3 membered ringExpansion from 2 to 3 membered ring

Do not occur.

“Cyclopropyne ring was calculated not to be a local minimum”–Rudolf Knorr

Do not occur.

Theorical existence of cyclobutyne is controversial

Johnson, R. P.; Daoust, K. J. J. Am. Chem. Soc. 1995, 117, 362

Jonas, V.; Böhme, M.; Frenking, G. J. Phys. Chem. 1992, 96, 1640

H2C X

X

Page 42: Fritsch-Buttenberg-Wiechell Rearrangement

CH insertion of carbenoïdsCH insertion of carbenoïds

1,5-CH insertion are rare for vinylcarbenoïds.The corresponding carbene can never be excluded

Me

Cl

H

H

H n-BuLi

Me

Me

Bu

H

H

H

62% 13%

Me

Cl

H

Me

Me n-BuLi

Me

MeMe

1,4-CH insertion0%

MeMe

1,6-CH insertion0%

Me

[1+2]intramolecular

25%

Fisher, R. H.; Baumann, M., Köbrich, G Tetrahedron Lett. 1974, 1207

Page 43: Fritsch-Buttenberg-Wiechell Rearrangement

Migration of unsaturated substituentsMigration of unsaturated substituents

MePh

Cl

H(Z)

BuLi

Me

Ph

(Z) Me+

1,6-CH insertion

Me Li

HH

Ph

Without going throught:

Ph

M

Cl

R

Donor substituants accelerates reaction

Ph M

R

Ph R

Fienemann, H.; Köbrich, G Chem. Ber. 1974, 107, 2797

Page 44: Fritsch-Buttenberg-Wiechell Rearrangement

Carbenes vs. Carbenoids : kineticCarbenes vs. Carbenoids : kinetic

R1

R2 M

X

products

R1

R2+ M+X-

kel

k-el

kcc

- MXkccmx

2 cases:

At low temperature, carbenoïds are kinetically stable and can react in a plain bimolecular reaction.

The carbene reacts much more faster than the carbenoid

1

2

Page 45: Fritsch-Buttenberg-Wiechell Rearrangement

Case 1: Stable carbenoid react in a bimolecular reaction without rate-controlling intermediate

Case 2: Carbenoid is in fast equilibrium with the carbene and only the carbene react in a bimolecular reaction

ccmxrate k carbenoid reagent

0ccmxk

ccrate k carbene reagent

...

el

el

el

el

carbene MXk

k carbenoid

k carbenoidso carbene

k MX

Decreased rate for increased MX concentration

cc el

el

carbenoid reagentk krate

k MX

Independence of the rate and MX concentration

Carbenes vs. Carbenoïds : kineticCarbenes vs. Carbenoïds : kinetic

R1

R2 M

X

products

R1

R2+ M+X-

kel

k-el

kcc

- MXkccmx

Page 46: Fritsch-Buttenberg-Wiechell Rearrangement

Summary of migration capability of vinylcarbenoidsSummary of migration capability of vinylcarbenoids

H

Cl

BuLi

-90 to -60> -60 : Side products formation starts to compete

Bu

HFrom SNV or Add/Ell

R2N

R2N Cl

LiR2N NR2

via "onium" intermediate

R

PhS Cl

LiR SPh

via "onium" intermediate

Heteroatom migration

R

Et3SiO Cl

LiR OSiEt3X

O Si

RH

Me

Et Et

Small ring migration

Newman, M. S.; Gromelski, S. J. J. Am. Chem. Soc. 1972, 37, 3220

Page 47: Fritsch-Buttenberg-Wiechell Rearrangement

i-PrO

Ph Li

I

1) sec-BuLi (excess) (-20 to RT)

2) MeI i-PrO

Ph Me

Mei-PrO Ph

8%34%

+

Summary of migration capability of vinylcarbenoidsSummary of migration capability of vinylcarbenoids

t-Bu

LiO Br

Br t-BuLi t-Bu

LiO Br

LiLiO t-Bu

ROH

RO

O

t-Bu

Alkoxyde do not migrates, but helps the migration of other groups

Alkoxyde migration

Enol ether migration

Kowalski, C. J.; Reddy, R. E. J. Org. Chem. 1992, 57, 7194

Note

Usualy, heavier halogen = lower decomposition tempex.:

R

F X

Li

X = F : -5CX = Cl : -50C

Explanation

OiPr destabilize the SP center in the transition state via its inductive effect (s = -0.12) even if it is a strong p-donor. Calculations show then O-iPr do not solvate the Li atom

Page 48: Fritsch-Buttenberg-Wiechell Rearrangement

SummarySummary

Good migrating groups in the FBW rearrangement are H and Ar

1,5-CH insertion of vinylcarbenes & vinylcarbenoids can be a clean reaction

Vinyl triflates, vinyl diazonium salts and vinyl iodonium ylides produce free vinylcarbenes

1,1-bromolithioolefins produce a mix of free carbenes and carbenoids

Vinylcarbenoids are stable at low temperature

Cycloalkynes can be produced in situ from vinylcarbenes & vinylcarbenoids

Vinylcarbenoids behavior is mechanistically underdeveloped

Page 49: Fritsch-Buttenberg-Wiechell Rearrangement

The End