frame me15resch11006 me15mtech11033

4
ASSIGNMENT -1 ME 5130 - FINITE ELEMENT ANALYSIS 1 FINITE ELEMENT PROGRAM FOR FRAME Description of the problem: Consider a portal frame structures shown below. a) Write a finite element program to compute the displacements and rotations at the point of application of load. b) Verify your results by solving the same problem using symmetry/antisymmetry boundary conditions at the point of application of the load/moment. c) Does the solution improve if more than one element is used to discretize each member of the frame. Figure 1: portal Frame Solution: Assumptions used for the finite element program – Material and section properties: Following material and sectional properties are used in the program: Elastic Modulous, E=1 Cross-sectional area, A=1 Length of each element, L=1 Loading and boundary conditions: Frame is fixed at two location, as shown in the figure 1. And an unit load is applied at the center of the frame. Unit system: No specific unit system is used for this problem, as all the inputs to the program are considered as unity.

Upload: sandya-karanam

Post on 24-Jan-2016

214 views

Category:

Documents


3 download

DESCRIPTION

Matlab FEM for Frame

TRANSCRIPT

Page 1: Frame Me15resch11006 Me15mtech11033

ASSIGNMENT -1 ME 5130 - FINITE ELEMENT ANALYSIS              

1    

FINITE ELEMENT PROGRAM FOR FRAME

Description of the problem:

Consider a portal frame structures shown below.

a) Write a finite element program to compute the displacements and rotations at the point of application of load.

b) Verify your results by solving the same problem using symmetry/antisymmetry boundary conditions at the point of application of the load/moment.

c) Does the solution improve if more than one element is used to discretize each member of the frame.

Figure  1:  portal  Frame  

Solution:  

 

Assumptions used for the finite element program –

Material and section properties:

Following material and sectional properties are used in the program:

Elastic Modulous, E=1

Cross-sectional area, A=1

Length of each element, L=1

Loading and boundary conditions:

Frame  is  fixed  at  two  location,  as  shown  in  the  figure  1.  And  an  unit  load  is  applied  at  the  center  of  the  frame.  

Unit system: No specific unit system is used for this problem, as all the inputs to the program are considered as unity.

Page 2: Frame Me15resch11006 Me15mtech11033

ASSIGNMENT -1 ME 5130 - FINITE ELEMENT ANALYSIS              

2    

Strategy followed for the finite element program:

The  program  is  divided  into  three  sections  :  

1) Pre-­‐processing:  At  this  stage  the  frame  is  discretized  into  elements,  typically  the  problem  is  solved  using  1  element  per   frame  member.  Then  nodes  and  elements  were  defined,  node  definition   includes   providing   the   coordinates   of   each   node.   There   are   5   nodes   and   4  elements  to  start  with.  Next  stiffness,  force  and  displacement  matrices  are  initialized  with  zero  values,  the  stiffness  matrix  is  of  the  size  3*number  of  nodes  X    3*number  of  nodes.  Also  based  on  the  boundary  conditions  the  active  number  of  degrees  of  freedom  are  calculated.    

                             Next  The  values  of  A,E,  and  I  are  defined,  local  stiffness  matric  is  defined.  The  local  stiffness  matrix  for  the  frame  is  combination  of  the  stiffness  matrix  of  beam  and  bar.  

Since   the   members   of   frame   are   at   angles   to   each   other,   coordinate   transformation   is  required  to  calculate  the  global  stiffness,  displacement  and  force  matrices.    

2) Processing   :   Global   stiffness   matrix   is   assembled   from   local   stiffness   matrices,   boundary  conditions  are  applied,  loads  are  applied  and  displacement  matrix  is  calculated.      

3) Post-­‐processing:     The   results   from   the   finite   element   program   i.e.   displacement   and  rotations  at  each  node  is  presented.    

 

4) Verification   of   the   results:     At   first   the   calculation   is   performed   considerint   the   complete  frame,  the  displacement  and  rotation  are  as  given  below:    

 

 

 

 

 

 

 

 

 

 

 

 

  Figure  2:  Displacement  and  Rotations  of  the  portal  frame  –  Application  of  force    

 

Page 3: Frame Me15resch11006 Me15mtech11033

ASSIGNMENT -1 ME 5130 - FINITE ELEMENT ANALYSIS              

3    

 

 

 

 

 

 

 

 

 

 

 

                   Figure  3:  Displacement  and  Rotations  of  the  portal  frame  with  symmetric  boundary  conditions.  

 

From   figure   2   &   3   it   can   be   observed   that   the   deformations   and   rotations   of   the   frame   remain  unchanged  if  symmetric  boundary  conditions  are  used.  Next  each  frame  member  was  divided  into  2  elements   to   study   the  effect  of   increasing  number  of   elements  on   the   results,   figure  4   shows   the  results  from  the  FEM  program  with  2  elements  per  member  of  frame.  And  it  can  be  observed  from  the   results   that   the   deformations   and   rotations   are   unchanged   with   increase   in   the   number   of  elements.  

Figure  5  shows  the  results  when  force  is  replaced  with  a  moment.  

 

 

 

 

 

 

 

 

 

 

 

                     Figure  4:  Displacement  and  Rotations  of  the  portal  frame  with  2  elements  per  frame  member  

 

Page 4: Frame Me15resch11006 Me15mtech11033

ASSIGNMENT -1 ME 5130 - FINITE ELEMENT ANALYSIS              

4    

 

 

 

 

 

 

 

 

 

 

 

                   Figure  5:  Displacement  and  Rotations  of  the  portal  frame  –  Application  of  moment,  M3=+1  unit  

 

Analysis  of  run  time  for  the  program:  

Case  1  :  Full  frame,  one  element  per  member    =  0.2783  secs  

Case  2  :  Half  symmetric  frame,  one  element  per  member  =  0.2676  secs  

Case  3:  Full  frame,  two  element  per  member  =  0.3485  sec  

   

-­‐-­‐-­‐:  END  OF  FILE:-­‐-­‐