frequency resposne

Upload: parsa90p

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Frequency Resposne

    1/250

    1. Inverse Z-transform - Partial Fraction

  • 8/10/2019 Frequency Resposne

    2/250

    1. Inverse Z-transform - Partial Fraction

    Find the inverse Z-transform of G (z ) =

    2z 2 + 2 zz 2 + 2 z 3

  • 8/10/2019 Frequency Resposne

    3/250

    1. Inverse Z-transform - Partial Fraction

    Find the inverse Z-transform of G (z ) =

    2z 2 + 2 zz 2 + 2 z 3

    G (z )z =

    2z + 2(z + 3)( z 1)

  • 8/10/2019 Frequency Resposne

    4/250

    1. Inverse Z-transform - Partial Fraction

    Find the inverse Z-transform of G (z ) =

    2z 2 + 2 zz 2 + 2 z 3

    G (z )z =

    2z + 2(z + 3)( z 1)

    = Az + 3

    + Bz 1

  • 8/10/2019 Frequency Resposne

    5/250

    1. Inverse Z-transform - Partial Fraction

    Find the inverse Z-transform of G (z ) =

    2z 2 + 2 zz 2 + 2 z 3

    G (z )z =

    2z + 2(z + 3)( z 1)

    = Az + 3

    + Bz 1

    Multiply throughout by z + 3 and let z = 3 to get

  • 8/10/2019 Frequency Resposne

    6/250

    1. Inverse Z-transform - Partial Fraction

    Find the inverse Z-transform of G (z ) =

    2z 2 + 2 zz 2 + 2 z 3

    G (z )z =

    2z + 2(z + 3)( z 1)

    = Az + 3

    + Bz 1

    Multiply throughout by z + 3 and let z = 3 to get

    A = 2z + 2

    z 1 z = 3

  • 8/10/2019 Frequency Resposne

    7/250

    1. Inverse Z-transform - Partial Fraction

    Find the inverse Z-transform of G (z ) =

    2z 2 + 2 zz 2 + 2 z 3

    G (z )z =

    2z + 2(z + 3)( z 1)

    = Az + 3

    + Bz 1

    Multiply throughout by z + 3 and let z = 3 to get

    A = 2z + 2

    z 1 z = 3=

    4

    4= 1

    Digital Control 1 Kannan M. Moudgalya, Autumn 2007

  • 8/10/2019 Frequency Resposne

    8/250

    2. Inverse Z-transform - Partial Fraction

  • 8/10/2019 Frequency Resposne

    9/250

    2. Inverse Z-transform - Partial Fraction

    G (z )z

    = Az + 3

    + Bz 1

  • 8/10/2019 Frequency Resposne

    10/250

    2. Inverse Z-transform - Partial Fraction

    G (z )z

    = Az + 3

    + Bz 1

    Multiply throughout by z 1 and let z = 1

  • 8/10/2019 Frequency Resposne

    11/250

    2. Inverse Z-transform - Partial Fraction

    G (z )z

    = Az + 3

    + Bz 1

    Multiply throughout by z 1 and let z = 1 to get

    B = 44

    = 1

  • 8/10/2019 Frequency Resposne

    12/250

  • 8/10/2019 Frequency Resposne

    13/250

    2. Inverse Z-transform - Partial Fraction

    G (z )z

    = Az + 3

    + Bz 1

    Multiply throughout by z 1 and let z = 1 to get

    B = 44

    = 1

    G (z )z =

    1z + 3 +

    1z 1 | z | > 3

    G (z ) = zz + 3

    + zz 1

    | z | > 3

  • 8/10/2019 Frequency Resposne

    14/250

    2. Inverse Z-transform - Partial Fraction

    G (z )z

    = Az + 3

    + Bz 1

    Multiply throughout by z 1 and let z = 1 to get

    B = 44

    = 1

    G (z )z =

    1z + 3 +

    1z 1 | z | > 3

    G (z ) = zz + 3

    + zz 1

    | z | > 3

    ( 3)n

    1( n ) + 1( n )Digital Control 2 Kannan M. Moudgalya, Autumn 2007

  • 8/10/2019 Frequency Resposne

    15/250

    3. Partial Fraction - Repeated Poles

  • 8/10/2019 Frequency Resposne

    16/250

    3. Partial Fraction - Repeated Poles

    G (z ) = N (z )(z ) pD 1(z )

  • 8/10/2019 Frequency Resposne

    17/250

    3. Partial Fraction - Repeated Poles

    G (z ) = N (z )(z ) pD 1(z )

    not a root of N (z ) and D 1(z )

  • 8/10/2019 Frequency Resposne

    18/250

  • 8/10/2019 Frequency Resposne

    19/250

  • 8/10/2019 Frequency Resposne

    20/250

    3. Partial Fraction - Repeated Poles

    G (z ) = N (z )(z ) pD 1(z )

    not a root of N (z ) and D 1(z )

    G (z ) = A1z

    + A2(z )2

    + + A p(z ) p

    + G 1(z )

    G 1(z ) has poles corresponding to those of D 1(z ) .Multiply by (z ) p

  • 8/10/2019 Frequency Resposne

    21/250

    3. Partial Fraction - Repeated Poles

    G (z ) = N (z )(z ) pD 1(z )

    not a root of N (z ) and D 1(z )

    G (z ) = A1z

    + A2(z )2

    + + A p(z ) p

    + G 1(z )

    G 1(z ) has poles corresponding to those of D 1(z ) .Multiply by (z ) p

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

    Digital Control 3 Kannan M. Moudgalya, Autumn 2007

  • 8/10/2019 Frequency Resposne

    22/250

    4. Partial Fraction - Repeated Poles

  • 8/10/2019 Frequency Resposne

    23/250

    4. Partial Fraction - Repeated Poles

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

  • 8/10/2019 Frequency Resposne

    24/250

    4. Partial Fraction - Repeated Poles

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

    Substituting z = ,

  • 8/10/2019 Frequency Resposne

    25/250

    4. Partial Fraction - Repeated Poles

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

    Substituting z = ,

    A p = ( z ) pG (z ) | z =

  • 8/10/2019 Frequency Resposne

    26/250

    4. Partial Fraction - Repeated Poles

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

    Substituting z = ,

    A p = ( z ) pG (z ) | z =

    Differentiate and let z = :

    l d l

  • 8/10/2019 Frequency Resposne

    27/250

    4. Partial Fraction - Repeated Poles

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

    Substituting z = ,

    A p = ( z ) pG (z ) | z =

    Differentiate and let z = :

    A p 1 = ddz (z ) pG (z ) | z =

  • 8/10/2019 Frequency Resposne

    28/250

    4 P ti l F ti R t d P l

  • 8/10/2019 Frequency Resposne

    29/250

    4. Partial Fraction - Repeated Poles

    (z ) pG (z ) = A1(z ) p 1 + A 2(z ) p 2 + + A p 1(z ) + A p + G 1(z )( z ) p

    Substituting z = ,

    A p = ( z ) pG (z ) | z =

    Differentiate and let z = :

    A p 1 = ddz (z ) pG (z ) | z =

    Continuing, A1 = 1

    ( p 1)!d p 1

    dz p 1(z ) pG (z ) | z =

    Digital Control 4 Kannan M. Moudgalya, Autumn 2007

  • 8/10/2019 Frequency Resposne

    30/250

    5 Repeated Poles an Example

  • 8/10/2019 Frequency Resposne

    31/250

    5. Repeated Poles - an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    5 Repeated Poles an Example

  • 8/10/2019 Frequency Resposne

    32/250

    5. Repeated Poles - an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1

    z 1 + A

    2(z 1) 2 +

    Bz 2

    5 Repeated Poles an Example

  • 8/10/2019 Frequency Resposne

    33/250

    5. Repeated Poles - an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1

    z 1 + A

    2(z 1) 2 +

    Bz 2

    (z 2) ,

    5 Repeated Poles an Example

  • 8/10/2019 Frequency Resposne

    34/250

    5. Repeated Poles - an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1

    z 1 + A

    2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 .

    5 Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    35/250

    5. Repeated Poles - an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1z 1 +

    A2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 . (z 1) 2,

    5 Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    36/250

    5. Repeated Poles an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1z 1 +

    A2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 . (z 1) 2,

    11 z2

    15z + 6z 2 = A1(z 1) + A 2 + B (z 1)2

    z 2

    5 Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    37/250

    5. Repeated Poles an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1z 1 +

    A2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 . (z 1) 2,

    11 z2

    15z + 6z 2 = A1(z 1) + A 2 + B (z 1)2

    z 2With z = 1 , get A2 = 2.

    5. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    38/250

    5. Repeated Poles an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1z 1 +

    A2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 . (z 1) 2,

    11 z2

    15z + 6z 2 = A1(z 1) + A 2 + B (z 1)2

    z 2With z = 1 , get A2 = 2.Differentiating with respect to z and with z = 1 ,

    5. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    39/250

    5. Repeated Poles an Example

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1z 1 +

    A2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 . (z 1) 2,

    11 z2

    15z + 6z 2 = A1(z 1) + A 2 + B (z 1)2

    z 2With z = 1 , get A2 = 2.Differentiating with respect to z and with z = 1 ,

    A 1 =

  • 8/10/2019 Frequency Resposne

    40/250

    5. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    41/250

    p p

    G (z ) = 11z 2 15z + 6(z 2)( z 1) 2 =

    A1z 1 +

    A2(z 1) 2 +

    Bz 2

    (z 2) , let z = 2 , to get B = 20 . (z 1) 2,

    11z 2

    15z

    + 6z 2 = A1(z 1) + A 2 + B (z

    1)2

    z 2With z = 1 , get A2 = 2.Differentiating with respect to z and with z = 1 ,

    A 1 = (z 2)(22 z 15) (11 z 2 15z + 6)

    (z 2) 2 z =1= 9

  • 8/10/2019 Frequency Resposne

    42/250

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    43/250

    p

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    44/250

    Problem 4.9 in Text:

  • 8/10/2019 Frequency Resposne

    45/250

  • 8/10/2019 Frequency Resposne

    46/250

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    47/250

    Problem 4.9 in Text: Consider

    1( n )a n zz a

    =

    n =0

    a n z n , az 1 < 1

    Differentiating with respect to a ,

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    48/250

    Problem 4.9 in Text: Consider

    1( n )a n zz a

    =

    n =0

    a n z n , az 1 < 1

    Differentiating with respect to a ,

    z(z a )2

  • 8/10/2019 Frequency Resposne

    49/250

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    50/250

    Problem 4.9 in Text: Consider

    1( n )a n zz a

    =

    n =0

    a n z n , az 1 < 1

    Differentiating with respect to a ,

    z(z a )2

    =

    n =0

    na n 1z n , na n 11( n ) z

    (z a )2

  • 8/10/2019 Frequency Resposne

    51/250

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    52/250

    Problem 4.9 in Text: Consider

    1( n )a n zz a

    =

    n =0

    a n z n , az 1 < 1

    Differentiating with respect to a ,

    z(z a )2

    =

    n =0

    na n 1z n , na n 11( n ) z

    (z a )2

    Substituting a = 1 , can obtain the Z-transform of n :

    n 1( n ) z

    (z 1) 2

    6. Important Result from Differentiation

  • 8/10/2019 Frequency Resposne

    53/250

    Problem 4.9 in Text: Consider

    1( n )a n zz a

    =

    n =0

    a n z n , az 1 < 1

    Differentiating with respect to a ,

    z(z a )2

    =

    n =0

    na n 1z n , na n 11( n ) z

    (z a )2

    Substituting a = 1 , can obtain the Z-transform of n :

    n 1( n ) z

    (z 1) 2

    Through further differentiation,

  • 8/10/2019 Frequency Resposne

    54/250

    7. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    55/250

    7. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    56/250

    G (z ) = 9z 1

    2(z 1) 2

    + 20z 2

    7. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    57/250

    G (z ) = 9z 1

    2(z 1) 2

    + 20z 2

    zG (z ) = 9z

    z 1

    2z

    (z 1) 2 +

    20z

    z 2

    7. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    58/250

    G (z ) = 9z 1

    2(z 1) 2

    + 20z 2

    zG (z ) = 9z

    z 1

    2z

    (z 1) 2 +

    20z

    z 2 ( 9 2n + 20 2n )1( n )

    7. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    59/250

    G (z ) = 9z 1

    2(z 1) 2

    + 20z 2

    zG (z ) = 9z

    z 1

    2z

    (z 1) 2 +

    20z

    z 2 ( 9 2n + 20 2n )1( n )

    Use shifting theorem:G (z )

    7. Repeated Poles - an Example

  • 8/10/2019 Frequency Resposne

    60/250

    G (z ) = 9z 1

    2(z 1) 2

    + 20z 2

    zG (z ) = 9z

    z 1

    2z

    (z 1) 2 +

    20z

    z 2 ( 9 2n + 20 2n )1( n )

    Use shifting theorem:G (z ) ( 9 2( n 1) + 20 2n 1)1( n 1)

    Digital Control 7 Kannan M. Moudgalya, Autumn 2007

    8. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    61/250

    8. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    62/250

    u a ( t ) = A cos ( t + )

  • 8/10/2019 Frequency Resposne

    63/250

  • 8/10/2019 Frequency Resposne

    64/250

    8. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    65/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    A : amplitude

  • 8/10/2019 Frequency Resposne

    66/250

    8. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    67/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    A : amplitude: frequency in rad/s : phase in rad

  • 8/10/2019 Frequency Resposne

    68/250

    8. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    69/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    A : amplitude: frequency in rad/s : phase in radF : frequency in cycles/s or Hertz

    = 2 F

    T p = 1F

    Digital Control 8 Kannan M. Moudgalya, Autumn 2007

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    70/250

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    71/250

    u a ( t ) = A cos ( t + )

  • 8/10/2019 Frequency Resposne

    72/250

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    73/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

  • 8/10/2019 Frequency Resposne

    74/250

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    75/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    With F xed, periodic with period T p

    u a [t + T p]

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    76/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    With F xed, periodic with period T p

    u a [t + T p] = A cos (2 F ( t + 1F

    ) + )

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    77/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    With F xed, periodic with period T p

    u a [t + T p] = A cos (2 F ( t + 1F

    ) + )

    = A cos (2 + 2 F t + )

    9. Properties of Cont. Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    78/250

    u a ( t ) = A cos ( t + )u a ( t ) = A cos (2 F t + ) , < t <

    With F xed, periodic with period T p

    u a [t + T p] = A cos (2 F ( t + 1F

    ) + )

    = A cos (2 + 2 F t + )= A cos (2 F t + )

  • 8/10/2019 Frequency Resposne

    79/250

  • 8/10/2019 Frequency Resposne

    80/250

    10. Properties of Cont. Time Sinusoidal Signals

    Cont signals with different frequencies are different

  • 8/10/2019 Frequency Resposne

    81/250

    Cont. signals with different frequencies are different

  • 8/10/2019 Frequency Resposne

    82/250

    10. Properties of Cont. Time Sinusoidal Signals

    Cont signals with different frequencies are different

  • 8/10/2019 Frequency Resposne

    83/250

    Cont. signals with different frequencies are different

    u 1 = cos 2 t8, u 2 = cos 2 7t8

  • 8/10/2019 Frequency Resposne

    84/250

    10. Properties of Cont. Time Sinusoidal Signals

    Cont signals with different frequencies are different

  • 8/10/2019 Frequency Resposne

    85/250

    Cont. signals with different frequencies are different

    u 1 = cos 2 t8, u 2 = cos 2 7t8

    0 0.5 1 1.5 2 2.5 3 3.5 41

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    t

    c o s w t

    Different wave forms for different frequencies.

  • 8/10/2019 Frequency Resposne

    86/250

    11. Discrete Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    87/250

  • 8/10/2019 Frequency Resposne

    88/250

    11. Discrete Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    89/250

    u (n ) = A cos ( wn + ) , < n < w = 2 f

  • 8/10/2019 Frequency Resposne

    90/250

    11. Discrete Time Sinusoidal Signals

  • 8/10/2019 Frequency Resposne

    91/250

    u (n ) = A cos ( wn + ) , < n < w = 2 f

    n integer variable, sample numberA amplitude of the sinusoid

  • 8/10/2019 Frequency Resposne

    92/250

  • 8/10/2019 Frequency Resposne

    93/250

  • 8/10/2019 Frequency Resposne

    94/250

    12. Discrete Time Sinusoids - Identical Signals

  • 8/10/2019 Frequency Resposne

    95/250

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    96/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    97/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    98/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    u k (n ) = A cos( wk n + ) ,

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    99/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    u k (n ) = A cos( wk n + ) ,wk = w0 + 2 k ,

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    100/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    u k (n ) = A cos( wk n + ) ,wk = w0 + 2 k , < w 0 < ,

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    101/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    u k (n ) = A cos( wk n + ) ,wk = w0 + 2 k , < w 0 < ,are indistinguishable or identical.

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    102/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    u k (n ) = A cos( wk n + ) ,wk = w0 + 2 k , < w 0 < ,are indistinguishable or identical.

    Only sinusoids in < w 0 < are different

    12. Discrete Time Sinusoids - Identical Signals

    Discrete time sinusoids whose frequencies are sepa-

  • 8/10/2019 Frequency Resposne

    103/250

    rated by integer multiple of 2 are identical, i.e.,cos (( w0 + 2 )n + ) = cos ( w0n + ) , n All sinusoidal sequences of the form,

    u k (n ) = A cos( wk n + ) ,wk = w0 + 2 k , < w 0 < ,are indistinguishable or identical.

    Only sinusoids in < w 0 < are different

    < w 0 < or 12

    < f 0 < 12

    Digital Control 12 Kannan M. Moudgalya, Autumn 2007

    13. Sampling a Cont. Time Signal - Preliminaries

  • 8/10/2019 Frequency Resposne

    104/250

    13. Sampling a Cont. Time Signal - Preliminaries

    Let analog signal u a [t ] have a frequency of F Hz

  • 8/10/2019 Frequency Resposne

    105/250

  • 8/10/2019 Frequency Resposne

    106/250

  • 8/10/2019 Frequency Resposne

    107/250

    13. Sampling a Cont. Time Signal - Preliminaries

    Let analog signal u a [t ] have a frequency of F Hz

  • 8/10/2019 Frequency Resposne

    108/250

    u a [t ] = A cos(2 F t + )Uniform sampling rate (T s s) or frequency (F s Hz)

    t = nT s = n

    F s

    13. Sampling a Cont. Time Signal - Preliminaries

    Let analog signal u a [t ] have a frequency of F Hz

  • 8/10/2019 Frequency Resposne

    109/250

    u a [t ] = A cos(2 F t + )Uniform sampling rate (T s s) or frequency (F s Hz)

    t = nT s = n

    F su (n ) = u a [nT s ] < n <

    13. Sampling a Cont. Time Signal - Preliminaries

    Let analog signal u a [t ] have a frequency of F Hz

  • 8/10/2019 Frequency Resposne

    110/250

    u a [t ] = A cos(2 F t + )Uniform sampling rate (T s s) or frequency (F s Hz)

    t = nT s = n

    F su (n ) = u a [nT s ] < n <

    = A cos (2 F T s n + )

    13. Sampling a Cont. Time Signal - Preliminaries

    Let analog signal u a [t ] have a frequency of F Hz

  • 8/10/2019 Frequency Resposne

    111/250

    u a [t ] = A cos(2 F t + )Uniform sampling rate (T s s) or frequency (F s Hz)

    t = nT s = n

    F su (n ) = u a [nT s ] < n <

    = A cos (2 F T s n + )

    = A cos 2 F F s

    n +

  • 8/10/2019 Frequency Resposne

    112/250

    14. Sampling a Cont. Time Signal - Preliminaries

  • 8/10/2019 Frequency Resposne

    113/250

  • 8/10/2019 Frequency Resposne

    114/250

  • 8/10/2019 Frequency Resposne

    115/250

    14. Sampling a Cont. Time Signal - Preliminaries

    In our standard notation,

  • 8/10/2019 Frequency Resposne

    116/250

    u (n ) = A cos (2 fn + )It follows that

    f = F

    F sw =

    F s= T s

    14. Sampling a Cont. Time Signal - Preliminaries

    In our standard notation,

  • 8/10/2019 Frequency Resposne

    117/250

    u (n ) = A cos (2 fn + )It follows that

    f = F

    F sw =

    F s= T s

    Reason to callf normalized frequency, cycles/sample.

    14. Sampling a Cont. Time Signal - Preliminaries

    In our standard notation,

  • 8/10/2019 Frequency Resposne

    118/250

    u (n ) = A cos (2 fn + )It follows that

    f = F

    F sw =

    F s= T s

    Reason to callf normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

  • 8/10/2019 Frequency Resposne

    119/250

  • 8/10/2019 Frequency Resposne

    120/250

    14. Sampling a Cont. Time Signal - Preliminaries

    In our standard notation,

    ( ) ( f )

  • 8/10/2019 Frequency Resposne

    121/250

    u (n ) = A cos (2 fn + )It follows that

    f = F

    F sw =

    F s= T s

    Reason to callf normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

    12 < f ?

    w1 = w0

    15. Properties of Discrete Time Sinusoids - Alias

    As w0 , freq. of oscillation, reaches maximum

    at w0

  • 8/10/2019 Frequency Resposne

    127/250

    at w0 = What if w0 > ?

    w1 = w0w2 = 2 w0

    15. Properties of Discrete Time Sinusoids - Alias

    As w0 , freq. of oscillation, reaches maximum

    at w0 =

  • 8/10/2019 Frequency Resposne

    128/250

    at w0 = What if w0 > ?

    w1 = w0w2 = 2 w0u 1(n ) = A cos w1n

    15. Properties of Discrete Time Sinusoids - Alias

    As w0 , freq. of oscillation, reaches maximum

    at w0 =

  • 8/10/2019 Frequency Resposne

    129/250

    at w0 = What if w0 > ?

    w1 = w0w2 = 2 w0u 1(n ) = A cos w1n = A cos w0n

    15. Properties of Discrete Time Sinusoids - Alias

    As w0 , freq. of oscillation, reaches maximum

    at w0 =

  • 8/10/2019 Frequency Resposne

    130/250

    at w0 = What if w0 > ?

    w1 = w0w2 = 2 w0u 1(n ) = A cos w1n = A cos w0n

    u 2(n ) = A cos w2n

    15. Properties of Discrete Time Sinusoids - Alias

    As w0 , freq. of oscillation, reaches maximum

    at w0 =

  • 8/10/2019 Frequency Resposne

    131/250

    at w0 = What if w0 > ?

    w1 = w0w2 = 2 w0u 1(n ) = A cos w1n = A cos w0n

    u 2(n ) = A cos w2n = A cos(2 w0)n

  • 8/10/2019 Frequency Resposne

    132/250

  • 8/10/2019 Frequency Resposne

    133/250

  • 8/10/2019 Frequency Resposne

    134/250

    16. Properties of Discrete Time Sinusoids - Alias

  • 8/10/2019 Frequency Resposne

    135/250

    16. Properties of Discrete Time Sinusoids - Alias

    u 1[t ] = cos (2 t8

    ) ,

  • 8/10/2019 Frequency Resposne

    136/250

    16. Properties of Discrete Time Sinusoids - Alias

    u 1[t ] = cos (2 t8

    ) , u 2[t ] = cos (2 7t8

    ) ,

  • 8/10/2019 Frequency Resposne

    137/250

    16. Properties of Discrete Time Sinusoids - Alias

    u 1[t ] = cos (2 t8

    ) , u 2[t ] = cos (2 7t8

    ) , T s = 1

  • 8/10/2019 Frequency Resposne

    138/250

    16. Properties of Discrete Time Sinusoids - Alias

    u 1[t ] = cos (2 t8

    ) , u 2[t ] = cos (2 7t8

    ) , T s = 1

    u 2(n ) = cos (2 7n )

  • 8/10/2019 Frequency Resposne

    139/250

    u 2(n ) cos (2 8)

  • 8/10/2019 Frequency Resposne

    140/250

  • 8/10/2019 Frequency Resposne

    141/250

  • 8/10/2019 Frequency Resposne

    142/250

    16. Properties of Discrete Time Sinusoids - Alias

    u 1[t ] = cos (2 t8

    ) , u 2[t ] = cos (2 7t8

    ) , T s = 1

    u 2(n ) = cos (2 7n8) = cos 2 (1 1

    8)n

  • 8/10/2019 Frequency Resposne

    143/250

    2( ) ( 8) (

    8)

    = cos (2 28

    )n = cos (2n

    8) = u 1(n )

    16. Properties of Discrete Time Sinusoids - Alias

    u 1[t ] = cos (2 t8

    ) , u 2[t ] = cos (2 7t8

    ) , T s = 1

    u 2(n ) = cos (2 7n8) = cos 2 (1 1

    8)n

  • 8/10/2019 Frequency Resposne

    144/250

    ( ) (8

    ) (8

    )

    = cos (2 28

    )n = cos (2n

    8) = u 1(n )

    0 0.5 1 1.5 2 2.5 3 3.5 41

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    t

    c o s w t

    Digital Control 16 Kannan M. Moudgalya, Autumn 2007

  • 8/10/2019 Frequency Resposne

    145/250

    17. Fourier Transform of Aperiodic Signals

    X (F ) =

    x ( t )e j 2F t

    dt

  • 8/10/2019 Frequency Resposne

    146/250

    ( ) ( )x ( t ) =

    X (F )e j 2F t dF

    If we let radian frequency = 2 F

    x ( t ) = 12

    X []e j t d,

  • 8/10/2019 Frequency Resposne

    147/250

  • 8/10/2019 Frequency Resposne

    148/250

    18. Frequency Response

  • 8/10/2019 Frequency Resposne

    149/250

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

  • 8/10/2019 Frequency Resposne

    150/250

  • 8/10/2019 Frequency Resposne

    151/250

  • 8/10/2019 Frequency Resposne

    152/250

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    153/250

    =

    k=

    g(k )e jw (n k )

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    154/250

    =

    k=

    g(k )e jw (n k ) = e jwn

    k=

    g(k )e jwk

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    155/250

    =

    k=

    g(k )e jw (n k ) = e jwn

    k=

    g(k )e jwk

    Dene Discrete Time Fourier Transform

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    156/250

    =

    k=

    g(k )e jw (n k ) = e jwn

    k=

    g(k )e jwk

    Dene Discrete Time Fourier Transform

    G (e jw ) =

    k=

    g(k )e jwk

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    157/250

    =

    k=

    g(k )e jw (n k ) = e jwn

    k=

    g(k )e jwk

    Dene Discrete Time Fourier Transform

    G (e jw ) =

    k=

    g(k )e jwk =

    k=

    g(k )z k

    z = e jw

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    158/250

    =

    k=

    g(k )e jw (n k ) = e jwn

    k=

    g(k )e jwk

    Dene Discrete Time Fourier Transform

    G (e jw ) =

    k=

    g(k )e jwk =

    k=

    g(k )z k

    z = e jw

    = G (z ) | z = e jw

    18. Frequency Response

    Apply u (n ) = e jwn to g(n ) and obtain output y:

    y (n ) = g(n ) u (n ) =

    k= g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    159/250

    =

    k=

    g(k )e jw (n k ) = e jwn

    k=

    g(k )e jwk

    Dene Discrete Time Fourier Transform

    G (e jw ) =

    k=

    g(k )e jwk =

    k=

    g(k )z k

    z = e jw

    = G (z ) | z = e jw

    Provided the sequence converges absolutelyDigital Control 18 Kannan M. Moudgalya, Autumn 2007

    19. Frequency Response

  • 8/10/2019 Frequency Resposne

    160/250

  • 8/10/2019 Frequency Resposne

    161/250

    19. Frequency Response

    y (n ) = e jwn

    k= g(k )e jwk

    = e jwn

    G (e jw

    )

  • 8/10/2019 Frequency Resposne

    162/250

    19. Frequency Response

    y (n ) = e jwn

    k= g(k )e jwk

    = e jwn

    G (e jw

    )

  • 8/10/2019 Frequency Resposne

    163/250

    Write in polar coordinates: G (e jw ) = |G (e jw ) | e j - isphase angle:

    y (n ) = e jwn |G (e jw ) | e j

  • 8/10/2019 Frequency Resposne

    164/250

    19. Frequency Response

    y (n ) = e jwn

    k= g(k )e jwk

    = e jwn

    G (e jw

    )

    j j j

  • 8/10/2019 Frequency Resposne

    165/250

    Write in polar coordinates: G (e jw ) = |G (e jw ) | e j - isphase angle:

    y (n ) = e jwn |G (e jw ) | e j = |G (e jwn ) | e j (wn + )

    1. Input is sinusoid output also is a sinusoid with followingproperties:

    19. Frequency Response

    y (n ) = e jwn

    k= g(k )e jwk

    = e jwn

    G (e jw

    )

    j j j

  • 8/10/2019 Frequency Resposne

    166/250

    Write in polar coordinates: G (e jw ) = |G (e jw ) | e j - isphase angle:

    y (n ) = e jwn |G (e jw ) | e j = |G (e jwn ) | e j (wn + )

    1. Input is sinusoid output also is a sinusoid with followingproperties:

    Output amplitude gets multiplied by the magnitude of G (e jw )

  • 8/10/2019 Frequency Resposne

    167/250

  • 8/10/2019 Frequency Resposne

    168/250

    2. At where |G (e jw

    ) | is large, the sinusoid gets amplied

  • 8/10/2019 Frequency Resposne

    169/250

    2. At where |G (e jw

    ) | is large, the sinusoid gets ampliedand at where it is small, the sinusoid gets attenuated.

  • 8/10/2019 Frequency Resposne

    170/250

    2. At where |G (e jw

    ) | is large, the sinusoid gets ampliedand at where it is small, the sinusoid gets attenuated. The system with large gains at low frequencies and small

    gains at high frequencies are called low pass lters

  • 8/10/2019 Frequency Resposne

    171/250

    2. At where |G (e jw

    ) | is large, the sinusoid gets ampliedand at where it is small, the sinusoid gets attenuated. The system with large gains at low frequencies and small

    gains at high frequencies are called low pass lters Similarly high pass lters

  • 8/10/2019 Frequency Resposne

    172/250

    Digital Control 20 Kannan M. Moudgalya, Autumn 2007

    20. Discrete Fourier Transform

  • 8/10/2019 Frequency Resposne

    173/250

    20. Discrete Fourier TransformDene Discrete Time Fourier Transform

  • 8/10/2019 Frequency Resposne

    174/250

  • 8/10/2019 Frequency Resposne

    175/250

    20. Discrete Fourier TransformDene Discrete Time Fourier Transform

    G (e jw

    )

    =

    k= g(k )e

    jwk=

    k= g(k )z

    k

    z = e jw

  • 8/10/2019 Frequency Resposne

    176/250

    20. Discrete Fourier TransformDene Discrete Time Fourier Transform

    G (e jw

    )

    =

    k= g(k )e

    jwk=

    k= g(k )z

    k

    z = e jw

    = G (z ) | jw

  • 8/10/2019 Frequency Resposne

    177/250

    G (z ) | z = e jw

    20. Discrete Fourier Transform

    Dene Discrete Time Fourier Transform

    G (e jw

    )

    =

    k= g(k )e

    jwk

    =

    k= g(k )z

    k

    z = e jw

    = G (z ) | jw

  • 8/10/2019 Frequency Resposne

    178/250

    G (z ) | z = e jw

    Provided, absolute convergence

    k=

    | g(k )e jwk | <

    20. Discrete Fourier Transform

    Dene Discrete Time Fourier Transform

    G (e jw

    )

    =

    k= g(k )e

    jwk

    =

    k= g(k )z

    k

    z = e jw

    = G (z ) | z = e jw

  • 8/10/2019 Frequency Resposne

    179/250

    G (z ) | z = e jw

    Provided, absolute convergence

    k=

    | g(k )e jwk | <

    k=

    | g(k ) | <

  • 8/10/2019 Frequency Resposne

    180/250

    20. Discrete Fourier Transform

    Dene Discrete Time Fourier Transform

    G (e jw

    )

    =

    k= g(k )e

    jwk

    =

    k= g(k )z

    k

    z = e jw

    = G (z ) | z = e jw

  • 8/10/2019 Frequency Resposne

    181/250

    ( ) | z = e j

    Provided, absolute convergence

    k=

    | g(k )e jwk | <

    k=

    | g(k ) | <

    For causal systems, BIBO stability.

  • 8/10/2019 Frequency Resposne

    182/250

    21. FT of Discrete Time Aperiodic Signals - De-nition

  • 8/10/2019 Frequency Resposne

    183/250

    21. FT of Discrete Time Aperiodic Signals - De-nition

  • 8/10/2019 Frequency Resposne

    184/250

    21. FT of Discrete Time Aperiodic Signals - De-nition

    U (e j ) =

    n =

    u (n )e jn

  • 8/10/2019 Frequency Resposne

    185/250

    21. FT of Discrete Time Aperiodic Signals - De-nition

    U (e j ) =

    n =

    u (n )e jn

    1

  • 8/10/2019 Frequency Resposne

    186/250

    u (m ) = 1

    2

    U (e j )e jm d

    21. FT of Discrete Time Aperiodic Signals - De-nition

    U (e j ) =

    n =

    u (n )e jn

    1

  • 8/10/2019 Frequency Resposne

    187/250

    u (m ) = 1

    2

    U (e j )e jm d

    = 1/ 2

    1/ 2U ( f )e j 2f m df

    Digital Control 22 Kannan M. Moudgalya, Autumn 2007

    22. FT of a Moving Average Filter - Example

  • 8/10/2019 Frequency Resposne

    188/250

    22. FT of a Moving Average Filter - Example

    y (n ) = 1

    3[u (n + 1) + u (n ) + u (n 1)]

  • 8/10/2019 Frequency Resposne

    189/250

  • 8/10/2019 Frequency Resposne

    190/250

  • 8/10/2019 Frequency Resposne

    191/250

    22. FT of a Moving Average Filter - Example

    y (n ) = 1

    3[u (n + 1) + u (n ) + u (n 1)]

    y (n ) =

    k=

    g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    192/250

    = g( 1) u (n + 1) + g(0) u (n )

    22. FT of a Moving Average Filter - Example

    y (n ) = 1

    3[u (n + 1) + u (n ) + u (n 1)]

    y (n ) =

    k=

    g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    193/250

    = g( 1) u (n + 1) + g(0) u (n ) + g(1) u (n 1)

    22. FT of a Moving Average Filter - Example

    y (n ) = 1

    3[u (n + 1) + u (n ) + u (n 1)]

    y (n ) =

    k=

    g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    194/250

    = g( 1) u (n + 1) + g(0) u (n ) + g(1) u (n 1)

    g( 1) = g(0) = g(1) = 13

    22. FT of a Moving Average Filter - Example

    y (n ) = 1

    3[u (n + 1) + u (n ) + u (n 1)]

    y (n ) =

    k=

    g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    195/250

    = g( 1) u (n + 1) + g(0) u (n ) + g(1) u (n 1)

    g( 1) = g(0) = g(1) = 13

    G e jw =

    n =

    g(n )z n | z = e jw

  • 8/10/2019 Frequency Resposne

    196/250

    22. FT of a Moving Average Filter - Example

    y (n ) = 1

    3[u (n + 1) + u (n ) + u (n 1)]

    y (n ) =

    k=

    g(k )u (n k )

  • 8/10/2019 Frequency Resposne

    197/250

    = g( 1) u (n + 1) + g(0) u (n ) + g(1) u (n 1)

    g( 1) = g(0) = g(1) = 13

    G e jw =

    n =

    g(n )z n | z = e jw

    = 13

    e jw + 1 + e jw = 13

    (1 + 2 cos w )

    Digital Control 23 Kannan M. Moudgalya, Autumn 2007

    23. FT of a Moving Average Filter - Example

  • 8/10/2019 Frequency Resposne

    198/250

    23. FT of a Moving Average Filter - Example

    G e j = 13

    (1 + 2 cos w )

  • 8/10/2019 Frequency Resposne

    199/250

    23. FT of a Moving Average Filter - Example

    G e j = 13

    (1 + 2 cos w ) , |G e jw | = |13

    (1 + 2 cos w ) |

  • 8/10/2019 Frequency Resposne

    200/250

  • 8/10/2019 Frequency Resposne

    201/250

    23. FT of a Moving Average Filter - Example

    G e j = 13

    (1 + 2 cos w ) , |G e jw | = |13

    (1 + 2 cos w ) |

    Arg (G ) =0 0 w < 2

    3 23 w <

    1 / / U p d a t e d ( 1 8 7 0 7 )

  • 8/10/2019 Frequency Resposne

    202/250

    2 / / 5 . 3

    3

    4 w = 0 : 0 .0 1 : %pi ;5 subplot (2 , 1 , 1 ) ;6 plot2d1 ( g l l ,w,abs (1+2 cos (w) ) / 3 , s t y l e = 2 ) ;7 l a b e l ( ,4 , , Magni tude , 4 ) ;8 subplot (2 , 1 , 2 ) ;9 plot2d1 ( g ln ,w,phasemag (1+2 cos (w) ) , s t y l e = 2 , r e c t =[0

    10 l a b e l ( ,4 , w , Phase ,4)Digital Control 24 Kannan M. Moudgalya, Autumn 2007

  • 8/10/2019 Frequency Resposne

    203/250

    24. FT of a Moving Average Filter - Example

    |G e jw | = |13

    (1 + 2 cos w ) |

  • 8/10/2019 Frequency Resposne

    204/250

  • 8/10/2019 Frequency Resposne

    205/250

  • 8/10/2019 Frequency Resposne

    206/250

    24. FT of a Moving Average Filter - Example

    |G e jw | = |13

    (1 + 2 cos w ) | ,

    Arg (G ) =0 0 w < 2

    3 23 w <

    101

    100

    e

  • 8/10/2019 Frequency Resposne

    207/250

    102

    101

    100

    101

    103

    102

    10

    a g n u

    102

    101

    100

    101

    0

    50

    100

    150

    200

    w

    P h a s e

    Digital Control 25 Kannan M. Moudgalya, Autumn 2007

    25. Additional Properties of Fourier Transform

  • 8/10/2019 Frequency Resposne

    208/250

  • 8/10/2019 Frequency Resposne

    209/250

    25. Additional Properties of Fourier Transform

    Symmetry of real and imaginary parts for real valued sequences

    G e jw =

    n =

    g(n )e jwn

  • 8/10/2019 Frequency Resposne

    210/250

    25. Additional Properties of Fourier Transform

    Symmetry of real and imaginary parts for real valued sequences

    G e jw =

    n =

    g(n )e jwn

    =

    n =

    g(n ) cos wn j

    n =

    g(n )sin wn

  • 8/10/2019 Frequency Resposne

    211/250

  • 8/10/2019 Frequency Resposne

    212/250

  • 8/10/2019 Frequency Resposne

    213/250

    25. Additional Properties of Fourier Transform

    Symmetry of real and imaginary parts for real valued sequences

    G e jw =

    n =

    g(n )e jwn

    =

    n =

    g(n ) cos wn j

    n =

    g(n )sin wn

  • 8/10/2019 Frequency Resposne

    214/250

    G e jw =

    n =

    g(n )e jwn

    =

    n =

    g(n ) cos wn + j

    n =

    g(n ) sin wn

    Re G e jw = Re G e jw

    25. Additional Properties of Fourier Transform

    Symmetry of real and imaginary parts for real valued sequences

    G e jw =

    n =

    g(n )e jwn

    =

    n =

    g(n ) cos wn j

    n =

    g(n )sin wn

  • 8/10/2019 Frequency Resposne

    215/250

    G e jw =

    n =

    g(n )e jwn

    =

    n =

    g(n ) cos wn + j

    n =

    g(n ) sin wn

    Re G e jw = Re G e jw

    Im G e jw = Im G e jwDigital Control 26 Kannan M. Moudgalya, Autumn 2007

    26. Additional Properties of Fourier Transform

  • 8/10/2019 Frequency Resposne

    216/250

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

  • 8/10/2019 Frequency Resposne

    217/250

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

    Symmetry of magnitude for real valued sequences

  • 8/10/2019 Frequency Resposne

    218/250

  • 8/10/2019 Frequency Resposne

    219/250

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

    Symmetry of magnitude for real valued sequences

    |G e jw | = G e jw G e jw1/ 2

    = G e jw G e jw1/ 2

  • 8/10/2019 Frequency Resposne

    220/250

    G e G e

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

    Symmetry of magnitude for real valued sequences

    |G e jw | = G e jw G e jw1/ 2

    = G e jw G e jw1/ 2

  • 8/10/2019 Frequency Resposne

    221/250

    = |G (e jw ) |

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

    Symmetry of magnitude for real valued sequences

    |G e jw | = G e jw G e jw1/ 2

    = G e jw G e jw1/ 2

  • 8/10/2019 Frequency Resposne

    222/250

    = |G (e jw ) |

    This shows that the magnitude is an even function.

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

    Symmetry of magnitude for real valued sequences

    |G e jw | = G e jw G e jw1/ 2

    = G e jw G e jw1/ 2

  • 8/10/2019 Frequency Resposne

    223/250

    = |G (e jw ) |

    This shows that the magnitude is an even function. Similarly,

  • 8/10/2019 Frequency Resposne

    224/250

    26. Additional Properties of Fourier Transform

    Recall

    G e jw = G e jw

    Symmetry of magnitude for real valued sequences

    |G e jw | = G e jw G e jw1/ 2

    = G e jw G e jw1/ 2

  • 8/10/2019 Frequency Resposne

    225/250

    = |G (e jw ) |

    This shows that the magnitude is an even function. Similarly,

    Arg G e jw

    = Arg G e jw

    Bode plots have to be drawn for w in [0, ] only.

    Digital Control 27 Kannan M. Moudgalya, Autumn 2007

    27. Sampling and Reconstruction

  • 8/10/2019 Frequency Resposne

    226/250

    27. Sampling and Reconstruction

    u (n ) = u a (nT s ) , < n <

  • 8/10/2019 Frequency Resposne

    227/250

    27. Sampling and Reconstruction

    u (n ) = u a (nT s ) , < n < Fast sampling:

  • 8/10/2019 Frequency Resposne

    228/250

    27. Sampling and Reconstruction

    u (n ) = u a (nT s ) , < n < Fast sampling:

    U a (F )1

    u a ( t )

    t F

    F s2

    F 0 F s

  • 8/10/2019 Frequency Resposne

    229/250

    F s2

    T sF t

    B B

    F s2

    32

    F s3

    2F s

    u a (nT ) = u (n ) U F F sF s

    F 0 + F sF 0

    Digital Control 28 Kannan M. Moudgalya, Autumn 2007

    28. Slow Sampling Results in Aliasing

  • 8/10/2019 Frequency Resposne

    230/250

  • 8/10/2019 Frequency Resposne

    231/250

    29. What to Do When Aliasing Cannot be Avoided?

  • 8/10/2019 Frequency Resposne

    232/250

  • 8/10/2019 Frequency Resposne

    233/250

  • 8/10/2019 Frequency Resposne

    234/250

  • 8/10/2019 Frequency Resposne

    235/250

    30. Sampling Theorem

    Suppose highest frequency contained in an analogsignal u a ( t ) is F max = B .

  • 8/10/2019 Frequency Resposne

    236/250

    30. Sampling Theorem

    Suppose highest frequency contained in an analogsignal u a ( t ) is F max = B .

    It is sampled at a rate F s > 2F max = 2 B .

  • 8/10/2019 Frequency Resposne

    237/250

    30. Sampling Theorem

    Suppose highest frequency contained in an analogsignal u a ( t ) is F max = B .

    It is sampled at a rate F s > 2F max = 2 B . u a ( t ) can be recovered from its sample values:

  • 8/10/2019 Frequency Resposne

    238/250

    30. Sampling Theorem

    Suppose highest frequency contained in an analogsignal u a ( t ) is F max = B .

    It is sampled at a rate F s > 2F max = 2 B . u a ( t ) can be recovered from its sample values:

    ( t )

    ( T )sin

    Ts( t nT )

  • 8/10/2019 Frequency Resposne

    239/250

    u a ( t ) =n =

    u a (nT s ) T s sT s ( t nT s )

    30. Sampling Theorem

    Suppose highest frequency contained in an analogsignal u a ( t ) is F max = B .

    It is sampled at a rate F s > 2F max = 2 B . u a ( t ) can be recovered from its sample values:

    ( t )

    ( T )sin

    Ts( t nT

    s)

  • 8/10/2019 Frequency Resposne

    240/250

    u a ( t ) =n =

    u a (nT s ) T s sT s ( t nT s )

    If F s = 2 F max , F s is denoted by F N , theNyquist rate.

    30. Sampling Theorem

    Suppose highest frequency contained in an analogsignal u a ( t ) is F max = B .

    It is sampled at a rate F s > 2F max = 2 B . u a ( t ) can be recovered from its sample values:

    ( t )

    ( T )sin

    Ts( t nT

    s)

  • 8/10/2019 Frequency Resposne

    241/250

    u a ( t ) =n =

    u a (nT s ) T s sT s ( t nT s )

    If F s = 2 F max , F s is denoted by F N , theNyquist rate.

    Not causal: check n > 0Digital Control 31 Kannan M. Moudgalya, Autumn 2007

    31. Rules for Sampling Rate Selection

  • 8/10/2019 Frequency Resposne

    242/250

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width

  • 8/10/2019 Frequency Resposne

    243/250

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH

  • 8/10/2019 Frequency Resposne

    244/250

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH Solution:

  • 8/10/2019 Frequency Resposne

    245/250

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH Solution: sample faster

  • 8/10/2019 Frequency Resposne

    246/250

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH Solution: sample faster

    Number of samples in rise time = 4 to 10

  • 8/10/2019 Frequency Resposne

    247/250

    Number of samples in rise time = 4 to 10

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH Solution: sample faster

    Number of samples in rise time = 4 to 10S l 10 30 i b d id h

  • 8/10/2019 Frequency Resposne

    248/250

    Number of samples in rise time = 4 to 10 Sample 10 to 30 times bandwidth

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH Solution: sample faster

    Number of samples in rise time = 4 to 10S l 10 30 i b d id h

  • 8/10/2019 Frequency Resposne

    249/250

    Number of samples in rise time 4 to 10 Sample 10 to 30 times bandwidth Use 10 times Shannons sampling rate

    31. Rules for Sampling Rate Selection

    Minimum sampling rate = twice band width Shannons reconstruction cannot be implemented,

    have to use ZOH Solution: sample faster

    Number of samples in rise time = 4 to 10S l 10 t 30 ti b d idth

  • 8/10/2019 Frequency Resposne

    250/250

    Sample 10 to 30 times bandwidth Use 10 times Shannons sampling rate

    cT s = 0 .15 to 0.5, where,c = crossover frequency

    Digital Control 32 Kannan M. Moudgalya, Autumn 2007