frame analysis -...

125
FRAME ANALYSIS Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: [email protected]

Upload: hoangdan

Post on 18-Jun-2018

236 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

FRAME ANALYSIS

Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering

Universiti Teknologi Malaysia

Email: [email protected]

Page 2: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Introduction

Building Construction

3D Frame: Beam, Column & Slab

3D Frame: Beam & Column ONLY

2D Frame Analysis

2D Frame Analysis

Page 3: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Introduction: Substitute Frame

Sub-frame: Roof Level

Sub-frame: Other Floor Level

2D Frame Analysis

Page 4: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Types of Frame

Braced Frame • NOT contribute to the overall structural

stability • None lateral actions are transmitted to

columns & beams • Support vertical actions only

Unbraced Frame • Contribute to the overall structural

stability • All lateral actions are transmitted to

columns & beams • Support vertical & lateral actions

Shear wall as bracing members

Page 5: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Methods of Analysis

(i) One-level Sub-frame

(ii) Two-points Sub-frame

Kb1 0.5Kb2 0.5Kb1 0.5Kb3 Kb2

Page 6: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Methods of Analysis

(iii) Continuous Beam and One-point Sub-frame

0.5Kb 0.5Kb

0.5Kb 0.5Kb

Page 7: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Combination of Actions

BS EN 1992-1-1: Cl. 5.1.3

Load Set 1: Alternate or adjacent spans loaded Alternate span carrying the design variable and permanent load (1.35Gk + 1.5Qk), other spans carrying only the design permanent loads (1.35Gk) Any two adjacent spans carrying the design variable and permanent loads (1.35Gk + 1.5Qk), all other spans carrying only the design permanent load (1.35Gk)

Page 8: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Combination of Actions

Alternate Span Loaded Adjacent Span Loaded

1.35Gk

1.5Qk 1.5Qk

Load Set 1

Page 9: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Combination of Actions

Load set 2: All or alternate spans loaded All span carrying the design variable and permanent loads (1.35Gk + 1.5Qk)

Alternate span carrying the design variable and permanent load (1.35Gk + 1.5Qk), other spans carrying only the design permanent loads (1.35Gk)

MALAYSIAN / UK NATIONAL ANNEX

Page 10: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Combination of Actions

All Spans Loaded

Alternate Span Loaded

1.35Gk

1.5Qk

Load Set 2

Page 11: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 1

ACTION ON BEAMS

Page 12: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

2@

4 m

= 8

m

2@

4 m

= 8

m

7@

5 m

= 3

5 m

6 m 6 m 6 m

6 m 6 m 6 m

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

6@

3.5

m =

21

m

4 m

1 m

Example 1

Page 13: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 1: Action on Beams

Loading Data Finishes, ceiling & services = 0.75 kN/m2

Concrete density = 25 kN/m3

Variable action = 4 kN/m2

Partition = 0.50 kN/m2

Structural Dimensions Slab thickness, h = 150 mm Beam size, b h = 250 600 mm Column size, b h = 300 400 mm

Page 14: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 1: Action on Beams

Load on Slab Slab self weight = 0.15 m 25 kN/m3 = 3.75 kN/m2

Finishes, ceiling, services = 1.25 kN/m2

Characteristics permanent action, gk = 5.00 kN/m2

Imposed load = 4.00 kN/m2

Partition = 0.50 kN/m2 Characteristics variable action, qk = 4.50 kN/m2

Other Loads on Beam Beam self weight = 0.25 m (0.60 – 0.15) m 25 kN/m3 = 2.81 kN/m

Page 15: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 1: Action on Beams

6 m 6 m 6 m

5 m

4 m 0.47

0.42

0.45

0.39

0.47

0.42

𝐿𝑦𝐿𝑥=6

4= 1.50 (𝐶𝑎𝑠𝑒 2)

𝐿𝑦𝐿𝑥=6

5= 1.20 (𝐶𝑎𝑠𝑒 2)

𝐿𝑦𝐿𝑥=6

4= 1.50 (𝐶𝑎𝑠𝑒 1)

𝐿𝑦𝐿𝑥=6

5= 1.20 (𝐶𝑎𝑠𝑒 1)

𝐿𝑦𝐿𝑥=6

4= 1.50 (𝐶𝑎𝑠𝑒 2)

𝐿𝑦𝐿𝑥=6

5= 1.20 (𝐶𝑎𝑠𝑒 2)

Page 16: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 1: Action on Beams

0.47

0.42

0.45

0.39

0.47

0.42

Gk = Permanent action on slab + Beam self weight = (0.47 5.00 4) + (0.42 5.00 5) + 2.81 = 22.71 kN/m

Qk = Variable action on slab = (0.47 4.50 4) + (0.42 4.50 5) = 17.91 kN/m

Gk = Permanent action on slab + Beam self weight = (0.45 5.00 4) + (0.39 5.00 5) + 2.81 = 21.56 kN/m

Qk = Variable action on slab = (0.45 4.50 4) + (0.39 4.50 5) = 16.88 kN/m

Page 17: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 1: Action on Beams

wmax = 1.35Gk + 1.5Qk = 57.53 kN/m wmin = 1.35Gk = 30.66 kN/m

wmax = 1.35Gk + 1.5Qk = 54.42 kN/m wmin = 1.35Gk = 29.11 kN/m

6 m 6 m 6 m

wmax = 1.35Gk + 1.5Qk = 57.53 kN/m wmin = 1.35Gk = 30.66 kN/m

Page 18: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2

ANALYSIS OF ONE-LEVEL SUB-FRAME

Page 19: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

2@

4 m

= 8

m

2@

4 m

= 8

m

7@

5 m

= 3

5 m

6 m 6 m 6 m

6 m 6 m 6 m

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

6@

3.5

m =

21

m

4 m

1 m

Example 2

Page 20: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

6 m 6 m 6 m

3.5 m

4 m

wmax = 57.53 kN/m wmin = 30.66 kN/m

wmax = 57.53 kN/m wmin = 30.66 kN/m wmax = 54.42 kN/m

wmin = 29.11 kN/m

A B C D

Kc,l

Kc,u

Analysis using LOAD SET 1

KAB KBC KCD

Page 21: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Structural Dimension Beam: 250 mm 600 mm Column: 300 mm 400 mm

Moment of Inertia, I = bh3/12

Beam: 250×6003

12= 4.5 × 109 𝑚𝑚4

Column: 300×4003

12= 1.6 × 109 𝑚𝑚4

Stiffness, K = I/L

Beam: 𝐾𝐴𝐵 = 𝐾𝐵𝐶 = 𝐾𝐶𝐷 =4.5×109

6000= 7.5 × 105 𝑚𝑚3

Column: 𝐾𝑐,𝑢 =1.6×109

3500= 4.6 × 105 𝑚𝑚3

𝐾𝑐,𝑙 =1.6×109

4000= 4.0 × 105 𝑚𝑚3

Page 22: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Distribution Factor, F = K/K

Joint A & Joint D: 𝐹𝐴𝐵, 𝐶𝐷 =𝐾𝐴𝐵, 𝐶𝐷

𝐾𝐴𝐵, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.47

𝐹𝑐,𝑢 =𝐾𝑐,𝑢

𝐾𝐴𝐵, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.28

𝐹𝑐,𝑙 =𝐾𝑐,𝑙

𝐾𝐴𝐵, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.25

Joint B & Joint C: 𝐹𝐵𝐴, 𝐶𝐵 =𝐾𝐴𝐵, 𝐵𝐶

𝐾𝐴𝐵, 𝐵𝐶+𝐾𝐵𝐶, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.32

𝐹𝐵𝐶, 𝐶𝐷 =𝐾𝐵𝐶, 𝐶𝐷

𝐾𝐴𝐵, 𝐵𝐶+𝐾𝐵𝐶, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.32

𝐹𝑐,𝑢 =𝐾𝑐,𝑢

𝐾𝐴𝐵, 𝐵𝐶+𝐾𝐵𝐶, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.19

𝐹𝑐,𝑙 =𝐾𝑐,𝑙

𝐾𝐴𝐵, 𝐵𝐶+𝐾𝐵𝐶, 𝐶𝐷+𝐾𝑐,𝑢+𝐾𝑐,𝑙= 0.17

Page 23: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

CASE 1: Span 1 & 2 = wmax, Span 3 = wmin

Fixed End Moment

𝑀𝐴𝐵 = 𝑀𝐵𝐴 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

𝑀𝐵𝐶 =𝑤𝐿2

12=54.4 × 62

12= 163.3 𝑘𝑁𝑚

𝑀𝐶𝐷 =𝑤𝐿2

12=30.7 × 62

12= 92.0 𝑘𝑁𝑚

6 m 6 m 6 m

3.5 m

4 m

wmax = 57.5 kN/m

wmin = 30.7 kN/m wmax = 54.4 kN/m

A B C D

Span 1 Span 2 Span 3

Page 24: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

51.00 -8.46 -8.71 -24.07

0.18 -0.27 0.29 -0.09

1.31 -0.78 0.38 -1.04

0.42 -0.56 4.45 3.23

49.09 -1.81 -13.82 -26.16

0.28 A B 0.19 C 0.19 D 0.28

0.25 0.47 0.32 0.17 0.32 0.32 0.17 0.32 0.47 0.25

-172.6 172.6 -163.3 163.3 -92.0 92.0

43.0 80.5 -3.0 -1.6 -3.0 -22.7 -12.1 -22.7 -42.9 -22.9

-1.5 40.3 -11.3 -1.5 -21.5 -11.3

0.4 0.7 -9.2 -4.9 -9.2 7.3 3.9 7.3 5.3 2.8

-4.6 0.3 3.7 -4.6 2.6 3.7

1.1 2.1 -1.3 -0.7 -1.3 0.6 0.3 0.6 -1.7 -0.9

-0.6 1.1 0.3 -0.6 -0.9 0.3

0.2 0.3 -0.4 -0.2 -0.4 0.5 0.3 0.5 -0.1 -0.1

44.6 -95.6 200.4 -7.4 -184.5 142.3 -7.6 -125.9 45.1 -21.1

Moment Distribution Method

Page 25: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

51.00 -8.46 -8.71 -24.07

0.18 -0.27 0.29 -0.09

1.31 -0.78 0.38 -1.04

0.42 -0.56 4.45 3.23

49.09 -1.81 -13.82 -26.16

0.28 A B 0.19 C 0.19 D 0.28

0.25 0.47 0.32 0.17 0.32 0.32 0.17 0.32 0.47 0.25

-172.6 172.6 -163.3 163.3 -92.0 92.0

43.0 80.5 -3.0 -1.6 -3.0 -22.7 -12.1 -22.7 -42.9 -22.9

-1.5 40.3 -11.3 -1.5 -21.5 -11.3

0.4 0.7 -9.2 -4.9 -9.2 7.3 3.9 7.3 5.3 2.8

-4.6 0.3 3.7 -4.6 2.6 3.7

1.1 2.1 -1.3 -0.7 -1.3 0.6 0.3 0.6 -1.7 -0.9

-0.6 1.1 0.3 -0.6 -0.9 0.3

0.2 0.3 -0.4 -0.2 -0.4 0.5 0.3 0.5 -0.1 -0.1

44.6 -95.6 200.4 -7.4 -184.5 142.3 -7.6 -125.9 45.1 -21.1

Moment in the COLUMN at each joint

Page 26: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

51.00 -8.46 -8.71 -24.07

0.18 -0.27 0.29 -0.09

1.31 -0.78 0.38 -1.04

0.42 -0.56 4.45 3.23

49.09 -1.81 -13.82 -26.16

0.28 A B 0.19 C 0.19 D 0.28

0.25 0.47 0.32 0.17 0.32 0.32 0.17 0.32 0.47 0.25

-172.6 172.6 -163.3 163.3 -92.0 92.0

43.0 80.5 -3.0 -1.6 -3.0 -22.7 -12.1 -22.7 -42.9 -22.9

-1.5 40.3 -11.3 -1.5 -21.5 -11.3

0.4 0.7 -9.2 -4.9 -9.2 7.3 3.9 7.3 5.3 2.8

-4.6 0.3 3.7 -4.6 2.6 3.7

1.1 2.1 -1.3 -0.7 -1.3 0.6 0.3 0.6 -1.7 -0.9

-0.6 1.1 0.3 -0.6 -0.9 0.3

0.2 0.3 -0.4 -0.2 -0.4 0.5 0.3 0.5 -0.1 -0.1

44.6 -95.6 200.4 -7.4 -184.5 142.3 -7.6 -125.9 45.1 -21.1

Moment in the BEAM at each joint

Page 27: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

6 m

wmax = 57.5 kN/m

95.6 200.4

VAB VBA

wmax = 54.4 kN/m

6 m

184.5 142.3

VBC VCB

wmin = 30.7 kN/m

6 m

125.9 45.1

VCD VDC

Solve for each span using equilibrium method of analysis: VAB = 155.1 kN VBA = 190.0 kN VBC = 170.3 kN VCB = 156.2 kN VCD = 105.5 kN VDC = 78.5 kN

Reaction Calculation at Support

Page 28: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Shear Force and Bending Moment Diagram

SFD (kN)

BMD (kNm)

155.1

190.0

170.3

105.5

156.2 78.5

95.6

113.5

200.4

82.0 55.4

142.3 184.5

125.9

45.1 51.0 44.6

22.3

25.5

8.5 7.4 8.7 7.6

24.1 21.1

12.1

3.8 10.6 3.7

4.3 4.4

2.7 m 3.1 m 3.4 m

Page 29: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Do the same for Load CASE 2, CASE 3 & CASE 4

SELF STUDY !!! CASE 2: Span 2 & 3 = wmax, Span 1 = wmin

6 m 6 m 6 m

3.5 m

4 m

wmin = 30.7 kN/m

wmax = 57.5 kN/m wmax = 54.4 kN/m

A B C D

Span 1 Span 2 Span 3

Page 30: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Do the same for Load CASE 2, CASE 3 & CASE 4

SELF STUDY !!! CASE 3: Span 1 & 3 = wmax, Span 2 = wmin

6 m 6 m 6 m

3.5 m

4 m

wmax = 57.5 kN/m wmax = 57.5 kN/m wmin = 29.1 kN/m

A B C D

Span 1 Span 2 Span 3

Page 31: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Do the same for Load CASE 2, CASE 3 & CASE 4

SELF STUDY !!! CASE 4: Span 1 & 3 = wmin, Span 2 = wmax

6 m 6 m 6 m

3.5 m

4 m

wmin = 30.7 kN/m wmin = 30.7 kN/m wmax = 54.4 kN/m

A B C D

Span 1 Span 2 Span 3

Page 32: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Shear Force and Bending Moment Envelope

SFD (kN)

BMD (kNm)

95.6

113.5

200.4

82.0, 82.0 55.4

142.3

184.5

125.9

45.1

Case 1 Case 2 Case 3 Case 4

45.1 125.9

142.3 95.6

55.4

113.5

184.5 200.4

123.0

168.8 104.5

18.4

112.6 112.6

168.8

123.0

104.5

54.1 43.8

130.9

91.5

153.4 153.4

43.8 54.1

130.9

155.1

190.0, 190.0

170.3, 170.3

105.5

156.2 78.5

78.5

105.5

156.2

170.3, 170.3

190.0, 190.0

155.1

161.9, 161.9

183.2

87.3

87.3

183.2

161.9, 161.9

Page 33: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 2: Analysis of One Level Sub-Frame

Shear Force and Bending Moment Envelope

SFD (kN)

BMD (kNm) 55.9

48.9 30.0 26.2 30.0 26.2

55.9 48.9

155.1

190.0, 190.0

170.3, 170.3

105.5

156.2 78.5

78.5

105.5

156.2

170.3, 170.3

190.0, 190.0

155.1

161.9, 161.9

183.2

87.3

87.3

183.2

161.9, 161.9 Case 1 Case 2 Case 3 Case 4

Page 34: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 3

ANALYSIS OF TWO FREE-JOINT SUB-FRAME

Page 35: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

2@

4 m

= 8

m

2@

4 m

= 8

m

7@

5 m

= 3

5 m

6 m 6 m 6 m

6 m 6 m 6 m

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

6@

3.5

m =

21

m

4 m

1 m

Example 3

Page 36: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

CASE 1: Span 1 & 2 = wmax

Stiffness, K = I/L

Beam: 𝐾𝐴𝐵 =4.5×109

6000= 7.5 × 105 𝑚𝑚3

𝐾𝐵𝐶 = 0.5 ×4.5×109

6000= 3.75 × 105 𝑚𝑚3

Column: 𝐾𝑐,𝑢 =1.6×109

3500= 4.6 × 105 𝑚𝑚3

𝐾𝑐,𝑙 =1.6×109

4000= 4.0 × 105 𝑚𝑚3

Example 3: Analysis of Two Free-Joint Sub-Frame

6 m 6 m

3.5 m

4 m

wmax = 57.5 kN/m wmax = 54.4 kN/m

A B

Span 1 Span 2

C

Span

AB

Page 37: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 3: Analysis of Two Free-Joint Sub-Frame

Distribution Factor, F = K/K

Joint A: 𝐹𝐴𝐵 =7.5

7.5+4.6+4.0= 0.47

𝐹𝑐,𝑢 =4.6

7.5+4.6+4.0= 0.28

𝐹𝑐,𝑙 =4.0

7.5+4.6+4.0= 0.25

Joint B: 𝐹𝐵𝐴 =7.5

7.5+3.75+4.6+4.0= 0.38

𝐹𝐵𝐶 =3.75

7.5+3.75+4.6+4.0= 0.19

𝐹𝑐,𝑢 =4.6

7.5+3.75+4.6+4.0= 0.23

𝐹𝑐,𝑙 =4.0

7.5+3.75+4.6+4.0= 0.20

51.0 -11.9

0.0 -0.4

2.2 -0.1

0.5 -9.3

48.3 -2.1

0.28 A B 0.23

0.25 0.47 0.38 0.20 0.19

-172.6 172.6 -163.3

43.1 81.1 -3.5 -1.9 -1.8

-1.8 40.6 0.0

0.4 0.8 -15.4 -8.1 -7.7

-7.7 0.4 0.0

1.9 3.6 -0.2 -0.1 -0.1

-0.1 1.8 0.0

0.0 0.0 -0.7 -0.4 -0.3

45.4 -96.7 195.6 -10.5 -173.2

Moment Distribution Method Fixed End Moment

𝑀𝐴𝐵 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

𝑀𝐵𝐶 =𝑤𝐿2

12=54.4 × 62

12= 163.3 𝑘𝑁𝑚

Span

AB

Page 38: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

CASE 2: Span 1 = wmax , Span 2 = wmin

6 m 6 m

3.5 m

4 m

wmax = 57.5 kN/m

wmin = 29.11 kN/m

A B

Span 1 Span 2

Example 3: Analysis of Two Free-Joint Sub-Frame

55.2 -30.2

0.2 -0.4

2.2 -0.9

4.5 -9.3

48.3 -19.6

0.28 A B 0.23

0.25 0.47 0.38 0.20 0.19

-172.6 172.6 -87.3

43.1 81.1 -32.4 -17.1 -16.2

-16.2 40.5 0.0

4.0 7.6 -15.4 -8.1 -7.7

-7.7 3.8 0.0

1.9 3.6 -1.4 -0.8 -0.7

-0.7 1.8 0.0

0.2 0.3 -0.7 -0.4 -0.3

49.2 -105.1 168.8 -26.4 -112.2

Moment Distribution Method

C

Span

AB

Page 39: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Reaction Calculation at Support

Example 3: Analysis of Two Free-Joint Sub-Frame

6 m

wmax = 57.5 kN/m

96.7 195.6

VAB VBA

Solve for each span using equilibrium method of analysis: VAB = 156.2 kN VBA = 189.0 kN

CASE 1

wmax = 57.5 kN/m

6 m

105.1 168.8

VAB VBA

Solve for each span using equilibrium method of analysis: VAB = 162.0 kN VBA = 183.2 kN

CASE 2

Span

AB

Page 40: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Shear Force and Bending Moment Diagram

Example 3: Analysis of Two Free-Joint Sub-Frame

156.2

189.0

183.2

162.0

105.1

168.8 97.1

195.4

30.2 49.0 56.0

26.4

SFD (kN)

BMD (kNm)

114.9

122.9

Span

AB

Page 41: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 3: Analysis of Two Free-Joint Sub-Frame

CASE 1: Span 1 & 2 = wmax, Span 3 = wmin

6 m 6 m 6 m

3.5 m

4 m

wmax = 57.5 kN/m

wmin = 30.7 kN/m wmax = 54.4 kN/m

B C

Span 1 Span 2 Span 3

A D

Span

BC

Page 42: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 3: Analysis of Two Free-Joint Sub-Frame

Distribution Factor, F = K/K

Joint B: 𝐹𝐵𝐴 =3.75

3.75+7.5+4.6+4.0= 0.19

𝐹𝐵𝐶 =7.5

3.75+7.5+4.6+4.0= 0.38

𝐹𝑐,𝑢 =4.6

3.75+7.5+4.6+4.0= 0.23

𝐹𝑐,𝑙 =4.0

3.75+7.5+4.6+4.0= 0.20

Joint C: 𝐹𝐶𝐵 =7.5

3.75+7.5+4.6+4.0= 0.38

𝐹𝐶𝐷 =3.75

3.75+7.5+4.6+4.0= 0.19

𝐹𝑐,𝑢 =4.6

3.75+7.5+4.6+4.0= 0.23

𝐹𝑐,𝑙 =4.0

3.75+7.5+4.6+4.0= 0.20

Fixed End Moment

𝑀𝐴𝐵 = 𝑀𝐵𝐴 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

𝑀𝐵𝐶 = 𝑀𝐶𝐵 =𝑤𝐿2

12=54.4 × 62

12= 163.3 𝑘𝑁𝑚

𝑀𝐶𝐷 = 𝑀𝐷𝐶 =𝑤𝐿2

12=30.7 × 62

12= 92.0 𝑘𝑁𝑚

Stiffness, K = I/L

Beam: 𝐾𝐴𝐵 = 𝐾𝐵𝐶 = 0.5 ×4.5×109

6000= 3.75 × 105 𝑚𝑚3

𝐾𝐵𝐶 =4.5×109

6000= 7.5 × 105 𝑚𝑚3

Column: 𝐾𝑐,𝑢 =1.6×109

3500= 4.6 × 105 𝑚𝑚3

𝐾𝑐,𝑙 =1.6×109

4000= 4.0 × 105 𝑚𝑚3

Span

BC

Page 43: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

1.00 -16.61

0.11 0.01

-0.08 -0.59

3.11 0.41

-2.15 -16.44

B 0.23 C 0.23

0.19 0.20 0.38 0.38 0.20 0.19

172.6 -163.3 163.3 -92.0

-1.8 -1.9 -3.5 -27.0 -14.4 -13.5

0.0 -13.5 -1.8 0.0

2.6 2.7 5.1 0.7 0.4 0.3

0.0 0.3 2.6 0.0

-0.1 -0.1 -0.1 -1.0 -0.5 -0.5

0.0 -0.5 -0.1 0.0

0.1 0.1 0.2 0.0 0.0 0.0

173.4 0.9 -175.3 136.7 -14.5 -105.6

Moment Distribution Method

Example 3: Analysis of Two Free-Joint Sub-Frame

Span

BC

Page 44: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 3: Analysis of Two Free-Joint Sub-Frame

CASE 2: Span 2 = wmax, Span 1 & 3 = wmin

6 m 6 m 6 m

3.5 m

4 m

wmax = 30.7 kN/m wmin = 30.7 kN/m wmax = 54.4 kN/m

B C

Span 1 Span 2 Span 3

A D

Span

BC

Page 45: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 3: Analysis of Two Free-Joint Sub-Frame

Distribution Factor, F = K/K

Joint B: 𝐹𝐵𝐴 =3.75

3.75+7.5+4.6+4.0= 0.19

𝐹𝐵𝐶 =7.5

3.75+7.5+4.6+4.0= 0.38

𝐹𝑐,𝑢 =4.6

3.75+7.5+4.6+4.0= 0.23

𝐹𝑐,𝑙 =4.0

3.75+7.5+4.6+4.0= 0.20

Joint C: 𝐹𝐶𝐵 =7.5

3.75+7.5+4.6+4.0= 0.38

𝐹𝐶𝐷 =3.75

3.75+7.5+4.6+4.0= 0.19

𝐹𝑐,𝑢 =4.6

3.75+7.5+4.6+4.0= 0.23

𝐹𝑐,𝑙 =4.0

3.75+7.5+4.6+4.0= 0.20

Fixed End Moment

𝑀𝐴𝐵 = 𝑀𝐵𝐴 =𝑤𝐿2

12=30.7 × 62

12= 92.0 𝑘𝑁𝑚

𝑀𝐵𝐶 = 𝑀𝐶𝐵 =𝑤𝐿2

12=54.4 × 62

12= 163.3 𝑘𝑁𝑚

𝑀𝐶𝐷 = 𝑀𝐷𝐶 =𝑤𝐿2

12=30.7 × 62

12= 92.0 𝑘𝑁𝑚

Stiffness, K = I/L

Beam: 𝐾𝐴𝐵 = 𝐾𝐵𝐶 = 0.5 ×4.5×109

6000= 3.75 × 105 𝑚𝑚3

𝐾𝐵𝐶 =4.5×109

6000= 7.5 × 105 𝑚𝑚3

Column: 𝐾𝑐,𝑢 =1.6×109

3500= 4.6 × 105 𝑚𝑚3

𝐾𝑐,𝑙 =1.6×109

4000= 4.0 × 105 𝑚𝑚3

Span

BC

Page 46: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

20.25 -20.25

0.11 0.11

0.59 -0.59

3.11 -3.11

16.44 -16.44

B 0.23 C 0.23

0.19 0.20 0.38 0.38 0.20 0.19

92.0 -163.3 163.3 -92.0

13.5 14.4 27.0 -27.0 -14.4 -13.5

0.0 -13.5 13.5 0.0

2.6 2.7 5.1 -5.1 -2.7 -2.6

0.0 -2.6 2.6 0.0

0.5 0.5 1.0 -1.0 -0.5 -0.5

0.0 -0.5 0.5 0.0

0.1 0.1 0.2 -0.2 -0.1 -0.1

108.6 17.7 -146.6 146.6 -14.5 -108.6

Moment Distribution Method

Example 3: Analysis of Two Free-Joint Sub-Frame

Span

BC

Page 47: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Reaction Calculation at Support

Example 3: Analysis of Two Free-Joint Sub-Frame

6 m

wmax = 54.4 kN/m

175.3 136.7

VBC VCB

Solve for each span using equilibrium method of analysis: VBC = 169.7 kN VCB = 156.8 kN

CASE 1

wmax = 54.4 kN/m

6 m

146.6 146.6

VBC VCB

Solve for each span using equilibrium method of analysis: VCB = 163.3 kN VCB = 163.3 kN

CASE 2

Span

BC

Page 48: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Shear Force and Bending Moment Diagram

Example 3: Analysis of Two Free-Joint Sub-Frame

163.3

163.3

156.8

169.7

175.3

146.6 146.6

195.4

17.7 17.7 20.2 20.2

SFD (kN)

BMD (kNm) 89.3

98.3

Span

BC

Page 49: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4

CONTINUOUS BEAM + ONE FREE-JOINT SUB-FRAME

Page 50: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4

2@

4 m

= 8

m

2@

4 m

= 8

m

7@

5 m

= 3

5 m

6 m 6 m 6 m

6 m 6 m 6 m

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

6@

3.5

m =

21

m

4 m

1 m

Page 51: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

6 m 6 m 6 m

A B C D

Moment of Inertia

𝐼𝑏𝑒𝑎𝑚 =𝑏ℎ3

12=250 × 6003

12= 4.5 × 109 𝑚𝑚4

Stiffness, K = I/L

𝐾𝐴𝐵 = 𝐾𝐶𝐷 = 0.75 ×𝐼𝑏𝑒𝑎𝑚𝐿

= 0.75 ×4.5 × 109

6000= 5.63 × 105 𝑚𝑚3

𝐾𝐵𝐶 =𝐼𝑏𝑒𝑎𝑚𝐿

=4.5 × 109

6000= 7.5 × 105 𝑚𝑚3

Distribution Factor, F = K/K

Joint A: 𝐹𝐵𝐴 =5.63

5.63+0= 1.00

Joint B: 𝐹𝐵𝐴 =5.63

5.63+7.5= 0.43

𝐹𝐵𝐶 =7.5

5.63+7.5= 0.57

Joint C: 𝐹𝐵𝐶 =7.5

5.63+7.5= 0.57

𝐹𝐶𝐷 =5.63

7.5+5.63= 0.43

Joint D: 𝐹𝐷𝐶 =5.63

5.63+0= 1.00

Load Set 1

Page 52: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

CASE 1: Span 1 & 2 = wmax, Span 3 = wmin

6 m 6 m 6 m

A B C D

wmax = 57.5 kN/m

wmin = 30.7 kN/m wmax = 54.4 kN/m

Span 1 Span 2 Span 3

Fixed End Moment, FEM

𝑀𝐴𝐵 = 𝑀𝐵𝐴 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

𝑀𝐵𝐶 = 𝑀𝐶𝐵 =𝑤𝐿2

12=54.4 × 62

12= 163.3 𝑘𝑁𝑚

𝑀𝐶𝐷 = 𝑀𝐷𝐶 =𝑤𝐿2

12=30.7 × 62

12= 92.0 𝑘𝑁𝑚

Page 53: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

0.00 1.00 0.43 0.57 0.57 0.43 1.00 0.00

-172.6 172.6 -163.3 163.3 -92.0 92.0

172.6 -4.0 -5.3 -40.7 -30.5 -92.0

86.3 -20.4 -2.7 -46.0

-28.3 -37.7 27.8 20.9

13.9 -18.8

-6.0 -7.9 10.8 8.1

5.4 -4.0

-2.3 -3.1 2.3 1.7

1.1 -1.5

-0.5 -0.6 0.9 0.7

0.00 217.9 -217.9 137.2 -137.2 0.00

Moment Distribution Method

A B C D

Page 54: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

VAB VBA VBC

6 m

wmax = 57.5 kN/m

217.9

wmax = 54.4 kN/m

6 m

217.9 137.2

VCB

wmin = 30.7 kN/m

6 m

137.2

VCD VDC

Solve for each span using equilibrium method of analysis: VAB = 136.3 kN VBA = 208.9 kN VBC = 176.7 kN VCB = 149.8 kN VCD = 114.9 kN VDC = 69.1 kN

Reaction Calculation at Support

Page 55: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Do the same for Load CASE 2, CASE 3 & CASE 4

SELF STUDY !!!

CASE 2: Span 2 & 3 = wmax, Span 1 = wmin

6 m 6 m 6 m

A B C D

wmax = 57.5 kN/m

wmin = 30.7 kN/m wmax = 54.4 kN/m

Span 1 Span 2 Span 3

Page 56: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Do the same for Load CASE 2, CASE 3 & CASE 4

SELF STUDY !!!

CASE 3: Span 1 & 3 = wmax, Span 2 = wmin

6 m 6 m 6 m

A B C D

wmax = 57.5 kN/m wmax = 57.5 kN/m

wmin = 29.1 kN/m

Span 1 Span 2 Span 3

Page 57: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Do the same for Load CASE 2, CASE 3 & CASE 4

SELF STUDY !!!

CASE 4: Span 2 = wmax, Span 1 & 3 = wmin

6 m 6 m 6 m

A B C D

wmin = 30.7 kN/m wmin = 30.7 kN/m

wmax = 54.4 kN/m

Span 1 Span 2 Span 3

FINALLY DO THE SFD & BMD ENVELOPE !!!

Page 58: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

6 m

3.5 m

4 m

wmax = 57.5 kN/m

Kc,l

Kc,u

0.5KAB

Fixed End Moment, FEM

𝑀𝐴𝐵 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

Moment of Inertia, I = bh3/12

Beam: 250×6003

12= 4.5 × 109 𝑚𝑚4

Column: 300×4003

12= 1.6 × 109 𝑚𝑚4

Stiffness, K = I/L

Beam: 𝐾𝐴𝐵 = 𝐾𝐵𝐶 = 𝐾𝐶𝐷 =4.5×109

6000= 7.5 × 105 𝑚𝑚3

Column: 𝐾𝑐,𝑢 =1.6×109

3500= 4.6 × 105 𝑚𝑚3

𝐾𝑐,𝑙 =1.6×109

4000= 4.0 × 105 𝑚𝑚3

Column A

Page 59: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

Moment in upper column, Mupper

𝑀𝑢𝑝𝑝𝑒𝑟 = 𝐹𝐸𝑀 ×𝐾𝑐,𝑢

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐴𝐵= 172.6 ×

4.6

4.6+4.0+0.5×7.5= 𝟔𝟒. 𝟑 kNm

Moment in lower column, Mlower

𝑀𝑢𝑝𝑝𝑒𝑟 = 𝐹𝐸𝑀 ×𝐾𝑐,𝑙

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐴𝐵= 172.6 ×

4.0

4.6+4.0+0.5×7.5= 𝟓𝟔. 𝟎 kNm

64.3 56.0

Page 60: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

Fixed End Moment, FEM

𝑀𝐵𝐴 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

𝑀𝐵𝐶 =𝑤𝐿2

12=29.1 × 62

12= 87.3 𝑘𝑁𝑚

∆𝐹𝐸𝑀 = 𝑀𝐴𝐵 −𝑀𝐵𝐶 = 𝟖𝟓. 𝟑 𝒌𝑵𝒎

6 m 6 m

3.5 m

4 m

wmax = 57.5 kN/m

wmin = 29.1 kN/m

Kc,l

Kc,u

0.5KAB 0.5KBC

Column B

Page 61: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

Moment in upper column, Mupper

𝑀𝑢𝑝𝑝𝑒𝑟 = ∆𝐹𝐸𝑀 ×𝐾𝑐,𝑢

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐴𝐵+0.5𝐾𝐵𝐶= 85.3 ×

4.6

4.6+4.0+0.5×7.5+0.5×7.5= 𝟐𝟒. 𝟐 kNm

Moment in lower column, Mlower

𝑀𝑢𝑝𝑝𝑒𝑟 = ∆𝐹𝐸𝑀 ×𝐾𝑐,𝑙

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐴𝐵+0.5𝐾𝐵𝐶= 85.3 ×

4.0

4.6+4.0+0.5×7.5+0.5×7.5= 𝟐𝟏. 𝟐 kNm

21.2 24.2

Page 62: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

Fixed End Moment, FEM

𝑀𝐵𝐶 =𝑤𝐿2

12=29.1 × 62

12= 87.3 𝑘𝑁𝑚

𝑀𝐶𝐷 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

∆𝐹𝐸𝑀 = 𝑀𝐶𝐷 −𝑀𝐵𝐶 = 𝟖𝟓. 𝟑 𝒌𝑵𝒎

6 m 6 m

3.5 m

4 m

wmin = 29.1 kN/m wmax = 57.5 kN/m

Kc,l

Kc,u

0.5KBC 0.5KCD

Column C

Page 63: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

Moment in upper column, Mupper

𝑀𝑢𝑝𝑝𝑒𝑟 = ∆𝐹𝐸𝑀 ×𝐾𝑐,𝑢

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐵𝐶+0.5𝐾𝐶𝐷= 85.3 ×

4.6

4.6+4.0+0.5×7.5+0.5×7.5= 𝟐𝟒. 𝟐 kNm

Moment in lower column, Mlower

𝑀𝑢𝑝𝑝𝑒𝑟 = ∆𝐹𝐸𝑀 ×𝐾𝑐,𝑙

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐵𝐶+0.5𝐾𝐶𝐷= 85.3 ×

4.0

4.6+4.0+0.5×7.5+0.5×7.5= 𝟐𝟏. 𝟐 kNm

24.2 21.2

Page 64: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

6 m

3.5 m

4 m

wmax = 57.5 kN/m

Kc,l

Kc,u

0.5KCD

Fixed End Moment, FEM

𝑀𝐷𝐶 =𝑤𝐿2

12=57.5 × 62

12= 172.6 𝑘𝑁𝑚

Column D

Page 65: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 4: Continuous Beam + One Free-Joint Sub-Frame

Sub-Frame: Bending Moment in Column

Moment in upper column, Mupper

𝑀𝑢𝑝𝑝𝑒𝑟 = 𝐹𝐸𝑀 ×𝐾𝑐,𝑢

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐶𝐷= 172.6 ×

4.6

4.6+4.0+0.5×7.5= 𝟔𝟒. 𝟑 kNm

Moment in lower column, Mlower

𝑀𝑢𝑝𝑝𝑒𝑟 = 𝐹𝐸𝑀 ×𝐾𝑐,𝑙

𝐾𝑐,𝑢+𝐾𝑐,𝑙+0.5𝐾𝐶𝐷= 172.6 ×

4.0

4.6+4.0+0.5×7.5= 𝟓𝟔. 𝟎 kNm

56.0 64.3

Page 66: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action

• Intensity of wind action on a structure related to: a) Square of wind velocity b) Member dimensions that resist the wind

• Wind velocity dependent on:

a) Geographical location b) Height of structure c) Topography area d) Roughness of the surrounding terrain

• Response of the structure from the variable wind action: a) Background component b) Resonant component

Page 67: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action

• Static deflection of the structure under wind pressure

Background Component

• Dynamic vibration of the structure under wind pressure

• Relatively small

• Normally treated using static method of analysis

Resonant Component

Page 68: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action

Separation Zone

Windward Wake Leeward

Wind Separation point

Stagnation point

Plan View Side View

15

(+) ()

() ()

Effect of Wind on Buildings

Page 69: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action

Calculation of Wind Pressure

(MS 1553: 2002)

Simplified Method

Building of rectangular in plan

Height 15 m

Analytical Procedure

Rectangular buildings

Height 200 m

Roof span 100 mm

Wind Tunnel Procedure

Complex buildings

Page 70: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Simplified Method

Appendix A, MS 1553: 2002 1. Determined basic wind speed, Vs (Figure A1, MS 1553: 2002) 2. Determine the terrain/height multiplier, Mz,cat (Table A1, MS

1553: 2002) 3. Determine external pressure coefficient, Cp,e for surface of enclose

building (A2.3 and A2.4, MS 1553: 2002) 4. Determine internal pressure coefficient, Cp,i for surface of enclose

building. Taken as +0.6 or 0.3 and shall be considered to determine the critical load requirements.

5. Design wind pressure, p (in Pa):

𝒑 = 𝟎. 𝟔𝟏𝟑 𝑽𝒔𝟐 𝑴𝒛,𝒄𝒂𝒕

𝟐𝑪𝒑,𝒆 − 𝑪𝒑,𝒊

Page 71: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Simplified Method

Figure A1, MS 1553: 2002

Page 72: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Simplified Method

Page 73: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Simplified Method

Page 74: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Simplified Method

Page 75: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Section 2, MS 1553: 2002

𝑽𝒅𝒆𝒔 = 𝑽𝒔𝒊𝒕𝒍

𝑪𝒇𝒊𝒈 = 𝑪𝒑,𝒆𝑲𝒂𝑲𝒄𝑲𝒍𝑲𝒑

𝑽𝒔𝒊𝒕 = 𝑽𝒔𝑴𝒅𝑴𝒛,𝒄𝒂𝒕𝑴𝒔𝑴𝒉

𝑪𝒅𝒚𝒏 = 𝟏. 𝟎 𝒊𝒇

> 𝟏 𝑯𝒆𝒓𝒕𝒛 (𝒖𝒏𝒍𝒆𝒔𝒔 𝒕𝒉𝒆 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 𝒊𝒔 𝒘𝒊𝒏𝒅 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆)

𝒑 = 𝟎. 𝟔𝟏𝟑 𝑽𝒅𝒆𝒔𝟐𝑪𝒇𝒊𝒈𝑪𝒅𝒚𝒏

If others, see Next

Design wind pressure (in Pa):

Page 76: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Vdes = Design wind speed l = Importance factor (Table 3.2, MS 1553: 2002) Vs = Basic wind speed (33.5 m/s: Zone 1 & 32.5 m/s: Zone 2) Md = Wind directional multiplier = 1.0 Mz, cat = Terrain/Height multiplier (Table 4.1, MS 1553: 2002) Ms = Shielding multiplier (Table 4.3, MS 1553: 2002) = 1.0 if effects of shielding is ignored or not applicable Mh = Hill shape multiplier = 1.0 except for particular cardinal direction in the local topographic zones Cfig = Aerodynamic shape factor Cp,e = External pressure coefficient (Table 5.2(a) & 5.2(b), MS 1553: 2002) Cdyn = Dynamic response factor Ka = Area reduction factor = 1.0 (in most cases) Kc = Combination factor = 1.0 (in most cases) Kl = Local pressure factor = 1.0 (in most cases) Kp = Porous cladding reduction factor = 1.0 (in most cases)

Page 77: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Section 2, MS 1553: 2002

𝑪𝒅𝒚𝒏 =

𝟏 + 𝟐𝒍𝒉 𝒈𝒗𝟐𝑩𝒔 +

𝒈𝑹𝟐𝑺𝑬𝒕𝜻

𝟏 + 𝟐𝒈𝒗𝒍𝒉

𝑩𝒔 =𝟏

𝟏 +𝟑𝟔 𝒉 − 𝒔 𝟐 + 𝟔𝟒𝒃𝒔𝒉

𝟐

𝑳𝒉

𝑺 =𝟏

𝟏 +𝟑. 𝟓𝒏𝒂𝒉 𝟏 + 𝒈𝒗𝒍𝒉

𝑽𝒅𝒆𝒔𝟏 +

𝟒𝒏𝒂𝒃𝟎𝒉 𝟏 + 𝒈𝒗𝒍𝒉𝑽𝒅𝒆𝒔

𝑬𝒕 =𝟎. 𝟒𝟕𝑵

𝟐 + 𝑵 𝟓/𝟔

𝑵 =𝒏𝒂𝑳𝒉 𝟏 + 𝒈𝒗𝒍𝒉

𝑽𝒅𝒆𝒔

Page 78: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Page 79: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Page 80: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Page 81: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Page 82: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Wind Action: Analytical Procedure

Page 83: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5

WIND LOAD CALCULATION

Page 84: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

Location: Kuala Lumpur (Zone 1) Terrain: Suburban Terrain for All Directions Topography: Ground Slope Les than 1 in 20 for Greater than 5 km in All Directions Construction: Reinforced Concrete Sway Frequencies, na = nc: 0.2 Hertz Mode Shape: Linear, k: 1.0 Average Building Density: 160 kg/m3

Wind

Win

d

Side Elevation Plan View

b = 18 m

b =

18

m

d = 51 m

h = 25 m

Page 85: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

Using Analytical Procedure in Section 2, MS 1553: 2002

Design wind pressure, 𝒑 = 𝟎. 𝟔𝟏𝟑 𝑽𝒅𝒆𝒔𝟐𝑪𝒇𝒊𝒈𝑪𝒅𝒚𝒏

(1) Design wind speed, 𝑽𝒅𝒆𝒔 = 𝑽𝒔𝒊𝒕𝒍 = 𝟑𝟐. 𝟓 × 𝟏. 𝟏𝟓 = 𝟑𝟕. 𝟑𝟕 𝒎/𝒔 where 𝑉𝑠𝑖𝑡 = 𝑉𝑠𝑀𝑑𝑀𝑧,𝑐𝑎𝑡𝑀𝑠𝑀ℎ = 33.5 × 1.00 × 0.97 × 1.00 × 1.00 = 32.5 𝑚/𝑠 Vs = Basic wind speed (Figure A.1) = 33.5 m/s Md = Wind directional multiplier = 1.00 Mz,cat = Terrain/Height multiplier (Table 4.1) = 0.97 by interpolation Ms = Shielding multiplier = 1.00 Mh = Hill shape multiplier = 1.00 l = Importance factor (Table 3.2) = 1.15

Page 86: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

25 m

Page 87: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

Page 88: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

(2) Aerodynamic shape factor, 𝑪𝒇𝒊𝒈 = 𝑪𝒑,𝒆𝑲𝒂𝑲𝒄𝑲𝒍𝑲𝒑

𝑪𝒇𝒊𝒈 𝑾 = 𝑪𝒑,𝒆𝑲𝒂𝑲𝒄𝑲𝒍𝑲𝒑 = 𝟎. 𝟖𝟎

𝑪𝒇𝒊𝒈 𝑳 = 𝑪𝒑,𝒆𝑲𝒂𝑲𝒄𝑲𝒍𝑲𝒑 = −𝟎. 𝟐𝟓

where Cp,e = External pressure coefficient Windward wall = 0.80 (for varying z) Leeward wall = -0.25 by interpolation (for d/b = 51 m/18 m = 2.8) Ka = Area reduction factor = 1.00 Kc = Combination factor = 1.00 Kl = Local pressure factor = 1.00 Kp = Porous cladding reduction factor = 1.00

Page 89: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

2.8

Page 90: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

(3) Dynamic response factor,𝑪𝒅𝒚𝒏 =

𝟏+𝟐𝒍𝒉 𝒈𝒗𝟐𝑩𝒔+𝒈𝑹𝟐𝑺𝑬𝒕𝝃

𝟏+𝟐𝒈𝒗𝒍𝒉= 𝟏. 𝟑𝟐𝟕

where lh = Turbulence intensity at z = h (Table 6.1) = 0.205 by interpolation gv = Peak factor = 3.7 given

Bs = Background factor = 1

1+36 ℎ−𝑠 2+64𝑏𝑠ℎ

2

𝐿ℎ

= 0.7431

S = Size reduction factor = 1

1+3.5𝑛𝑎ℎ 1+𝑔𝑣𝑙ℎ

𝑉𝑑𝑒𝑠1+

4𝑛𝑎𝑏0ℎ 1+𝑔𝑣𝑙ℎ𝑉𝑑𝑒𝑠

= 0.188

Et = Spectrum of turbulence = 0.47𝑁

(2+𝑁)5/6= 0.623

= Ratio of structural damping to critical damping (Table 6.2) = 0.05

gR = Peak factor for resonance response = 2 log𝑒 600𝑛𝑎 = 3.09

h = 25 m s = 0 m

𝐿ℎ = 1000ℎ

10

0.25

= 1257 𝑚

bsh = 51 m

na = 0.2 Hz given b0h = bsh = 51 m

𝑁 =𝑛𝑎𝐿ℎ 1 + 𝑔𝑣𝑙ℎ

𝑉𝑑𝑒𝑠= 11.83

Page 91: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

25 m

Page 92: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

Page 93: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

Level Height (m) Mz,cat (Table

4.1)

𝒑 = 𝟎. 𝟔𝟏𝟑 𝑽𝒅𝒆𝒔𝟐𝑪𝒇𝒊𝒈𝑪𝒅𝒚𝒏 (N/m2)

Windward Leeward Total, ptotal

Vdes,z (m/s) pW Vdes,h(m/s) pL pW - pL

7 (Roof) 25.0 0.970 37.4 910 37.4 -284 1194

6 21.5 0.950 36.6 872 37.4 -284 1156

5 18.0 0.920 35.4 815 37.4 -284 1099

4 14.5 0.890 34.3 766 37.4 -284 1050

3 11.0 0.840 32.4 683 37.4 -284 967

2 7.5 0.790 30.4 601 37.4 -284 885

1 4.0 0.750 28.9 543 37.4 -284 827

Page 94: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 5: Wind Load Calculation

0.910

Total (kN/m2)

1.156

pL (kN/m2)

0.872

0.766

0.601

1.050

0.885

0.248

0.248

0.248

0.248

pW (kN/m2)

Level 7 (Roof)

Level 6

Level 4

Ground

Level 2

1.194

Page 95: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Frame Analysis for Lateral Actions

• Frame divided into independent portals

• Shear in each storey is assumed to be divided between the bay in proportion to their spans

• Shear in each bay is divided equally between columns

Portal Method

• Axial loads in column are assumed to be proportional to the distance from the frame’s centre of gravity

• Assumed column in a storey has equal cross-sectional area & point of contraflexure are located at midspan for all column & beams

Cantilever Method

Page 96: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Frame Stability

Pinned beam-to-column connections

Frame is not stable when subjected to lateral forces

Vertical load La

tera

l lo

ad

Page 97: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Frame Stability – Unbraced

Pinned base

Rigid beam-to-column connection

Unstable Frame

Rigid base

Page 98: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Frame Stability – Braced

Unstable Frame

Pinned connections

Rigid core

Stable Frame

Page 99: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6

LATERAL LOAD ANALYSIS – CANTILEVER METHOD

Page 100: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Design wind load for each floor level of sub-frame 3 = 1.2wk: where wk = Total wind pressure, ptotal Contact area Roof: 1.2 1.194 kN/m2 4.50 m 1.75 m = 11.3 kN Level 6: 1.2 1.156 kN/m2 4.50 m 3.50 m = 21.8 kN Level 5: 1.2 1.099 kN/m2 4.50 m 3.50 m = 20.8 kN Level 4: 1.2 1.050 kN/m2 4.50 m 3.50 m = 19.8 kN Level 3: 1.2 0.967 kN/m2 4.50 m 3.50 m = 18.3 kN Level 2: 1.2 0.885 kN/m2 4.50 m 3.50 m = 16.7 kN Level 1: 1.2 0.827 kN/m2 4.50 m 3.75 m = 16.7 kN

5 m 4 m

Page 101: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Roof

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

11.3 kN

21.8 kN

20.8 kN

19.8 kN

18.3 kN

16.7 kN

16.7 kN

6 m 6 m 6 m

4 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

A B C D x = 9 m

K

L

M

N

P

Q

R

Page 102: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Roof

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

11.3 kN

21.8 kN

20.8 kN

19.8 kN

18.3 kN

16.7 kN

16.7 N

6 m 6 m 6 m

4 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

A B C D

K

L

M

N

P

Q

R

Column A B C D

Distance from Centroid 9.00 3.00 3.00 9.00

Column Axial Load 3.0P 1.0P 1.0P 3.0P

Page 103: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

LEVEL K AND ABOVE

Page 104: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Level K and Above

H4

11.3 kN

6 m 6 m 6 m

1.75 m

3.0P

K

1.0P 1.0P

3.0P

H3 H2 H1

Axial Force in Columns 𝑀@𝐾 = 0 11.3 × 1.75 + 1.0𝑃 × 6 − 1.0𝑃 × 12 − 3.0𝑃 × 18 = 0 P = 0.33 kN

Page 105: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Shear Force in Beams & Columns Consider sub-frame to the left of F1: 𝐹𝑣 = 0: F1 – 0.99 = 0 F1 = 0.99 kN 𝑀@𝐹1 = 0: 𝐻1 × 1.75 − 0.99 × 3 = 0 H1 = 1.70 kN Consider sub-frame to the left of F2: 𝐹𝑣 = 0: F2 – 0.99 – 0.33= 0 F2 = 1.32 kN 𝑀@𝐹2 = 0: 𝐻1 + 𝐻2 × 1.75 − 0.99 × 9 − 0.33 × 3 = 0 H2 = 3.96 kN Consider sub-frame to the left of F3: 𝐹𝑣 = 0: F3 – 0.99 – 0.33 + 0.33= 0 F3 = 0.99 kN 𝑀@𝐹3 = 0: 𝐻1 + 𝐻2 + 𝐻3 × 1.75 − 0.99 × 15 − 0.33 × 9 + 0.33 × 3 = 0 H3 = 3.96 kN 𝐹𝐻 = 0: 11.3 – H1 – H2 – H3 – H4 = 0 H4 = 1.68 kN

H4

11.3 kN

6 m 6 m 6 m

1.75 m

0.99 kN

K

0.33 kN

H3 H2 H1

F1 F2 F3

0.99 kN 0.33 kN

Page 106: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

LEVEL L AND ABOVE

Page 107: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Level L and Above

Axial Force in Columns 𝑀@𝐿 = 0 11.3 × 5.25 + 21.8 × 1.75 + 1.0𝑃 × 6 − 1.0𝑃 × 12 − 3.0𝑃 × 18 = 0 P = 1.62 kN

6 m 6 m 6 m 3.0P 1.0P

1.0P 3.0P

11.3 kN

21.8 kN

3.5

m

K

L H4 H3 H2 H1

1.75 m

Page 108: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

6 m 6 m 6 m 4.86 kN

1.70

21.8 + 11.3 = 33.1 kN

K

L H4 H3 H2 H1

1.75 m

1.62 kN 1.62 kN 4.86 kN

F1 F2 F3 1.75 m

0.99 kN

3.96

0.33 kN

3.96

0.33 kN

1.68

0.99 kN

Shear Force in Beams & Columns Consider sub-frame to the left of F1: 𝐹𝑣 = 0: F1 – 4.86 + 0.99 = 0 F1 = 3.87 kN 𝑀@𝐹1 = 0: 𝐻1 + 1.70 × 1.75 − 4.86 − 0.99 × 3 = 0 H1 = 4.93 kN Consider sub-frame to the left of F2: 𝐹𝑣 = 0: F2 – 4.86 + 0.99 – 1.62 + 0.33 = 0 F2 = 5.16 kN 𝑀@𝐹2 = 0: 𝐻1 + 𝐻2 × 1.75 + 1.70 + 3.96 × 1.75 − 4.86 − 0.99 × 9 − 1.62 − 0.33 × 3 = 0

H2 = 11.52 kN

Page 109: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

6 m 6 m 6 m 4.86 kN

1.70

21.8 + 11.3 = 33.1 kN

K

L H4 H3 H2 H1

1.75 m

1.62 kN 1.62 kN 4.86 kN

F1 F2 F3 1.75 m

0.99 kN

3.96

0.33 kN

3.96

0.33 kN

1.68

0.99 kN

Shear Force in Beams & Columns Consider sub-frame to the left of F3: 𝐹𝑣 = 0: F3 – 4.86 + 0.99 – 1.62 + 0.33 + 1.62 – 0.33 = 0 F3 = 3.87 kN 𝑀@𝐹3 = 0: 𝐻1 + 𝐻2 + 𝐻3 × 1.75 + 1.70 + 3.96 + 3.96 × 1.75 − 4.86 − 0.99 × 15 − 1.62 − 0.33 × 9

+ 1.62 − 0.33 × 3 = 0 H3 = 11.52 kN 𝐹𝐻 = 0: 33.1 – H1 – H2 – H3 – H4 = 0 H4 = 5.13 kN

Page 110: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

LEVEL M AND ABOVE

Page 111: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Level M and Above

Axial Force in Columns 𝑀@𝐿 = 0

11.3 × 8.75 + 21.8 × 5.25 + 20.8 × 1.75 + 1.0𝑃 × 6 − 1.0𝑃 × 12 − 3.0𝑃 × 18 = 0 P = 4.16 kN

11.3 kN

6 m 6 m 6 m 3.0P 1.0P 1.0P

3.0P

21.8 kN

K

L

H4 H3 H2 H1

3.5 m

20.8 kN

3.5 m

M 1.75 m

Page 112: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

6 m 6 m 6 m 12.48 kN

4.93

21.8 + 11.3 + 20.8 = 53.9 kN

L

M H4 H3 H2 H1

1.75 m

4.16 kN 4.16 kN 12.48 kN

F1 F2 F3 1.75 m

4.86 kN

11.52

1.62 kN

11.52

1.62 kN

5.13

4.86 kN

Shear Force in Beams & Columns Consider sub-frame to the left of F1: 𝐹𝑣 = 0: F1 – 12.48 + 4.86 = 0 F1 = 7.62 kN 𝑀@𝐹1 = 0: 𝐻1 + 4.93 × 1.75 − 12.48 − 4.86 × 3 = 0 H1 = 8.13 kN Consider sub-frame to the left of F2: 𝐹𝑣 = 0: F2 – 12.48 + 4.86 – 4.16 + 1.62 = 0 F2 = 10.16 kN 𝑀@𝐹2 = 0: 𝐻1 + 𝐻2 × 1.75 + 4.93 + 11.52 × 1.75 − 12.48 − 4.86 × 9 − 4.16 − 1.62 × 3 = 0

H2 = 18.93 kN

Page 113: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

Shear Force in Beams & Columns Consider sub-frame to the left of F3: 𝐹𝑣 = 0: F3 – 12.48 + 4.86 – 4.16 + 1.62 + 4.16 – 1.62 = 0 F3 = 7.62 kN 𝑀@𝐹3 = 0: 𝐻1 + 𝐻2 + 𝐻3 × 1.75 + 4.93 + 11.52 + 11.52 × 1.75 − 12.48 − 4.86 × 15 − 4.16 − 1.62 × 9

+ 4.16 − 1.62 × 3 = 0 H3 = 18.99 kN 𝐹𝐻 = 0: 53.9 – H1 – H2 – H3 – H4 = 0 H4 = 7.85 kN

6 m 6 m 6 m 12.48 kN

4.93

21.8 + 11.3 + 20.8 = 53.9 kN

L

M H4 H3 H2 H1

1.75 m

4.16 kN 4.16 kN 12.48 kN

F1 F2 F3 1.75 m

4.86 kN

11.52

1.62 kN

11.52

1.62 kN

5.13

4.86 kN

Page 114: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

LEVEL N AND ABOVE

LEVEL P AND ABOVE

LEVEL Q AND ABOVE

LEVEL R AND ABOVE

Do the Following Level:

Page 115: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

SHEAR FORCE IN BEAMS & COLUMNS

Page 116: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

6 m 6 m 6 m

3.5 m

3.5 m

3.5 m

K

L M

0.99 1.32 0.99

1.70 3.96 3.96 1.68

3.87 5.16 3.87

4.93 11.52 11.52 5.13

7.62 10.16 7.62

8.13 18.93 18.99 7.85

Page 117: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

BENDING MOMENTS IN BEAMS & COLUMNS

Page 118: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 6: Lateral Load Analysis (Cantilever Method)

2.97

3.96

2.98 6.93 2.94

11.61 15.48 11.61 8.63 20.16 20.16 8.98

22.86

30.48 22.86 14.23 33.13

18.60

13.74

2.97 2.97

3.96

2.98

6.93

6.93 6.93

8.63 20.16

22.86

20.16 8.98

33.23

14.23 33.13 33.23 13.74

Continues for Level N, P, Q, R

2.97

11.61 15.48

2.94

Page 119: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 7

ANALYSIS OF ONE LEVEL SUB-FRAME – VERTICAL LOAD

ONLY

Page 120: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Example 7: Analysis of One Level Sub-Frame – Vertical Load Only

Roof

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

6 m 6 m 6 m

4 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

3

.5 m

A B C D

Page 121: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

CASE 1: 1.2Gk + 1.2Qk

Fixed End Moment

𝑀𝐴𝐵 = 𝑀𝐵𝐴 =𝑤𝐿2

12=48.7 × 62

12= 146.2 𝑘𝑁𝑚

𝑀𝐵𝐶 =𝑤𝐿2

12=46.1 × 62

12= 138.4 𝑘𝑁𝑚

𝑀𝐶𝐷 =𝑤𝐿2

12=48.7 × 62

12= 146.2 𝑘𝑁𝑚

6 m 6 m 6 m

3.5 m

4 m

48.7 kN/m 46.1 kN/m

A B C D

Span 1 Span 2 Span 3

48.7 kN/m

Example 7: Analysis of One Level Sub-Frame – Vertical Load Only

Page 122: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

43.82 -9.97 -9.97 -43.82

0.27 -0.44 0.44 -0.27

1.60 -1.15 1.15 -1.60

0.36 -6.86 6.86 -0.32

41.60 -1.53 1.53 -41.60

0.28 A B 0.19 C 0.19 D 0.28

0.25 0.47 0.32 0.17 0.32 0.32 0.17 0.32 0.47 0.25

-146.2 146.2 -138.4 138.4 -146.2 146.2

36.4 68.2 -2.5 -1.3 -2.5 2.5 1.3 2.5 -68.2 -36.4

-1.3 34.1 1.3 -1.3 -34.1 1.3

0.3 0.6 -11.3 -6.0 -11.3 11.3 6.0 11.3 -0.6 -0.3

-5.6 0.3 5.6 -5.6 -0.3 5.6

1.4 2.6 -1.9 -1.0 -1.9 1.9 1.0 1.9 -2.6 -1.4

-0.9 1.3 0.3 -0.9 -1.3 0.9

0.2 0.4 -0.7 -0.4 -0.7 0.7 0.4 0.7 -0.4 -0.2

38.3 -82.2 165.6 -8.7 -146.9 146.9 8.7 -165.6 82.2 -38.3

Moment Distribution Method

Example 7: Analysis of One Level Sub-Frame – Vertical Load Only

Page 123: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

6 m

48.7 kN/m

82.2 165.6

VAB VBA

46.1 kN/m

6 m

146.9 146.9

VBC VCB

48.7 kN/m

6 m

165.6 82.2

VCD VDC

Solve for each span using equilibrium method of analysis: VAB = 132.3 kN VBA = 160.1 kN VBC = 138.4 kN VCB = 138.4 kN VCD = 160.1 kN VDC = 132.3 kN

Reaction Calculation at Support

Example 7: Analysis of One Level Sub-Frame – Vertical Load Only

Page 124: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Shear Force and Bending Moment Diagram

SFD (kN)

BMD (kNm)

132.3

160.1

138.4 160.1

156.2 132.3

82.2

97.5

165.6

60.6 97.5

146.9 146.9

165.6

82.2 43.8

38.3

19.2

10.0 8.7 10.0 8.7

43.8 38.3

4.4 19.2 4.4

2.7 m 3.0 m 3.3 m

Example 7: Analysis of One Level Sub-Frame – Vertical Load Only

Page 125: FRAME ANALYSIS - civil.utm.mycivil.utm.my/iznisyahrizal/files/2016/10/Lecture-2-Frame-Analysis... · • None lateral actions are transmitted to columns & beams • Support vertical

Bending Moment due to Vertical Load (1.2Gk + 1.2Qk)

82.2

97.5

165.6

60.6 97.5

146.9 146.9

165.6

82.2 43.8

38.3

19.2

10.0 8.7 10.0 8.7

43.8 38.3

4.4 19.2 4.4

+ Bending Moment due to Wind Load, 1.2Wk (from your exercise)

= Combination of Vertical & Wind Load

Example 7: Analysis of One Level Sub-Frame – Vertical Load Only