foundations under static loads

80
 1 Jean Louis BRIAUD 1 TEXAS A M UNIVERSITY Deeyvid SAEZ BARRIOS 2 1. President of ISSMGE, Professor and Holder of The Buchanan Chair, Texas A&M University 2. PhD Graduate Student and Research Assistant, Texas A&M University April 2010 THEORY PRACTICE 1.  Load Resistance Factors Design (LRFD) Approach 2. Si te Investigation 3. Desi gn of Shallow Foundation for Vertical Loads CONTENT OUTLINE . ile nst al at ion 5. Desi gn of Single Piles for Vertical Loads 6. Desi gn of Pile Group for Vertical Loads 7. Desi gn of Piles for Horizontal Loads 8. Specia l Cases (Shrink-Swell Soils, Downdrag and Scour) . 10.Conclusion Jean Louis BRI AUD – TEXAS A&M UNIVERSITY 1

Upload: fruitplusepal

Post on 06-Oct-2015

9 views

Category:

Documents


0 download

DESCRIPTION

Foundations Under Static Loads

TRANSCRIPT

  • 1Jean Louis BRIAUD1

    TEXAS A&M UNIVERSITY

    Deeyvid SAEZ BARRIOS2

    1. President of ISSMGE, Professor and Holder of The Buchanan Chair, Texas A&M University

    2. PhD Graduate Student and Research Assistant, Texas A&M University

    April 2010THEORY PRACTICE

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Piles for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    1

  • 2LOAD RESISTANCE FACTOR DESIGN (LRFD)

    WORKING STRESS DESIGN

    RL FS 2 0 3 0

    LOAD RESISTANCE FACTORS DESIGN (LRFD)

    = 1.0 to 2.0RL

    FSL = FS 2.0 to 3.0

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    L= Load = Load Factor

    R= Resistance = Resistance Factor =FS

    1.0 to 2.0 = 0.30 to 0.90

    RL =

    IMPORTANT LOAD FACTORS IN FOUNDATION ENGINEERING

    =n n iiii RL

    LOAD RESISTANCE FACTOR DESIGN (LRFD)

    = =i i

    iiii1 1

    i Li= 1.25DL + 1.75LL For Ultimate Load

    i Li= 1.0DL + 1.0LL For Settlement in Sand & Immediate Settlement in Clays

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    i Li= 1.0DL Long Term Settlement in Clays

    i Li= 1.25DL + EQLL+1.0EQ For Earthquake Analysis

    2

  • 3 IMPORTANT RESISTANCE FACTORS FOR SHALLOW FOUNDATION

    = =

    =n

    i

    n

    iiiii RL

    1 1

    LOAD RESISTANCE FACTOR DESIGN (LRFD)

    i R= 0.35R For Friction Angle Approach ---SANDS

    i R= 0.45R For SPT Approach ---SANDS

    i R= 0.55R For CPT Approach---SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    i R= 0.60R For Su Approach---CLAYS

    i R= 0.50R For CPT Approach---CLAYS

    Su= Undrained Shear Strength

    IMPORTANT RESISTANCE FACTORS FOR DRIVEN PILESUNDER COMPRESSION LOADS

    =n n RL

    LOAD RESISTANCE FACTOR DESIGN (LRFD)

    = =

    =i i

    iiii RL1 1

    i R= 0.56R to 0.70R (Verif.) For Su Method---CLAYS

    i R= 0.36R to 0.45R (Verif.) For SPT Method ---SANDS

    R 0 44R 0 55R (V if ) F CPT M h d SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    i R= 0.44R to 0.55R (Verif.) For CPT Method---SANDS

    Use 0.85(compression) for (uplift)

    Su= Undrained Shear Strength

    3

  • 4 IMPORTANT RESISTANCE FACTORS FOR BORED PILESUNDER COMPRESSION LOADS.

    =n n RL

    LOAD RESISTANCE FACTOR DESIGN (LRFD)

    = =

    =i i

    iiii RL1 1

    i R= 0.65R For Su Method---CLAYS SIDE

    i R= 0.55R For 9Su Method ---CLAY POINT

    R= 0 65R For Method SANDS SIDE

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    i R= 0.55R For 0.057N Method---SANDS POINT

    Use 0.85(compression) for (uplift)

    Su= Undrained Shear Strength

    i R= 0.65R For V Method---SANDS SIDE

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    4

  • 5http://www.earth-engineers.com/DSC01903.JPG

    SITE INVESTIGATION WHY IS BORING IMPORTANT?

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002).

    SITE INVESTIGATION STANDARD PENETRATION TEST (SPT)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    5

  • 6Advantages

    1) Sampling Is Possible

    MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

    SITE INVESTIGATION STANDARD PENETRATION TEST (SPT)

    2) Simple

    3) Suitable in many soil types

    Disadvantages

    1) Sample Disturbance

    2) Not applicable for very soft or very loose soils

    3) High Variability

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

    SITE INVESTIGATION CONE PENETRATION TEST (CPT)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    6

  • 7Advantages1) Fast and continuous

    profile

    Disadvantages1) Required skill

    operator to run

    MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

    SITE INVESTIGATION CONE PENETRATION TEST (CPT)

    profile.

    2) Applicable for soft soils.

    3) Strong Theoretical basis in interpretation.

    operator to run

    2) No soil sample can be obtained.

    3) Unsuitable for very hard or dense soils and large particles.

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

    SITE INVESTIGATION SEISMIC PIEZOCONE TEST

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    7

  • 8MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002).

    SITE INVESTIGATION PRESSUREMETER TEST (PMT)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Advantages

    1) Theoretically sound in determination of soil parameters

    MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

    SITE INVESTIGATION PRESSUREMETER TEST (PMT)

    soil parameters.

    2) Applicable for larger zone of soil mass than any other in-situ test.

    3) Develop complete stress vs strain curve

    Disadvantages

    1) It requires trained personel .

    2) Time consuming (8 tests per day).

    3) Delicate equipment.

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    8

  • 91. Clays and Silts:

    LABORATORY TESTS

    Classification Tests, Undrained Shear Tests, Drained Shear Tests, Consolidation Tests

    2. Sands and Gravels: Classification Tests

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    9

  • 10

    BEHAVIOR OF SANDS AND CLAYS UNDER LOAD CONDITIONS

    DESIGN OF SHALLOW FOUNDATION

    FSQu Qu Q (Load)

    CLAYS

    FSQu

    SANDS

    Q(Load)QuallSS >

    FS QallSS p

    'p=maximum past pressure experience by the soil

    + ovrc e '0

    g1

    ++

    += pvv

    cv

    prc

    oCCe

    Hs '''

    '

    '

    0

    0 loglog1

    0

    --TIME RATE OF SETTLEMENT--SETTLEMENT OF SHALLOW FOUNDATION

    v

    drv

    CHTt

    2

    = ( )maxH

    HU tave

    =

    H1

    H2

    HZi

    50% 90% Time, t

    Hdr=Smallest Drainage Path

    Uave= Average Degree of Consolidation

    H3

    H4

    Settlement, H

    Hmax

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    16

  • 17

    --ELASTIC SOLUTION--Q

    SETTLEMENT OF SHALLOW FOUNDATION

    ( )21;

    I q BS

    E= BL

    Qq =

    B

    E100 Su for clays E750 N(SPT) for clean sands E450 N(SPT) for silty sands

    I=0.88 I=/45.0

    88.0

    =BLI

    SHAPE FACTOR

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    B

    PLAN VIEWB

    B B

    L D

    --LOAD SETTLEMENT CURVE METHOD--SETTLEMENT OF SHALLOW FOUNDATION

    PMT

    P

    2Ro

    R

    P P

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    R/Ro

    PLLimit Pressure

    17

  • 18

    0 . 2 4

    O

    s RB R

    =

    SETTLEMENT OF SHALLOW FOUNDATION

    --LOAD SETTLEMENT CURVE METHOD--

    pdeBLf PffffP .... ,/ = ( )Bef e /33.01 = Eccentricity

    ( ) 1.0, /18.0 BDf DB += Slope Proximity( )LBf BL /2.08.0/ += Shape

    ( ) 2190

    /tan1

    =

    vh FFf Inclination

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    SETTLEMENT OF SHALLOW FOUNDATION

    --LOAD SETTLEMENT CURVE METHOD--

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    18

  • 19

    SETTLEMENT OF SHALLOW FOUNDATION

    --LOAD SETTLEMENT CURVE METHOD--

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    19

  • 20

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    LABORATORY TESTS

    Water Content & Unit Weight

    Atterberg Limits

    IN-SITU TESTS

    Borehole Shear Test & Cross-Hole

    Wave Tests

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Atterberg Limits

    Relative Density

    Triaxial Test

    Resonant Column Test

    PiezoCone Penetration Test

    Dilatomer Test

    Pressuremeter Test

    Step Blade Test

    Standard Penetration Test & Cone

    Penetration TestPenetration Test

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    20

  • 21

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    21

  • 22

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    n

    tt

    SS

    =

    11

    Creep Model

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    22

  • 23

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    IMPORTANT FINDING

    Pu (kPa) = 75 N

    THE GENERAL BEARING CAPACITY DOES NOT WORK IN THIS CASE

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    DEVELOP ED THE LOAD SETTLEMENT CURVE METHOD

    23

  • 24

    Comparison between Bearing Capacity Predictions and Measured Pressure at 150 mm of Se.

    FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

    Comparison between Predicted and Measured Load at 25 mm of Settlement

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    San Jacinto Monument Houston (1936)

    LOADING:

    Gross Pressure = 224 kPaMax Pressure (Dead + Wind) = 273 kPa

    EXAMPLE - SAN JACINTO MONUMENT

    Excavation= - 83 kPaNet Pressure=141 kPaNet Pressure after Mat Poured = 10 kPaPressure from Terraces = 34 kPa & 84 kPa

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    24

  • 25

    STRATIGRAPHY - SAN JACINTO MONUMENT

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    SOIL INDEX PROPERTIES

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    25

  • 26

    CONSOLIDATION CHARACTERISTICS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    STRESS DISTRIBUTION

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    26

  • 27

    CONSOLIDATION CHARACTERISTICS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    ACTUAL SETTLEMENT

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    27

  • 28

    ACTUAL SETTLEMENT

    DESCRIPTION S(m)

    CASE 8 (I l di R b d) 0 607CASE 8a (Including Rebound) 0.607

    CASE 7a (Not including rebound) 0.370

    DAWSONS PREDICTION 0.187

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    MEASURED SETTLEMENT 0.329

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    28

  • 29

    BORED PILES Concrete (dry drilling

    or mud drilling), timberor steel piles.

    Use in harder soils or

    DRIVEN PILES Timber , Concrete, and

    Steel.

    Use in softer soils.

    DESIGN OF DEEP FOUNDATION-TYPES OF PILES

    Use in harder soils orfor high loads.

    Nominal diametersranging from 0.40 to 4.0m.

    Typical length rangingfrom 3 m to 45 m.

    Nominal diametersranging from 0.30 to 3.0m.

    Typical length rangingfrom 3.0 m to 60 m.

    END BEARING PILES FRICTION PILES

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    WW

    DRIVING ANALYSISN (bpf)

    Set-Up

    N (bpf)

    W

    I-II-

    s

    s

    III-

    End of Driving

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    29

  • 30

    http://www.vibropile.com.auhttp://www.coastalcaisson.com

    DRILL DRY

    INSTALATION OF BORED PILES

    DRILL DRY

    DRILL WET

    USING CAISINGUSING CAISING

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    http://www.moretrench.com/~moretren/cmsAdmin/uploads/thumb2/Drilled_Shafts_001.jpg

    DRILL DRY - BORED PILE INSTALLATION

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    30

  • 31

    http://www.kbtech.com/images/photos/Anderson%2022%20Cobble%20on%20Auger%20Pilot.jpg

    DRILL WET - BORED PILE INSTALLATION

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    INSTALLATION OF BORED PILE WITH CAISING

    http://www.agrafoundations.ca/images/large/3.0-Bored-Piles/Thumb-2.jpg

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    31

  • 32

    WAK

    BULB, STRONG LAYER FIXED END

    V

    NON-DESTRUCTIVE TESTING FOR BORED PILES

    time

    cLt 2=

    at A

    FL

    A

    COMP. COMP.

    time

    cLt 2=

    at A

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    NECKING, WEAK LAYER FREE END

    VWAK

    NON-DESTRUCTIVE TESTING FOR BORED PILES

    F

    time

    cLt 2=

    at A

    L

    A

    COMP. TENS.

    time

    cLt 2=

    at A

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    32

  • 33

    PILE DRIVINGhttp://images.google.com/imgres?imgurl=http://www2.dot.ca.gov/hq/esc/geotech/projects/t

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    h

    W

    PILE DRIVING ANALYSIS FOR DRIVEN PILES( )

    3 0 0( ) 2

    U De W h m mR c

    N b p f

    =+

    L R

    st

    st

    Load, Q

    sb

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Settlement, s

    33

  • 34

    PILE DRIVING ANALYSIS FOR DRIVEN PILES

    RUD

    RUD

    RUDTotal

    EnergyElastic Energy

    max( )

    2.5UDeWh mmR =

    Np(bpf)75e=efficiency of the hammerW= hammer weight

    Scs

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    gh= drop heightNp= number of blow per footC= elastic compression (5mm?)RUD= ultimate resistance of the pileat the end of driving.

    ( )3 0 0( ) 2

    U De W h m mR c

    N b p f

    =+

    WAVE EQUATION ANALYSIS

    2

    2

    2

    2

    tU

    ER

    AED

    zU

    =

    Ec = Wave Velocity

    WAK

    RUD

    =mass density of the pile

    E=elastic modulus

    A=cross sectional area of the pile

    RUD= ultimate resistance of the pile at the end ofdriving

    D

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Np

    L

    34

  • 35

    WAVE EQUATION ANALYSIS

    WAK WAK

    D D

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    L L

    +-

    +

    +

    Soft Hard

    Software: CAPWAP Driving ProcessPile CapacityPil I i

    PILE DRIVING ANALYZER

    h

    W

    Pile IntegrityStresses along the Pile

    STRAINL R

    Strain and

    AccelerationTransducers

    st

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    ACCELERATIONsb

    time

    35

  • 36

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    pufuu QQQ +=ApAfQ +

    QuQu

    Working

    ULTIMATE BEARING CAPACITY OF A SINGLE PILE

    pusuu ApAfQ +=fu= Ultimate Skin Friction (kPa)

    As= Surface Area

    L fu QfuUltimate

    Load

    Working Load

    pu= Ultimate Point Pressure (kPa)

    Ap= Point Areapu Qpu

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    36

  • 37

    Short and Long TermULTIMATE POINT RESISTANCE FOR DRIVEN PILES

    For Clays -Short Term.uSq 9max =For Clays Long TermN'

    ( ) ( ) 5.0max 1000 NkPaq = For Sands (Short & Long Term)

    For Clays -Long Term (Nq from API)

    For Sands -Short & Long Term

    qvo Nq max =

    qvo Nq'

    max =

    Others Methods are based on Pressuremeter and Cone Penetration Test

    Frank, R. (1997), Calcul des Fondations Superficielles et Profondes, Presses de LEcole Nationale des Ponts et Chaussees, pp141

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    (Nq from API)

    Short and Long TermULTIMATE FRICTION FOR DRIVEN PILES IN CLAY

    uu Sf =max 'max vuf =

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    37

  • 38

    ULTIMATE FRICTION FOR DRIVEN PILES IN SAND

    For Piles in Sand

    Short and Long Term'

    max vuf =

    ( ) ( ) 7.0max 5 NkPafu =N=SPT blow count

    For Bored Piles Usefumax=0.75fumax (Driven)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    For Clays:KPaSSuf 275550 =

    Reese & ONeilNc

    S

    Square

    ULTIMATE BEARING CAPACITY OF A BORED PILE

    KPaSSuf uu 27555.0 =

    92.016;

    +==

    bcucu B

    LNSNP

    0.5' ; 1 .5 0.135( ( )) ;f z ft = =

    D/B

    Strip

    For Sands:; 1 .5 0.135( ( )) ;

    0.25 1.2; 200u v

    u

    f z ftf kPa

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Pu(kPa)=57 NSPT for 0 NSPT75 blows per footPu= 4300 kPa for NSPT 75 blows per foot

    38

  • 39

    FOR MORE INFORMATION ON DOWNDRAG VISIT:

    PILNEG, free software

    http://ceprofs.tamu.edu/briaud/

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    http://ceprofs.tamu.edu/briaud/

    Briaud J.-L., Tucker L.M., 1998, Design guidelines for downdrag on uncoated and bitumen coated piles, NCHRP Report 393, National Academy of Sciences.

    Qu

    Qu

    CRITICAL DEPTH OF A SINGLE PILE

    Nc

    St i

    Square9.0

    SKEMPTONS CHART

    L1 fu

    Dc=4B

    LAYER 1

    D/B

    Strip7.0

    4.0Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    pu

    B

    4B LAYER 2

    39

  • 40

    Qtop

    Stop

    SETTLEMENT FOR SINGLE PILES

    GENERAL APPROACH

    L

    Stop

    fu

    AELPSS avebottomtop +=

    0 .6 (? )a v e to pP Q=

    q SbottomJean Louis BRIAUD TEXAS A&M UNIVERSITY

    ( )EBpIs bottom

    21 =

    QtopQ

    QwTf1

    1111 21

    sp AfAqP += AEPLww += 12

    SETTLEMENT FOR SINGLE PILES

    P3

    Qtop

    P2

    L1 f1

    L2

    w3

    wT

    f2

    w

    f

    f2

    w

    w q1

    P1

    q

    L3

    w1

    w2f3 f1

    w

    q

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    40

  • 41

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    QusingleQugroup

    ULTIMATE LOAD CAPACITY OF A PILE GROUP

    L L

    Zone of Influence

    gleuugroup enQQ sin=e=overall efficiency factor 1.0

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    41

  • 42

    BLOCK FAILUREANALYSIS OF A PILE GROUP FOR CLAYEY SOILS

    Qugroup

    L

    D

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    ( ) BLSNDLBSQ ucuublock ++= 2( )min ,ugroup usingle ublockQ nQ Q=

    B L

    LOAD TRANSFER FOR A PILE GROUP ANALYSIS

    Qugroup Qugroup

    2/3L L L

    Hard Layer

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Transfer the Load to 2/3 L if the Soil is uniform (Friction Piles)

    Transfer the Load to the bottom if there is a hard layer

    (End Bearing Pile)

    42

  • 43

    CASE HYSTORY NEW ORLEANS HOSPITAL10000 Timber Piles0.3 m diameter (average)16 Story-Building15 m Long

    1500 MN

    15 m Long Soft Clay at the top2m thick dense sand at 14.5 m

    Su=20 kPa

    H

    H=2 m

    H=14.5 m

    SandLOAD

    Load Test for a Single Pile

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Su=30 kPa

    H1

    H2

    H3

    H4

    H=83.5 m

    H5

    L

    Weight of the Hospital=1500 MNRu for one pile = 300 kN10000 x Ru=3000 MN ----FS=2.0 ok.

    1500 MN

    CASE HYSTORY NEW ORLEANS HOSPITAL

    Hi v Uo b a H=xHi

    Ultimate Block Capacity= 1200 MN (PROBLEM)

    Htotal = 0.50 m

    H

    H=2 m

    H=14.5 m

    H1

    H2

    H3

    H4

    H=83.5,

    H5

    43

  • 44

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soil, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    44

  • 45

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    45

  • 46

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    ULTIMATE HORIZONTAL LOAD

    oov lLforlD 34>

    =

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    vlou BDpH 43=

    ov lLforLD 3lo

    Dv=L/3 for l

  • 47

    FIXED HEAD BEHAVIOR FREE HEAD BEHAVIOR

    Houyo

    M

    Houyo

    M

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    Ly'o=0 L

    0' oy

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    L =length pile

    Hou =ultimate horizontal load

    M =moment at the top of the pile

    yo = horizontal displacement at the top of the pile

    y'o =deflection at the top of the pile

    HORIZONTAL DISPLACEMENT @Hou/3

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    GENERAL CASE

    oo lLfMH 322 L d Fl ibl

    P li it f PMT

    yo

    oEK 3.2=

    oo

    o

    o

    oo lLforklKl

    y 32 >+=( )

    2

    2 2 3o oo o

    H L My for L l

    KL += = L d Fl ibl

    P li it f PMT

    oo

    o lLforKly 3>=

    oo

    o lLforLKHy 3lo

    Dv = L/3 for l= L d Fl ibl

    P li it f PMT

    yo

    oEK 3.2=

    oo

    o lLforKly 3>=

    oo

    o llforKLHy

  • 49

    DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    ( )( )

    n

    ooou

    ou

    tt

    tHtH

    = ( )( )

    n

    ooo

    o

    tt

    tyty

    =

    LONG TERM LATERAL LOAD

    n=0.01 to 0.03 in sands

    n=0.02 to 0.08 in clays

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Hou= ultimate horizontal load at time t

    Hou= ultimate horizontal load at time to

    yo = lateral deflection at time t

    yo = lateral deflection at time to

    49

  • 50

    ( )( )

    n

    tt

    tRtR

    =

    ( )( )

    = ot

    tRtR

    nlog

    n VALUES FROM THE PRESSUREMETER TEST

    n=0.01 to 0.03 in sandsn=0.02 to 0.08 in clays

    ( ) oo ttR

    ottlog

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    R(t)= change in the radius of the cavity at time t

    R(t0)= change in the radius of the cavity at time to

    n VALUES FROM THE PRESSUREMETER TEST

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    50

  • 51

    aN Nyy 1=

    a averages 0.1 for clays (one way and two way)

    CYCLIC LATERAL LOADING

    a averages 0.08 for sands under one way loading

    a averages 0 for sands under two way loading

    HoONE WAY CYCLIC

    HoTWO WAY CYCLIC

    y

    LOADING

    y

    TWO WAY CYCLIC LOADING

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    aN NRR = R

    R

    a

    Nlog1

    a FROM THE PRESSUREMETER TEST

    PMT ONLY APPLICABLE FOR ONE WAY

    R 1 ( )Na log =

    CYCLIC LOADING

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    51

  • 52

    THE PRESSUREMETER TEST

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    THE PRESSUREMETER TEST

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    52

  • 53

    LATERAL LOAD NEAR A TRENCH

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    trenchnotrench HH =LATERAL LOAD NEAR A TRENCH

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    53

  • 54

    FUTURE WORK IN RETAINING WALLS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    EARTH PRESSURE COEFFICIENT VS MOVEMENT/HEIGHT

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    54

  • 55

    Hou Hou

    FIXED HEAD BEHAVIOR

    DESIGN OF PILE GROUP FOR HORIZONTAL LOADS

    L L

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    ( ) ( )gleougroupou enHH sin=n= number of piles

    e=efficiency factor

    Direction of the Load

    4 DIAMETER PENETRATION AND 0.5- DIAMETER CLEAR SPACING

    GROUP EFFICIENCY FOR HORIZONTALLY LOADED PILES

    0.33 0.360.31

    Fraction of the Load

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    55

  • 56

    0.20 0.18 0.14 0.20 0.28

    8 DIAMETER PENETRATION AND 0.5 DIAMETER CLEAR SPACING

    GROUP EFFICIENCY FOR HORIZONTALLY LOADED PILES

    8 DIAMETER PENETRATION AND 1.0- DIAMETER CLEAR SPACING

    0.21 0.17 0.17 0.18 0.26

    8 DIAMETER PENETRATION AND 2.0- DIAMETER CLEAR SPACING

    0.19 0.19 0.19 0.19 0.24

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

    9 The Role of Load Testing9. The Role of Load Testing

    10. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    56

  • 57

    Soil Movement

    FOUNDATION ON SHRINK-SWELL SOILS

    h=active zoneShrink Swell Soil w

    Water Content Profile

    d

    w

    i

    wi

    i

    i

    i wE

    wfHH

    === 33.0

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Shrink-Swell SoilShrinking

    Qu

    SwellingQu

    FOUNDATION ON SHRINK SWELL SOILS

    L

    h=active zoneLOAD

    Qu

    Qp

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Shrinking

    Swelling )( hLDfL uLOAD = DhfL uLOAD =

    4)(

    2DphLDfL uuLOAD +=

    57

  • 58

    STIFFENED SLAB ON PIERS

    FOUNDATION ON SHRINK SWELL SOILS

    ELEVATED STRUCTURAL SLAB ON PIERS

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    THIN POST TENSIONED SLAB ON GRADE

    FOUNDATION ON SHRINK SWELL SOILS

    STIFFENED SLAB ON GRADE

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    58

  • 59

    DOWNDRAG ON PILES

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    PILE POINT BEHAVIOR

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    59

  • 60

    2(1 )4

    ppunch

    s

    Q Dv

    AE =

    PILE POINT BEHAVIOR

    punch = Pile point movement

    = Poissons ratio

    Qp= Point resistance

    A= Area of pile pointA= Area of pile point

    D= Diameter of pile point

    Es= Soil modulusFor clays = Es = 100 Su = EPMTFor sands=Es (kPa) = 750 N = 2 EPMT

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    EXAMPLE OF DOWNDRAG ON SINGLE PILES

    Pile Ultimate Capacity

    Qu = 706 + 1000

    Q = 1706 kNQu 1706 kN

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    60

  • 61

    EXAMPLE OF DOWNDRAG ON SINGLE PILES

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Qfn(group)Qfn(single)

    DOWNDRAG FOR A GROUP OF UNCOATED PILES

    LL

    s s sCorner Piles

    Side Piles

    Internal Piles

    ( ) ( )glefngroupfn QQ sin5.0=

    ( ) ( )glefnsidefn QQ sin40.0=

    ( ) ( )glefnernalfn QQ sinint 15.0=

    5.2=dsfor

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    61

  • 62

    SCOUR TYPES

    Probable Flood Levelys(Abut) Applies ys(Cont) Applies

    CL

    Normal Water Level

    ys(Abut)

    y s(pier) y s(Cont)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    is Abutment Scour Depthis Contraction Scour Depthis Pier Scour Depth

    Where, ys(Abut)y s(Cont)y s(pier)

    ( )0.7( ) 1 ( ) ( )2.2 2.6's Pier w L sp pier c piery K K K K Fr Fra = 0.33

    1 10.89 , for 1.43' 'w

    y yK a a

    =

    1.0, for whole range of /LK L a=0.91

    2.9 , for 3.42' '

    1 0 elsesp

    S SK a a

  • 63

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Case 1 - Big Scour Hole

    26% Observed Occurrence

    Case 2 Settlement of Pier

    32% Observed Occurrence

    Case 3 - Loss of Deck

    5% Observed Occurrence

    Case 4 - Loss of Pier

    37% Observed Occurrence Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    126

    Case 1 - Big Scour Hole

    26% Observed Occurrence

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    63

  • 64

    Courtesy of the University of Kentucky at Louisville

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    64

  • 65

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    129

    Case 2 Settlement of Pier

    32% Observed Occurrence

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    65

  • 66

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    66

  • 67

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    134

    Case 3 - Loss of Deck

    5% Observed Occurrence

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    67

  • 68

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Hatchie River Bridge, Tennessee

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    68

  • 69

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    138

    Case 4 - Loss of Pier

    37% Observed Occurrence

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    69

  • 70

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    70

  • 71

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    71

  • 72

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    72

  • 73

    OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briauds files)

    This distance should be made larger to decrease

    the risk of collapse

    145Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    STRUCTURAL

    and

    GEOTECHNICAL

    THE ROLE OF SOIL STRUCTURE-INTERACTION

    Qu Q

    S

    k1

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    73

  • 74

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils and Downdrag)

    9. Example Problems

    0 T T10.The Role of Load Testing

    11. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Laboratory testing brings the problem of sampledisturbance . However, its application is valuable for theunderstanding of some properties that can not bedetermined using In-Situ Tests.

    THE ROLE OF LABORATORY TESTING

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    74

  • 75

    THE ROLE OF IN-SITU TESTINGMAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002).

    In-situ testing gives a good estimation of the soil properties byreducing the problem of sample disturbance.

    Its application depends on the project magnitude and importance.

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    http://images.google.com/imgres?imgurl=http://

    THE ROLE OF LOAD TESTING: SONIC INTEGRITY TEST

    SONIC-INTEGRITY: is an in-situ test that helps to locatepotential problems in bored piles.

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    75

  • 76

    Hydraulic

    Jack and Gauges

    Q(Load)Qu Qu

    LOAD

    RXRX

    THE ROLE OF LOAD TESTING: STATIC LOAD TEST FOR PILES

    Q(Load)

    0.1B

    QuQuAEL

    L

    RX

    SANDS

    S(Settlement) CLAYS

    AEQLBS e += 1.0

    L

    Reaction Piles

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    http://www.earth-engineers.com/Pile%20Load%20Test%20%281%29.jpg

    THE ROLE OF LOAD TESTING: STATIC LOAD TEST FOR PILES

    It provides the load curve of an installed pile. From that,the ultimate load resistance of the pile can be determined.

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    76

  • 77

    STATIC LOAD TEST FOR SHALLOW FOUNDATION(Texas A&M University Load Tests)

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    THE ROLE LOAD TESTING: STATNAMIC TEST www.statnamiceurope.com/

    The Statnamic is another load test that provides a loadSettlement curve of an installed pile.

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    77

  • 78

    STATNAMIC LOAD TEST FOR SINGLE PILES

    Q(Top Load)BANG

    Q( p )ChargeBIG MASS

    LASER

    Calibrated

    Dynamic

    stop

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    S(Top Settlement)

    Ly

    Load Cell

    Sbottom

    OCELL INSTALLATIONFROM: HTTP://WWW.LOADTEST.COMTransducers

    HC

    THE ROLE OF LOAD TESTING: OSTERBER CELL TEST

    L

    Load Cell

    Hydraulic Control

    Steel Plates

    Tested Area

    Load Cell

    Reaction Area

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    78

  • 79

    1. Load Resistance Factors Design (LRFD) Approach

    2. Site Investigation

    3. Design of Shallow Foundation for Vertical Loads

    4 P I

    CONTENT OUTLINE

    4. Pile Instalation

    5. Design of Single Piles for Vertical Loads

    6. Design of Pile Group for Vertical Loads

    7. Design of Single Pile for Horizontal Loads

    8. Special Cases (Shrink-Swell Soils and Downdrag)

    9. Example Problems

    0 T T10.The Role of Load Testing

    11. Conclusion

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    Foundation engineering requires:

    1. A good understanding of site conditions including Geology

    CONCLUSION

    2. Proper use of theory in design

    3. Safety against ultimate capacity

    4. Allowable movements

    5. Good experience and engineering judgementjudgement

    6. Appropriate specifications

    7. Quality control during construction

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    79

  • 80

    MORE REFERENCES

    BRIAUD, J.L., SALLOP: Simple Approach for Lateral Loadson Piles, Journal of Geotechnical and GeoenvironmentalEngineering, Vol. 123, No. 10, pp. 958-964, ASCE, NewYork, October 1997.

    BRIAUD, J.L., The Pressuremeter, A. A. Balkema, Rotterdam,Netherlands, 1992.

    ASSHTO LRFD (Load Resistance Factor Design).

    BRIAUD J L GIBBENS R B h i f Fi S d

    Jean Louis BRIAUD TEXAS A&M UNIVERSITY

    BRIAUD J.-L., GIBBENS R., Behavior of Five SpreadFootings in Sand, Journal of Geotechnical andGeoenvironmental Engineering, Vol. 125, No.9, pp. 787-797,September 1999, ASCE, Reston, Virginia.

    80