friction of polymer gels - espci parisfriction of polymer gels o. ronsin, t. baumberger, c. caroli...

15
F RICTION OF POLYMER GELS O. Ronsin, T. Baumberger, C. Caroli Institut des NanoSciences de Paris - CNRS - Univ. Paris 6 Gels = soft elastic solid with high content of fluid = poroelastic solid specific frictionnal properties e.g. : gels in biological systems : very low friction (e.g. articular cartilage) Network / solvent contributions to friction ?

Upload: others

Post on 16-Feb-2021

3 views

Category:

Documents


1 download

TRANSCRIPT

  • FRICTION OF POLYMER GELSO. Ronsin, T. Baumberger, C. CaroliInstitut des NanoSciences de Paris - CNRS - Univ. Paris 6

    Gels = soft elastic solid with high content of fluid = poroelastic solidñ specific frictionnal properties e.g. : gels in biological systems : very low friction (e.g. articular cartilage) Network / solvent contributions to friction ?

  • POROELASTIC EFFECTS : ARTICULAR CARTILAGE (COLLAGEN GEL)

    Poroelastic transfer of fluid across cartilageÑ load supported by fluid at short timeslow friction : fluid lubricationÑ increasing contribution of matrix as tÕhigher friction : solid friction

    µ=µ8 (1� (1�φ)WfluidWtotal

    )

    C. W. McCutchen, Wear 5, 1 (1959).G. A. Ateshian, Journal of Biomechanics 42, 1163 (2009).

  • POLYMER GELS

    network = chains + cross-links Æ

    (physical or chemical), distance ξ solvent (90–99%), viscosity η

    ñ "poro-elastic" material

    elasticity of entropic origin (rubber)G � kBT

    ξ3

    � 102 – 105 Pa, ξ� 3 – 30 nm. solvent/network relative motionñdiffusive modeDcoll.� 10�9 – 10�11 m2.s�1for aqueous gels (10�7m2.s�1 forcartilage)ñ 105��107 s for 1 cm thick sampleñ get rid of time dependence of fluidloaded part.

    ξ

    η

  • HYDRODYNAMIC FRICTION OF GELATIN GELS

    Model system : gelatin gel on clean flat glass in plane/plane contact.Ñ control almost independently solvent viscosity ηS � 1�4 Pa.s (water +glycerol) and network mesh size ξ� 6�12 nm (gelatin contentration c)

    glassgel

    impose sliding velocity V (1 – 2000 µm/s) normal pressure p (0 – 2 kPa)measure stationnary frictionnal shear stress σ(V ). interfacial slip.

  • HYDRODYNAMIC FRICTION OF GELATIN GELS

    Changing solvent viscosity ηS

    0

    0.5

    1

    1.5

    2

    2.5

    0 500 1000 1500 2000

    0%

    21%

    42%

    (k

    Pa)

    V ( m/s)

    Changing gelatin concentrationcÕñGÕñ ξ×

    0

    1

    2

    3

    4

    5

    6

    5%

    8%

    10%

    15%

    0 500 1000 1500 2000

    (k

    Pa)

    V ( m/s)

    ñ Response of a confined layerof thickness � ξ ? ξ

    V

    T. Baumberger, C. Caroli and O. Ronsin, Eur. Phys. J. E 11, 85 (2003).

  • HYDRODYNAMIC FRICTION OF GELATIN GELS

    layer sheared at a rate γ̇=V /ξ

    measured effective visosity ηeff =σξ

    Vrelaxation time τR of a chain of size ξ (Rouse) ξ

    V

    1

    10

    100

    0.01 0.1 10

    ef

    f/

    s

    R

    1.

    ηeff

    ηs

    � (γ̇τR)�α, α= 0.6 compatiblewith macroscopic rheology of solutions.

  • HYDRODYNAMIC FRICTION OF GELATIN GELS

    layer sheared at a rate γ̇=V /ξ

    measured effective visosity ηeff =σξ

    Vrelaxation time τR of a chain of size ξ (Rouse) ξ

    V

    1

    10

    100

    0.01 0.1 10

    ef

    f/

    s

    R

    1.

    ηeff

    ηs

    � (γ̇τR)�α, α= 0.6 compatiblewith macroscopic rheology of solutions.

    Also observed with block copolymer gels

    K.A. Erk et al., Langmuir, 28, 4472 (2012).

  • EFFECT OF NORMAL STRESS

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    -4 -3 -2 -1 0 1 2

    σ (

    kP

    a)

    p (kPa)-po

    V(1+ε)ξ

    Vp

    deformation under compression ǫ=�pE

    =� p3Gñ layer thickness (1+ǫ)ξñ σ(V , p)=σ(V , p = 0)[1+ (1+3α) p

    3G

    ]

    p0 =3G

    1+3α

    �G

  • STATIC FRICTION

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 2 4 6 8 10 12 14 16

    (

    kP

    a)

    t (s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 5 10 15 20 65 70 75 80

    (kP

    a)

    t (s)

    tw

    max

    Increase of the number of pinned chains with time.ñ Decrease of the number of pinned chains with velocity.

  • ELASTIC CONTRIBUTION TO GEL FRICTION

    Schallamach model of rubber friction : dynamics of chain pinning/depinningV

    thermally activated depinning+ advection at velocity Vñ number of pinned chains× withVñ force per chainÕ with V

    f

    N

    F

    ln V< µm/s

    A. Schallamach, Wear, vol. 6, p. 375 (1963)

  • POLYMER GELS FRICTION

    two contributions:

    chain pinning viscosity of interfacial layerσ

    V

  • POLYMER GELS FRICTION

    two contributions:

    chain pinning viscosity of interfacial layerñ instability at Vc (compliant system� imposed stress)

    σ

    VVc

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 5 10 15 20 25 30 35 40

    shea

    r st

    ress

    (kP

    a)

    time (s)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 10 20 30 40 50 60 70 80

    shea

    r st

    ress

    (kP

    a)

    time (s)

    V > Vc

    V < Vc

  • SLEF-HEALING SLIP PULSES IN GELATIN

    self-healing slip pulses. Healing when local slip velocity reaches Vc .

    0

    20

    40

    60

    80

    100

    52 56 60 64 68

    po

    siti

    on

    (m

    m)

    time (s )

    O. Ronsin, T. Baumberger and C.Y. Hui, J. Adhesion, vol. 87, p. 504 (2011)

  • SLEF-HEALING SLIP PULSES IN GELATIN

    nucleation favored at the edge(s) of the contact, but also within the contact.

    0

    20

    40

    60

    80

    100

    po

    siti

    on

    (m

    m)

    0

    20

    40

    60

    80

    100

    52 56 60 64 68

    po

    siti

    on

    (m

    m)

    time (s)

  • CONCLUSION

    biphasic nature of gelsñ 2 contributions to friction elastic : (rate-dependent) stretching of adsorbed polymer chains hydrodynamic : viscous flow of fluid interfacial layerrelative contributions influenced by many parameters (velocity, pressure,charges, surface chemistry, roughness...) Tuning these parameters to achieve very low frictionÑ artificial cartilage :

    need for tougher gelsñ double network gels (J.P. Gong et al.). their competition can lead to instabilitiesñ model system for earth crust(F. Corbi et al., J.G.R. Solid Earth, vol. 118, p. 1483 (2013)).

    Poroelastic effects : Articular cartilage (collagen gel)Polymer gelsHydrodynamic friction of gelatin gelsHydrodynamic friction of gelatin gelsHydrodynamic friction of gelatin gelsHydrodynamic friction of gelatin gelsEffect of normal stressStatic frictionElastic contribution to gel frictionPolymer gels frictionPolymer gels frictionSlef-healing slip pulses in gelatinSlef-healing slip pulses in gelatinConclusion