format for the submission of the ph -...

37
192 REFERENCES 1. Faraday M., “On conducting power generally”, in Experimental Researches in Electricity, Series IV, Royal Institution, London, pp. 119-26, 1833. 2. Hittorf W., “U¨ ber das elektrische Leitungsvermo¨gen des Schwefelsilbers und Halbschwefelkupfers,”, Ann. Phys. Chem., vol. 84, pp. 128, 1851. 3. Chandra S., “Superionic solids: Principles and Applications”, (Eds.), North Holland, Amsterdam, 1981. 4. Yao Y.F.Y, Kummer J.T., Ion exchange properties of and rates of ionic diffusion in beta- alumina, J. Inorg. Nucl. Chem., vol. 29, pp. 2453-2466, 1967. 5. Secco E.A., in“Solid State Ionics – Materials and Applications” edited by Chowdari B.V.R., Chandra S., Singh S., Srivastava P.C., World Scientific, Singapore, pp. 47, 1992. 6. Schulz H., in “Materials for solid state batteries”, edited by Chowdhary B.V.R. and Radhakrishna S., World Scientific, Singapore, pp. 227, 1986. 7. Hagenmuller P., in “Materials for solid state batteries”, edited by Chowdhary B.V.R. and Radhakrishna S., World Scientific, Singapore, pp. 227, 1986. 8. Takahashi T., Kuwabara K., Shibata M., Solid-state ionics - conductivities of Na + ion conductors based on NASICON, Solid State Ionics, vol. 1,pp. 163-175, 1980. 9. Rai. D. K., Ion transport studies on some sodium metasilicate based gels, Ph. D. Thesis, 1994. 10. Brinkmann D., in “Recent Advances in Fast Ion Conducting Materials and Devices” edited by Chowdari B.V.R., Liu Q., Chen L., World Scientific, Singapore, pp. 11, 1990. 11. Chandra S., Chandra A., “Solid State Ionics: Materials aspect”, Proc. Natl. Acad. Sci., vol. 64, pp. 141, 1994. 12. Agrawal R. C., Gupta R. K., Superionic solid: composite electrolyte phase an overview, J. Mater. Science, vol. 34, pp. 1131-1162. 1999. 13. Huberman B. A., Cooperative Phenomena in Solid Electrolytes, Phys. Rev. Lett. vol. 32, pp. 10001002, 1974. 14. Rice M. J., Strässler S., Toombs G. A., Superionic Conductors: Theory of the Phase Transition to the Cation Disordered State, Phys. Rev. Lett., vol. 32, pp. 596599, 1974.

Upload: others

Post on 21-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

192

REFERENCES

1. Faraday M., “On conducting power generally”, in Experimental Researches in Electricity,

Series IV, Royal Institution, London, pp. 119-26, 1833.

2. Hittorf W., “U¨ ber das elektrische Leitungsvermo¨gen des Schwefelsilbers und

Halbschwefelkupfers,”, Ann. Phys. Chem., vol. 84, pp. 1–28, 1851.

3. Chandra S., “Superionic solids: Principles and Applications”, (Eds.), North Holland,

Amsterdam, 1981.

4. Yao Y.F.Y, Kummer J.T., “Ion exchange properties of and rates of ionic diffusion in beta-

alumina”, J. Inorg. Nucl. Chem., vol. 29, pp. 2453-2466, 1967.

5. Secco E.A., in“Solid State Ionics – Materials and Applications” edited by Chowdari

B.V.R., Chandra S., Singh S., Srivastava P.C., World Scientific, Singapore, pp. 47, 1992.

6. Schulz H., in “Materials for solid state batteries”, edited by Chowdhary B.V.R. and

Radhakrishna S., World Scientific, Singapore, pp. 227, 1986.

7. Hagenmuller P., in “Materials for solid state batteries”, edited by Chowdhary B.V.R. and

Radhakrishna S., World Scientific, Singapore, pp. 227, 1986.

8. Takahashi T., Kuwabara K., Shibata M., “Solid-state ionics - conductivities of Na+ ion

conductors based on NASICON”, Solid State Ionics, vol. 1,pp. 163-175, 1980.

9. Rai. D. K., “Ion transport studies on some sodium metasilicate based gels”, Ph. D. Thesis,

1994.

10. Brinkmann D., in “Recent Advances in Fast Ion Conducting Materials and Devices” edited

by Chowdari B.V.R., Liu Q., Chen L., World Scientific, Singapore, pp. 11, 1990.

11. Chandra S., Chandra A., “Solid State Ionics: Materials aspect”, Proc. Natl. Acad. Sci., vol.

64, pp. 141, 1994.

12. Agrawal R. C., Gupta R. K., “Superionic solid: composite electrolyte phase – an overview”,

J. Mater. Science, vol. 34, pp. 1131-1162. 1999.

13. Huberman B. A., “Cooperative Phenomena in Solid Electrolytes”, Phys. Rev. Lett. vol. 32,

pp. 1000–1002, 1974.

14. Rice M. J., Strässler S., Toombs G. A., “Superionic Conductors: Theory of the Phase

Transition to the Cation Disordered State”, Phys. Rev. Lett., vol. 32, pp. 596–599, 1974.

193

15. Sato H., Kikuchi R., “Cation Diffusion and Conductivity in Solid Electrolytes I”, J. Chem.

Phys., vol. 55, p. 677(pp. 26), 1971.

16. Sato. H., Kikuchi R., in “Superionic Conductors”, edited by Mahan G. D., Roth W. L.,

Plenum Press, New York, pp. 135, 1976.

17. Rice M.J., Roth W.L., “Ionic transport in super ionic conductors: a theoretical model,

Journal of Solid State Chemistry”, vol. 4(2), pp. 294-310, 1972.

18. Huberman B. A., Sen P. N., “Dielectric Response of a Superionic Conductor”, Phys. Rev.

Lett., vol. 33, pp. 1379–1382, 1974.

19. Funke K., “Jump relaxation in solid electrolytes”, Progress in Solid State Chemistry, vol.

22, pp. 111-195, 1993.

20. Funke K., “Debye-Hückel-type relaxation processes in solid ionic conductors: The model”,

Solid State Ionics, vol. 18–19, pp. 183-190, 1986.

21. Ngai K.L., Rendell R.W., Rajagopal A.K., Teitler S., “Three Coupled Relations for

Relaxations in Complex Systems”, Annals of the New York Academy of Sciences, vol. 484,

pp. 150–184, 1986.

22. Ngai K.L., Kanert O., “Comparisons between the coupling model predictions, Monte Carlo

simulations and some recent experimental data of conductivity relaxations in glassy

ionics”, Solid State Ionics, vol.53–56, pp. 936-946, 1992.

23. Kunze D., in “Fast lon Transport in Solids”, edited by Gool W.V., North Holland,

Amsterdam, pp. 405, 1973.

24. Hunter C.C, Ingram M.D., “Na+-ion conducting glasses”, Solid State Ionics, vol.14, pp.

31-40, 1984.

25. Fusco F.A, Tuller H.L., Button D.P, “Lithium, sodium and potassium transport in fast ion

conducting glasses: trends and models”, Mater. Sci. Eng. B, vol. 13, pp. 157-164, 1992.

26. Minami T., Machida N, “Preparation of new glasses with high ionic conductivities”, Mater.

Sci. Eng. B, vol. 13, pp. 203-208, 1992.

27. Jamal M., Venugopal G., Shareefuddin M., Chary M.N., “Sodium ion conducting glasses

with mixed glass formers NaI–Na2O–V2O5–B2O3: application to solid state battery”, Mater.

Lett., vol. 39, pp. 28-32, 1999.

28. Kuwano J., “Silver ion conducting glasses and some applications”, Solid State Ionics, vol.

40-41, pp. 696-699, 1990.

194

29. Satyanarayana N., Patcheammalle R., Muralidharan P., Venkateswarlu M., Rambabu B.,

“Preparation, characterization and impedance studies of the super ionic conducting AgI–

Ag2O–CrO3–V2O5 glassy system”, Solid State Ionics, vol. 136–137, pp. 1097-1100, 2000.

30. Gupta N., Dalvi A., Awasthi A.M., Bhardwaj S., “Electrical transport and crystallization

in Cu+ ion substituted AgI–Ag2O–V2O5 glassy superionic system”, Solid State Ionics, vol.

180, pp. 1607-1612, 2010.

31. Ingram M.D., “Superionic glasses: theories and applications”, Curr. Opin. Solid State

Mater. Sci., vol. 2, pp. 399-404, 1997.

32. Jayswal M.S., Kanchan D.K., Sharma P., Pant M., “The effect of PbI2 on electrical

conduction in Ag2O-V2O5-B2O3 superionic glass system”, Solid State Ionics, vol. 186, pp.

7-13, 2011.

33. Das S.S, Singh N.P., Srivastava P.K., “Ion conducting phosphate glassy materials”, Prog.

Cryst. Growth Charact. Mater.,vol. 55, pp. 47-62, 2009.

34. Minami T., Imazawa K., Tanaka M., “Formation region and characterization of superionic

conducting glasses in the systems AgI-Ag2O-MxOy”, Journal of Non-Crystalline Solids, vol.

42, pp. 469-476, 1980.

35. Tuller H.L., Button D.P., Uhlmann D.R., “Fast ion transport in oxide glasses”, Journal of

Non-Crystalline Solids, vol. 40, pp. 93-118, 1980.

36. Angell C.A., “Fast ion motion in glassy and amorphous materials”, Solid State Ionics, vol.

9–10, pp. 3-16, 1983.

37. Angell C.A., “Recent developments in fast ion transport in glassy and amorphous

materials”, Solid State Ionics, vol. 18–19, pp. 72-88, 1986.

38. Angell C.A., in “High Conductivity Solid Ionic Conductors-Recent Trends and

Applications”, edited by T. Takahashi, World Scientific, Singapore, pp. 89, 1989.

39. Angell C. A., “Dynamic processes in ionic glasses”, Chem. Rev., vol. 90, pp. 523–542,

1990.

40. Ingram M. D., “Superionic glasses: theories and applications”, Current Opinion in Solid

State and Materials Science, vol. 2, pp.399-404, 1997.

41. Martin S.W., in “Glasses: Superionic, Encyclopedia of Materials: Science and

Technology”, Second Edition, pp. 3586-3593, 2001.

195

42. Anderson O. L., Stuart D. A., “Calculation of Activation Energy of Ionic Conductivity in

Silica Glasses by Classical Methods”, Journal of the American Ceramic Society, vol. 37,

pp. 573–580, 1954.

43. Ravaine D., Souquet J.L., “A thermodynamic approach to ionic conductivity in oxide

glasses. I. Correlation of the ionic conductivity with the chemical potential of alkali oxide

in oxide glasses”, Physics and Chemistry of Glasses, vol. 18, pp. 27-31, 1977.

44. Glass A.M., Nassau K., “Lithium ion conduction in rapidly quenched Li2O-Al2O3, Li2O-

Ga2O3, and Li2O-Bi2O3 glasses”, J. Appl. Phys., vol. 51, pp. 3756, 1980.

45. Angell C.A., “Fast ion motion in glassy and amorphous materials”, Solid State Ionics, vol.

9–10, pp. 3-16, 1983.

46. Angell C.A., “Recent developments in fast ion transport in glassy and amorphous

materials”, Solid State Ionics, vol. 18–19, pp. 72-88, 1986.

47. Ingram M. D., Mackenzie M. A., Müller W., Torge M., “Structural granularity and ionic

conduction mechanism in glass”, Solid State Ionics, vol. 40–41, pp. 671-675, 1990.

48. Ingram M.D., Mackenzie M.A., Müller W., Torge M., “Cluster and pathways: a new

approach to ion migration in glass”, Solid State Ionics, vol. 28–30, pp. 677-680, 1988.

49. Shaju K.M., Chandra S., “Temperature dependence of ionic carrier concentration and

mobility in the silver borate glasses”, Solid State Ionics, vol. 86–88, pp. 453-458, 1996.

50. Shaju K. M., Chandra S., “Silver Ion Conducting Borate Glass. Evidence of Ion

Association from Temperature Dependent Mobility, Conductivity, and IR Spectral Studies”,

Physica Status Solidi (B), vol. 181, pp. 301–311, 1994.

51. Knödler D., Dieterich W., Petersen J., “Coulombic traps and ion conduction in glassy

electrolytes”, Solid State Ionics, vol. 53–56, pp.1135-1140, 1992.

52. Knödler D., Pendzig P., Dieterich W., “Transport and ac response in a model of glassy

electrolyteso”, Solid State Ionics, vol. 70–71, pp. 356-361, 1994.

53. Liang C.C., “Conduction Characteristics of the Lithium Iodide− Aluminum Oxide Solid

Electrolytes”, J. Electrochem. Soc., vol. 120, pp. 1289-1292, 1973.

54. Ponomareva V.G., Uvarov N.F., Lavrova G.V., Hairetdinov E.F.,

“Composite protonic solid electrolytes in the CsHSO4-SiO2system”, Solid State Ionics, vol.

90, pp. 161-166, 1996.

196

55. Kumar A., Shahi K., “Particle size effect on ionic conductivity in NaCl-Al2O3 composite

solid electrolytes”, Solid State Commun., vol. 94, pp. 813-816, 1995.

56. Caproni E., Carvalho F.M.S, Muccillo R., “Development of zirconia–magnesia /zirconia –

yttria composite solid electrolytes”, Solid State Ionics, vol. 179, pp. 1652-1654, 2008.

57. Rao M.V.M, Reddy S.N., Chary A.S, “Enhancement of DC ionic conductivity in dispersed

solid electrolyte system—CsNO3:γ-Al2O3”, Physica B, vol. 389, pp. 292-295, 2007.

58. Mei A., Wang X.L., Feng Y.C., Zhao S.J., Li G.J., Geng H.X, Lin Y.H, Nan C.W,

“Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by

introducing silica”, Solid State Ionics, vol. 179, pp. 2255-2259, 2008.

59. Fan L., Wang C., Chen M., Di J., Zheng J., Zhu B., “Potential low-temperature application

and hybrid-ionic conducting property of ceria-carbonate composite electrolytes

for solid oxide fuel cells”, Int. J. Hydrogen Energy, vol. 36, pp. 9987-9993, 2011.

60. Li Y., Rui Z., Xia C., Anderson M., Lin Y.S., “Performance of ionic-conducting

ceramic/carbonate composite material as solid oxide fuel cell electrolyte and

CO2 permeation membrane”, Catalysis Today, vol. 148, pp. 303-309, 2009.

61. Dotelli G., Sora I.N., Schmid C., Mari C.M., “Composite materials as electrolytes for solid

oxide fuel cells: simulation of microstructure and electrical properties”, Solid State Ionics,

vol. 152–153, pp. 509-515, 2002.

62. Kliewer K.L., “Space charge in ionic crystals—III. Silver halides containing divalent

cations”, Journal of Physics and Chemistry of Solids, vol. 27(4), pp. 705-717, 1966.

63. Jow T., Wagner Jr.J.B., “The Effect of Dispersed Alumina Particles on the Electrical

Conductivity of Cuprous Chloride”, J. Electrochem. Soc., vol. 126(11), pp. 1963-1972,

1979.

64. Maier J., “Defect chemistry at interfaces”, Solid State Ionics, vol.70–71(1),pp. 43-51, 1994.

65. Lauer U., Maier J., “Conductivity enhancement and microstructure in AgCl/AgI

composites”, Solid State Ionics, vol. 51, pp. 209-213, 1992.

66. Maier J., “Space charge regions in solid two-phase systems and their conduction

contribution—I. Conductance enhancement in the system ionic conductor-‘inert’ phase and

application on AgC1:Al2O3 and AgC1:SiO2”, Journal of Physics and Chemistry of Solids,

vol. 46(3), pp. 309-320, 1985.

197

67. Dudney N.J., “Effect of Interfacial Space-Charge Polarization on the Ionic Conductivity of

Composite Electrolytes”, Journal of the American Ceramic Society, vol. 68(10), pp. 538–

545, 1985.

68. Bunde A., Dieterich W., Roman E., “Dispersed ionic conductors and percolation theory”,

Phys. Rev. Lett., vol. 55, pp. 5–8, 1985.

69. Bunde A., Dieterich W., Roman E., “Monte Carlo studies of ionic conductors containing

an insulating second phase”, Solid State Ionics, vol. 18–19(1), pp. 147-150, 1986.

70. Bunde A., “Application of percolation theory in composites and glasses”, Solid State

Ionics, vol. 75, pp. 147-155, 1995.

71. Shastry M.C.R., Rao K.J., “Thermal and electrical properties of AgI-based composites”,

Solid State Ionics, vol. 51, pp. 311-316, 1992.

72. Uvarov N.F., Isupov V.P., Sharma V., Shukla A.K., “Effect of morphology and particle

size on the ionic conductivities of composite solid electrolytes”, Solid State Ionics, vol. 51,

pp. 41-52, 1992.

73. Shaju K. M., Chandra S., “Experimental studies and space charge mechanism for the

conductivity/mobility enhancement due to SnO2 dispersion in Ag+ ion conducting borate

glass”, Journal of Materials Science, vol. 30, pp. 3457-3462, 1995.

74. Fenton D.E., Parker J.M., Wright P.V., “Complexes of alkali metal ions with poly(ethylene

oxide)”, Polymer, vol. 14, pp. 589-589, 1973.

75. Wright P.V., “Electrical conductivity in ionic complexes of poly(ethylene oxide)”, Brit.

Polym. J., vol. 7, pp. 319-327, 1975.

76. P.V. Wright, “An anomalous transition to a lower activation energy for dc electrical

conduction above the glass-transition temperature”, J. Polym. Sci., Polym. Phys. Ed., vol.

14, pp. 955-957, 1976.

77. Armand M.B., Chabagno J.M, Duclot M., in “Fast Ion Transport in Solids: Electrodes and

Electrolytes”, edited by Vashisha P., Mundy J.N., Shenoy G.K., North Holland, New York,

p.131, 1979.

78. Scrosati B. (Ed.), “Applications of Electroactive Polymers”, Chapman and Hall, London,

1993.

79. Bruce P.G. (Ed.), “Solid State Electrochemistry”, Cambridge University Press, Cambridge,

1995.

198

80. Gray F.M., Armand M., in “Handbook of Battery Materials”, edited by Besenhard J.O.,

Wiley-VCH, 1999.

81. Ohno H., “Applications of Polymer Electrolytes: Electrochromics, Sensors and Biology”,

Electrochim. Acta, vol. 37, pp. 1649-1651, 1992.

82. Adhikari B., Majumdar S., “Polymers in sensor applications”, Prog. Polym. Sci., vol. 29,

pp. 699-766, 2004.

83. Wang Y., “Recent research progress on polymer electrolytes for dye-sensitized solar cells”,

Sol. Energy Mater. Sol. Cells, vol. 93, pp. 1167-1175, 2009.

84. Peighambardoust S.J., Rowshanzamir S., Amjadi M., “Review of the proton exchange

membranes for fuel cell applications”, Int. J. Hydrogen Energy, vol. 35, pp. 9349-9384,

2010.

85. Zhou D., Spinks G.M., Wallace G.G., Tiyapiboonchaiya C., MacFarlane D.R., Forsyth M.,

Sun J., “Solid state actuators based on polypyrrole and polymer-in-ionic

liquid electrolytes”, Electrochim. Acta, vol. 48, pp. 2355-2359, 2003.

86. Gray F.M. (Ed.), “Solid Polymer Electrolytes: Fundamental and Technological

Applications”, VCH, New York, 1991.

87. Noto V.D., Lavina S., Giffin G.A., Negro E., Scrosati B., “Polymer electrolytes: Present,

past and future”, Electrochim Acta, vol. 57, pp. 4-13, 2011.

88. Quartarone E., Mustarelli P., “Electrolytes for solid-state lithium rechargeable batteries:

recent advances and perspectives”, Chem. Soc. Rev., vol. 40, pp. 2525-2540, 2011.

89. Borup R., Meyers J., Pivovar B., Kim Y.S., Mukundan R., Garland N., Myers D., Wilson

M., Garzon F., Wood D., Zelenay P., More K., Stroh K, Zawodzinski T., Boncella J.,

McGrath J.E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A.,

Siroma Z., Uchimoto Y., Yasuda K., Kimijima K.I., Iwashita N., “Scientific Aspects of

Polymer Electrolyte Fuel Cell Durability and Degradation”. Chem. Rev., vol. 107, pp.

3904-3951, 2007.

90. Gray F.M., McCallum J.R., Vincent C.A., “Poly(ethylene oxide) - LiCF3SO3 - polystyrene

electrolyte systems”, Solid State Ionics, vol.18–19, pp. 282-286, 1986.

91. Agrawal R.C., Pandey G.P., “Solid Polymer Electrolyte: Materials designing and all-solid-

state battery applications: an overview”, J. Phys. D: Appl. Phys., vol. 41, pp. 223001, 2008.

199

92. Maccullam J.R., Vincent C.A., “Polymer Electrolyte Reviews Vol. 1 & 2”, (Eds.), Elsevier

Applied Science, London, 1987 & 1989.

93. Gray F.M., “Polymer electrolytes”, Royal Society of Chemistry Monographs, Cambridge,

1997.

94. Armand M., Gorecki W., Andreani R., “Proc. 2nd Int. Meeting on Polymer Electrolytes

(ed.)”, New York, Scrosati B., Elsevier, Amsterdam, pp. 91, Year?.

95. Olsen I., Koksbang R., Skou E., “Transference number measurements on a hybrid polymer

electrolyte”, Electrochim. Acta, vol. 40, pp. 1701-1706, 1995.

96. Petersen G., Jacobsson P., Torell L.M., “A Raman study of ion—polymer and ion—ion

interactions in low molecular weight polyether—LiCF3SO3 complexes”, Electrochim. Acta,

vol. 37, pp. 1495-1497, 1992.

97. Bruce P.G., Vincent C.A., “Effect of ion association on transport in polymer electrolytes”,

Faraday Discuss. Chem. Soc., vol. 88, pp. 43-54, 1989.

98. Pollock D.W., Williamson K.J., Weber K.S., Lyons L.S., Sharpe L.R., “Ion Pairing and

Ionic Conductivity in Amorphous Polymer Electrolytes: a Structural Investigation

Employing EXAFS”, Chem. Mater., vol. 6(11), pp 1912–1914, 1994.

99. MacCallum J.R., Tomlin A.S., Vincent C.A., “An investigation of the conducting species in

polymer electrolytes”, European Polymer Journal, vol. 22(10), pp. 787–791, 1986.

100. Schantz S., “On the ion association at low salt concentrations in polymer electrolytes; a

Raman study of NaCF3SO3 and LiClO4 dissolved in poly(propylene oxide)”, J. Chem. Phys.,

vol. 94, pp. 6296, 1991.

101. Bakker A., Gejji S., Lindgren J., Hermansson K., Probst M.M., “Contact ion pair

formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn

for M = Mg, Ca, Sr and Ba”, Polymer, vol. 36(23), pp. 4371-4378, 1995.

102. Reddy M.J., Chu P.P, “Ion pair formation and its effect in PEO:Mg solid polymer

electrolyte system”, Journal of Power Sources, vol.109(2), pp. 340-346, 2002.

103. M-Vosshage D., Chowdari B.V.R., “XPS studies on (PEO)nLiCF3SO3 and

(PEO)nCu(CF3SO3)2 polymer electrolytes”, Electrochimica Acta, vol. 40, pp. 2109-2114,

1995.

104. Nest J.F.L., Callens S., Gandini A., Armand A., “A new polymer network for ionic

conduction”, Electrochim. Acta, vol. 37, pp. 1585-1588, 1992.

200

105. Dias F.B., Plomp L., Veldhuis J.B.J., “Trends in polymer electrolytes for secondary

lithium batteries”, J. Power Sources, vol. 88, pp. 169-191, 2000.

106. Kim D.W., Park J.K., Gong M.S., Song H.Y., “Effect of grafting degree and side PEO

chain length on the ionic conductivities of NBR-g-PEO based polymer electrolytes”, Polym.

Eng. Sci., vol. 34, pp. 1305-1313, 1994.

107. Gray F.M. , MacCallum J.R., Vincent C.A. , Giles J.R.M., “Novel polymer electrolytes

based on ABA block copolymers”, Macromolecules, vol. 21(2), pp. 392-397, 1988.

108. Stainer M., Hardy L.C., Whitemore D.H., Shriver D.F., “Stoichiometry of formation and

conductivity response of amorphous and crystalline complexes formed between

poly(ethylene oxide) and ammonium salts: PEOx.NH4SCN and PEOx.NH4SO3CF3”, J.

Electrochem. Soc., vol. 131, pp. 784-790, 1984.

109. Donoso P., Gorecki W., Berthier C., Defendini F., Poinsignon C., Armand M.B., “NMR,

conductivity and neutron scattering investigation of ionic dynamics in the anhydrous

polymer protonic conductor PEO(H3PO4)x)”, Solid State Ionics, vol. 28–30, pp. 969-974,

1988.

110. Daniel M.F., Desbat B., Lassegues J.C., “Solid state protonic conductors: complexation of

poly(ethylene oxide) or poly(acrylic acid) with NH4HSO4”, Solid State Ionics, vol. 28–30,

pp. 632-636, 1988.

111. Hashmi S.A., Kumar A., Maurya K.K., Chandra S., “Proton-conducting polymer

electrolyte. I. The polyethylene oxide+NH4ClO4 system”, J. Phys. D: Appl. Phys., vol. 23,

pp. 1307-1314, 1990.

112. Selvasekarapandian S., Hirankumar G., Kawamura J., Kuwata N., Hattori T., “1H solid

state NMR studies on the proton conducting polymer electrolytes”, Materials Letters, vol.

59, pp. 2741–2745, 2005.

113. Maccallum J.R., Smith M.J., Vincent C.A., “The effects of radiation-induced crosslinking

on the conductance of LiClO4·PEO electrolytes”, Solid State Ionics, vol. 11, pp.307-312,

1984.

114. Mustarelli P., Quartarone E., Tomasi C., Magistris A., “New materials for polymer

electrolytes”, Solid State Ionics, vol. 135, pp. 81-86, 2000.

201

115. Chiodelli G., Ferloni P., Magistris A., Sanesi M., “Ionic conduction and thermal

properties of poly (ethylene oxide)-lithium tetrafluoroborate films”, Solid State Ionics, vol.

28–30, pp. 1009-1013, 1988.

116. Armand M., Gorecki W., Andreani R. Proc. 2nd Int. Meeting on Polymer Electrolytes

(New York) edited by Scrosati B., Elsevier, Amsterdam, pp. 91, 1990.

117. Abraham K.M., Alamgir M., “Ambient temperature rechargeable polymer electrolyte

batteries”, J. Power Sources, vol. 43–44, pp. 195-208, 1993.

118. Ibrahim S., Yasin S.M.M., Ahmad R., Johan M.R., “Conductivity, thermal and

morphology studies of PEO based salted polymer electrolytes”, Solid State Sci., vol. 14,

pp. 1111-1116, 2012.

119. Hashmi S.A., Chandra S., “Experimental investigations on a sodium-ion-conducting

polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6”, Mater. Sci.

Eng., B, vol. 34, pp. 18-26, 1995.

120. Greenbaum S.G., Adamić K.J., Pak Y.S., Wintersgill M.C., Fontanella J.J., “NMR, DSC

and electrical conductivity studies of MEEP complexed with NaCF3SO3”, Solid State

Ionics, vol. 28–30, pp. 1042-1046, 1988.

121. Watanabe M., Ogata N., “Polymer Electrolyte Review I”, edited by MacCallum J.R.,

Vincent C.A., Elsevier Applied Sciences, London, 1987.

122. Fauteux D., Lupien M.D., Robitaille C.D., “Phase diagram, conductivity and transference

number of PEO NaI electrolyte”, J. Electrochem. Soc., vol. 134, pp. 2761–2767, 1987.

123. Chandra S., Hashmi S.A., Saleem M., Agrawal R.C., “Investigations on poly ethylene

oxide based polymer electrolyte complexed with AgNO3”, Solid State Ionics, vol. 67, pp. 1-

7, 1993.

124. Agrawal R.C., Mahipal Y.K., Ashrafi R., “Materials and ion transport property studies on

hot-press casted solid polymer electrolyte membranes: [(1 − x) PEO: x KIO3]”, Solid State

Ionics, vol. 92, pp. 6-8, 2011.

125. Sidhu K.S., Sekhon S.S., Hashmi S.A., Chandra S., “Studies on poly(ethylene oxide)-

CuSCN polymer electrolytes”, Eur. Polym. J., vol. 29, pp. 779-782, 1993.

126. Kumar K.K., Ravi M., Pavani Y., Bhavani S., Sharma A.K., Rao V.V.R.N.,

“Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP)

202

electrolytes on ionic conductivity and optical energy band gaps”, Physica B, vol. 406, pp.

1706-1712, 2011.

127. Maurya K.K., Srivastava N., Hashmi S.A., Chandra S., “Proton conducting polymer

electrolyte: II poly ethylene oxide + NH4I system”, J. Mater. Sci., vol. 27, pp. 6357-6364,

1992.

128. Maurya K.K., Bhattacharya B., Chandra S., “Hydrogen Ion Transport Studies in

PEO:NH4HSO4 Polymer Electrolyte”, Phys. Status Solidi a, vol. 147, pp. 347–359, 1995.

129. Maurya K.K., Hashmi S.A., Chandra S., “Proton Conducting Polymer Electrolytes:

Polyethylene Oxide + (NH 4) 2SO 4 System”, J. Phys. Soc. Jpn., vol. 61, pp. 1709-1716,

1992.

130. Srivastava N., Chandra A., Chandra S., “Dense branched growth of (SCN)x and ion

transport in the poly(ethyleneoxide) NH4SCN polymer electrolyte”, Phys. Rev. B, vol. 52,

pp. 225-230, 1995.

131. Ramya C.S., Selvasekarapandian S., Savitha T., Hirankumar G., Baskaran R.,

Bhuvaneswari M.S., Angelo P.C., “Conductivity and thermal behavior of proton

conducting polymer electrolyte based on poly (N-vinyl pyrrolidone)”, Eur. Poly. J., vol. 42,

pp. 2672-2677, 2006.

132. Buraidah M.H., Arof A.K., “Characterization of chitosan/PVA blended electrolyte doped

with NH4I”, J. Non-Cryst. Solids, vol. 357, pp. 3261-3266, 2011.

133. Reddy D.S., Reddy M.J., Rao U.V.S., “Proton conductor based on poly(ethylene oxide)

complexed with tetra-methyl-ammonium bromide”, Mater. Sci. Eng. B, vol. 78, pp. 59-62,

2000.

134. Kumar M, Sekhon S.S., “Role of plasticizer’s dielectric constant on conductivity

modification of PEO–NH4F polymer electrolytes”, Eur. Polym. J., vol. 38, pp. 1297–1304,

2002.

135. Qian X., Gu N., Cheng Z., Yang X., Wang E., Dong S., “Plasticizer effect on the ionic

conductivity of PEO-based polymer electrolyte”, Mater. Chem. Phys., vol. 74, pp. 98–103,

2002.

136. Tsuchida E., Ohno H., Tsunemi K., Kobayashi N., “Lithium ionic conduction in poly

(methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate”, Solid

State Ionics, vol. 11, pp. 227-233, 1983.

203

137. Bhide A., Hariharan K., “Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte

plasticized with PEG400”, European Polymer Journal, vol. 43, pp. 4253–4270, 2007.

138. Ito Y., Kanehori K., Miyauchi K., Kudo T., “Ionic conductivity of electrolytes formed

from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol)”, J. Mater. Sci.,

vol. 22, pp. 1845-1849, 1987.

139. Sander B., Steurich T., Wiesner K., Bischoff H., “Solid polymer electrolytes based on

oligo (ethylene glycol) methacrylates: 1. Conductivity of plasticized networks containing a

polar co-monomer”, Polym. Bull., vol. 28, pp. 355-360, 1992.

140. Kato Y., Hasumi K., Yokoyama S., Yabe T., Ikuta H., Uchimoto Y., Wakihara M.,

“Polymer electrolyte plasticized with PEG-borate ester having high ionic conductivity and

thermal stability”, Solid State Ionics, vol. 150, pp. 355-361, 2002.

141. Michael M.S., Jacob M.M.E., Prabaharan S.R.S., Radhakrishna S., “Enhanced lithium ion

transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers”,

Solid State Ionics, vol. 98, pp. 167–174, 1997.

142. Mitra S., Kulkarni A.R., “Electrical conductivity studies on the plasticized PEO–DBP–

CdX (X=Cl; SO4) polymer electrolytes”, Solid State Ionics, vol. 154–155, pp. 37-43, 2002.

143. Pratap R., Singh B., Chandra S., “Polymeric rechargeable solid-state proton battery”, J.

Power Sources, vol. 161, pp. 702–706, 2006.

144. Croce F., Scrosati B., “Interfacial phenomena in polymer-electrolyte cells: lithium

passivation and cycleability”, J. Power Sources, vol. 43, pp. 9-19, 1993.

145. Kumar Y., Hashmi S.A., Pandey G.P., “Lithium ion transport and ion–polymer interaction

in PEO based polymer electrolyte plasticized with ionic liquid”, Solid State Ionics, vol.

201, pp. 73–80, 2011.

146. Kumar Y., Hashmi S.A., Pandey G.P., “Ionic liquid mediated magnesium ion conduction

in poly(ethylene oxide) based polymer electrolyte”, Electrochimica Acta, vol. 56, pp.

3864–3873,2011.

147. Singh P.K., Kim K.-W., Rhee H.-W., “Electrical, optical and photoelectrochemical

studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid”,

Electrochemistry Communications, vol. 10, pp. 1769–1772, 2008.

148. H. Ohno (Ed.), “Electrochemical aspects of ionic liquids”, John Wiley & Sons, Hoboken,

NJ, 2005.

204

149. Ito Y., Kanehori K., Miyauchi K., Kudo T., “Ionic conductivity of electrolytes formed

from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol)”, J. Mater. Sci.,

vol. 22, pp. 1845-1849, 1987.

150. Prajapati G.K., Roshan R., Gupta P.N., “Effect of plasticizer on ionic transport and

dielectric properties of PVA–H3PO4 proton conducting polymeric electrolytes”, J. Phys.

Chem. Solids, vol. 71, pp. 1717-1723, 2010.

151. Hema M., Selvasekarapandian S., Arunkumar D., Sakunthala A., Nithya H., “FTIR, XRD

and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X

(X = Cl, Br, I)”, J. Non-Cryst. Sol., vol. 355, pp. 84-90, 2009.

152. Hema M., Selvasekarapandian S., Hirankumar G., Sakunthala A., Arunkumar D., Nithya

H., “Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer

electrolyte”, Spectrochim. Acta Part A, vol. 75, pp. 474-478, 2010.

153. Kadir M.F.Z, Majid S.R., Arof A.K., “Plasticized chitosan–PVA blend polymer electrolyte

based proton battery”, Electrochim. Acta, vol. 55, pp. 1475-1482, 2010.

154. Masuda Y., Seki M., Nakayama M., Wakihara M., Mita H., “Study on ionic conductivity

of polymer electrolyte plasticized with PEG–aluminate ester for rechargeable lithium ion

battery”, Solid State Ionics, vol. 177, pp. 843-846, 2006.

155. Binesh N, Bhat S.V., “Effects of a plasticizer on protonic conductivity of polymer

electrolyte (PEG)100NH4ClO4”, Solid State Ionics, vol. 122, pp. 291-299, 1999.

156. Yahya M.Z.A, Arof A.K., “Effect of oleic acid plasticizer on chitosan–lithium acetate

solid polymer electrolytes”, Eur. Polym. J., vol. 39, pp. 897-902, 2003.

157. Angell C.A., Liu C., Sanchez E., “Rubbery solid electrolytes with dominant cationic

transport and high ambient conductivity, Nature, vol. 362, pp. 137-139, 1993.

158. Angell C.A, Xu K., Zhang S.S., Videa M., “Variations on the salt-polymer electrolyte

theme for flexible solid electrolytes”, Solid State Ionics, vol. 86–88, pp. 17-28, 1996.

159. Feng L., Cui H., “A new solid-state electrolyte: rubbery ‘polymer-in-salt’ containing

LiN(CF3SO2)2”, J. Power Sources, vol. 63, pp. 145-148, 1996.

160. Bushkova O.V., Zhukovsky V.M., Lirova B.I., Kruglyashov A.L., “Fast ionic transport in

solid polymer electrolytes based on acrylonitrile copolymers”, Solid State Ionics, vol. 119,

pp. 217-222, 1999.

205

161. Mishra R., Baskaran N., Ramakrishnan P.A., Rao K.J., “Lithium ion conduction in

extreme polymer in salt regime”, Solid State Ionics, vol. 112, pp. 261-273, 1998.

162. Ferry A., Edman L., Forsyth M., MacFarlane D.R., Sun J., “Connectivity, ionic

interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on

poly(acrylonitrile) and LiCF3SO3”, J. Appl. Phys., vol. 86, pp. 2346, 1999.

163. Forsyth M., Sun J., Macfarlane D.R., Hill A.J., “Compositional dependence of free volume

in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity”, vol.

38, pp. 341–350, 2000.

164. Diaz A.F., Kanazawa K.K.,Gardini G.P., “Electrochemical polymerization of pyrrole”, J.

Chem. Soc. Chem. Commun., vol. ???, pp. 635-636, 1979.

165. Ivory D.M., Miller G.G., Sowa J.M., Shacklette L.W., Chance R.R., Baughman R.H.,

“Highly conducting charge-transfer complexes of poly(p-phenylene)”, J. Chem. Phys.,

vol. 71, pp. 1506, 1979.

166. Smitha B., Sridhar S., Khan A.A., “Solid polymer electrolyte membranes for fuel cell

applications—a review”, J. Membrane Science, vol. 259, pp. 10–26, 2005.

167. Oszcipok M., Zedda M., Hesselmann J., Huppmann M., Wodrich M., Junghardt M.,

Hebling C., “Portable proton exchange membrane fuel-cell systems for outdoor

applications”, J. Power Sources, vol. 157, pp. 666-673, 2006.

168. Steck A.E., Stone C., in; Savadago O., Roberge P.R. (Eds.), “Proceedings of the Second

International Symposium on New Materials for Fuel Cell and Modern Battery Systems”,

Montreal, pp. 792, 1997.

169. Stephan A.M., “Review on gel polymer electrolytes for lithium batteries”, Eur. Polym. J.,

vol. 42, pp. 21–42, 2006.

170. Ross-Murphy S.B., “Polymer Network—Principles of their Formation, Structure and

Properties”, edited by Stepto R.F.T., Blackie Academic and Professional, pp. 288, London.

171. Feuillade G., Perche P., “Ion-conductive macromolecular gels and membranes for solid

lithium cells”, J. Applied Electrochem., vol. 5, pp. 63-69, 1975.

172. Gopalan A.I., Santhosh P., Manesh K.M., Nhoa J.H., Kim S.H., Hwang C.G, Lee K.P.,

“Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium

batteries”, J. Membrane Sci., vol. 325, pp. 683–690, 2008.

206

173. Sundaram N.T.K., Musthafa O.T.M., Lokesh K.S., Subramania A., “Effect of porosity on

PVdF-co-HFP–PMMA-based electrolyte”, Mater. Chem. Phys., vol. 110, pp. 11–16, 2008.

174. Jung H.R., Lee W.J., “Electrochemical characteristics of electrospun poly(methyl

methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery”,

Electrochim. Acta, vol. 58, pp. 674– 680, 2011.

175. Ramesh S., Liew C.W., Ramesh K., “Evaluation and investigation on the effect of ionic

liquid onto PMMA-PVC gel polymer blend electrolytes”, J. Non-Cryst. Solids, vol. 357, pp.

2132–2138, 2011.

176. Sivakumar M., Subadevi R., Rajendran S., Wu H.C., Wu N.L., “Compositional effect of

PVdF–PEMA blend gel polymer electrolytes for lithium polymer batteries”, Eur. Polym. J.,

vol. 43, pp. 4466–4473, 2007.

177. Tien C.P., Liang W.J., Kuo P.L., Teng H.S., “Electric double layer capacitors with gelled

polymer electrolytes based on poly(ethylene oxide) cured with poly(propylene oxide)

diamines”, Electrochim. Acta, vol. 53, pp. 4505-4511, 2008.

178. Watanabe M., Kanba M., Nagaoka K., Shinohara I., “Ionic conductivity of hybrid films

based on polyacrylonitrile and their battery application”. J. Appl. Polym. Sci., vol. 27, pp.

4191-4198, 1982.

179. Watanabe M., Kanba M., Nagaoka K., Shinohara I.. “Ionic conductivity of hybrid films

composed of poly acrylonitrile, ethylene carbonate and LiClO4”. J. Polym. Sci. Polym.

Phys. Edn., vol. 21, pp. 939-948, 1983.

180. Appetecchi G.B., Scrosati B., “A Lithium ion polymer battery”, Electrochim. Acta, vol. 43,

pp. 1105-1107, 1998.

181. Tarascon J.M., Gozdz A.S., Schmutz C., Shokoohi F., Warren P.C., “Performance of

Bellcore's plastic rechargeable Li-ion batteries”, Solid State Ionics, vol. 86–88, pp. 49-54,

1996.

182. Gozdz A.S., Schmutz C.N., Tarascon J.M.,US Patent No 5,296,318, 1994.

183. Appetecchi G.B., Croce F., Scrosati B., “Kinetics and stability of the lithium electrode in

poly(methylmethacrylate)-based gel electrolytes”, Electrochim. Acta, vol. 40, pp. 991-997,

1995.

184. Alamgir M., Abraham K.M., “Room temperature rechargeable polymer electrolyte

batteries”, J. Power Sources, vol. 54, pp. 40-45, 1995.

207

185. Jayathilaka P.A.R.D., Dissanayake M.A.K.L., Albinsson I., Mellander B.E., “Dielectric

relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system

PAN/EC/PC/LiTFSI”, Solid State Ionics, vol. 156, pp. 179-195, 2003.

186. Quartarone E., Tomasi C., Mustarelli P., Appetecchi G.B., Croce F., “Long-term

structural stability of PMMA-based gel polymer electrolytes”, Electrochim. Acta, vol. 43,

pp. 1435-1439, 1998.

187. Jung H.R., Lee W.J., “Electrochemical characteristics of electrospun poly(methyl

methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery”,

Electrochim. Acta, vol. 58, pp. 674-680, 2011.

188. Idris N.H., Rahman M.M., Wang J.Z., Liu H.K., “Microporous gel polymer electrolytes

for lithium rechargeable battery application”, J. Power Sources, vol. 201, pp. 294-300,

2012.

189. Hwang Y.J., Jeong S.K., Nahm K.S., Stephan A.M., “Electrochemical studies on

poly(vinylidene fluoride–hexafluoropropylene) membranes prepared by phase inversion

method”, Eur. Polym. J. vol. 43, pp. 65–71, 2007.

190. Saikia D., Kumar A., “Ionic conduction in P(VDF-HFP)/PVDF–(PC + DEC)–LiClO4

polymer gel electrolytes”, Electrochim. Acta, vol. 49, pp. 2581-2589, 2004.

191. Choi B.K., Park S.H., Joo S.W., Gong M.S., “Electrical and thermal properties of

poly(vinylidene fluoride-hexafluoropropylene)-based proton conducting gel-electrolytes”,

Electrochim. Acta, vol. 50, pp. 649-652, 2004.

192. Ericson H., Svanberg C., Brodin A., Grillone A.M., Panero S., Scrosati B., Jacobsson P.,

“Poly(methyl methacrylate)-based protonic gel electrolytes: a spectroscopic study”,

Electrochim. Acta, vol. 45, pp. 1409-1414, 2000.

193. Żukowska G., Rogowska M., We czkowska E., Wieczorek W., “Proton conducting

polymer gel electrolytes”, Solid State Ionics, vol. 119, pp. 289-293 1999.

194. Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B., “Ionic-liquid materials for

the electrochemical challenges of the future”, Nature, vol. 8, pp. 621-629, 2009.

195. Navarra M.A., Panero S., Scrosati B., “Novel Ionic-Liquid-Based Gel-Type Proton

Membranes Batteries, Fuel Cells, and Energy Conversion”, Electrochem. Solid-State Lett.,

vol. 8, pp. A324-A327, 2005.

208

196. Ohno H., Yoshizawa M., Ogihara W., “A new type of polymer gel electrolyte: zwitterionic

liquid/polar polymer mixture”, Electrochim. Acta, vol. 48, pp. 2079-2083, 2003.

197. Bansal D., Cassel F., Croce F., Hendrickson M., Plichta E., Salomon M., “Conductivities

and Transport Properties of Gelled Electrolytes with and without an Ionic Liquid for Li

and Li-Ion Batteries”, J. Phys. Chem. B, vol. 109, pp 4492–4496, 2005.

198. Singh B., Sekhon S.S., “Polymer Electrolytes Based on Room Temperature Ionic Liquid:  

2,3-Dimethyl-1-octylimidazolium Triflate”, J. Phys. Chem. B, vol. 109, pp 16539–16543,

2005.

199. Rao M., Geng X., Liao Y., Hu S., Li W., “Preparation and performance of gel polymer

electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion

battery”, J. Membrane Sci., vol. 399–400, pp. 37–42, 2012.

200. Xu J.J., Ye H., Huang J., “Novel zinc ion conducting polymer gel electrolytes based on

ionic liquids”, Electrochem. Commun., vol. 7, pp. 1309-1317, 2005.

201. Kumar D., Hashmi S.A., “Ionic liquid based sodium ion conducting gel polymer

electrolytes”, Solid State Ionics, vol. 181, pp. 416-423, 2010.

202. Pandey G.P., Hashmi S.A., “Experimental investigations of an ionic-liquid-based,

magnesium ion conducting, polymer gel electrolyte”, J. Power Sources, vol. 187, pp. 627-

634, 2009.

203. Cheng H., Zhu C., Huang B., Lu M., Yang Y., “Synthesis and electrochemical

characterization of PEO-based polymer electrolytes with room temperature ionic liquids”,

Electrochim. Acta, vol. 52, pp. 5789-5794, 2007.

204. Fernicola A., Panero S., Scrosati B., “Proton-conducting membranes based on protic ionic

liquids”, J. Power Sources, vol. 178, pp. 591-595, 2008.

205. Sirisopanaporn C., Fernicola A., Scrosati B., “New ionic liquid-based membranes for

lithium battery application”, J. Power Sources, vol. 186, pp. 490-495, 2009.

206. Li M., Yang L., Fang S., Dong S., Jin Y., Hirano S.I., Tachibana K., “Li/LiFePO4

batteries with gel polymer electrolytes incorporating a guanidinium-based ionic liquid

cycled at room temperature and 50 °C”, J. Power Sources, vol. 196, pp. 6502-6506, 2011.

207. Sutto T.E., Ollinger M., Kim H., Arnold C.B., Piqué A., “Laser Transferable Polymer-

Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion

209

Microbatteries Batteries, Fuel Cells, and Energy Conversion”, Electrochem. Solid-State

Lett., vol. 9(2), pp. A69-A71, 2006.

208. Weston J.E., Steele B.C.H., “Effects of inert fillers on the mechanical and electrochemical

properties of lithium salt-poly(ethylene oxide) polymer electrolytes”, Solid State Ionics, vol.

7, pp. 75-79, 1982.

209. Appetecchi G.B., Passerini S., “PEO-carbon composite lithium polymer electrolyte”,

Electrochim. Acta, vol. 45, pp. 2139-2145, 2000.

210. Itoh T., Miyamura Y., Ichikawa Y., Uno T., Kubo M., Yamamoto O., “Composite polymer

electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer”, J. Power

Sources, vol. 119–121, pp. 403-408, 2003.

211. Bronstein L.M., Karlinsey R.L., Ritter K., Joo C.G., Stein B., Zwanziger J.W., “Design of

organic–inorganic solid polymer electrolytes: synthesis, structure, and properties”, J.

Mater. Chem., vol. 14, pp. 1812-1820, 2004.

212. Wieczorek W., Florjanczyk Z., Stevens J.R., “Composite polyether based solid

electrolytes”, Electrochim. Acta, vol. 40, pp. 2251-2258, 1995.

213. Przyluski J., Siekierski M., Wieczorek W., “Effective medium theory in studies of

conductivity of composite polymeric electrolytes”, Electrochim. Acta, vol. 40, pp. 2101-

2108, 1995.

214. Croce F., Curini R., Martinelli A., Persi L., Ronci F., Scrosati B., Caminiti R., “Physical

and Chemical Properties of Nanocomposite Polymer Electrolytes”, J. Phys. Chem. B, vol.

103, pp 10632–10638, 1999.

215. Croce F., Scrosati B., “Nanocomposite Lithium Ion Conducting Membranes”, Ann. NY

Acad. Sci., vol. 984, pp. 194–207, 2003.

216. Panero S., Scrosati B., Sumathipala H.H., Wieczorek W., “Dual-composite polymer

electrolytes with enhanced transport properties”, J. Power Sources, vol. 167, pp. 510-514,

2007.

217. Skaarup S., West K., Christiansen B.Z., “Mixed phase solid electrolytes”, Solid State

Ionics, vol. 28–30, pp. 975-978, 1988.

218. Wieczorek W., “Temperature dependence of conductivity of mixed-phase composite

polymer solid electrolytes”, Mater. Sci. Eng. vol. 15, pp. 108-114, 1992.

210

219. Navarra M.A., Croce F., Scrosati B., “New, high temperature superacid zirconia-doped

Nafion_ composite membranes”, J. Mater. Chem., vol. 17, pp. 3210-3215, 2007.

220. Wu Z., Sun G., Jin W., Hou H., Wang S., Xin Q., “Nafion_ and nanosize TiO2-SO42-

solid

superacid composite membrane for direct methanol fuel cell”. J. Membrane Sci., vol. 313,

pp. 336-343, 2008.

221. Du L., Yan X., He G., Wu X., Hu Z., Wang Y., “SPEEK proton exchange membranes

modified with silica sulfuric acid nanoparticles”, Inter. J. Hydrogen Energy, vol. 37, pp.

11853-11861, 2012.

222. Jacob M.E., Hackett E., Giannelis E.P., “From nanocomposite to nanogel polymer

electrolytes”, J. Mater. Chem., vol. 13, pp. 1-5, 2003.

223. Wachtler M., Ostrovskii D., Jacobsson P., Scrosati B., “A study on PVdF-based SiO2-

containing composite gel-type polymer electrolytes for lithium batteries”, Electrochim.

Acta, vol. 50, pp. 357-361, 2004.

224. Abbrent S., Chung S.H., Greenbaum S.G., Muthu J., Giannelis E.P., “Nuclear magnetic

resonance studies of nanocomposite gel electrolytes”, Electrochim. Acta, vol. 48, pp. 2113-

2121, 2003.

225. Byrne N., Efthimiadis J., MacFarlane D.R., Forsyth M., “The enhancement of lithium ion

dissociation in polyelectrolyte gels on the addition of ceramic nano-fillers”, J. Mater.

Chem., vol. 14, pp. 127-133, 2004.

226. Gentili V., Panero S., Reale P., Scrosati B., “Composite gel-type polymer electrolytes for

advanced rechargeable lithium batteries”, J. Power Sources, vol. 170, pp. 185-190, 2007.

227. Appetecchi G.B., Romagnoli P., Scrosati B., “Composite gel membranes: a new class of

improved polymer electrolytes for lithium batteries”, Electrochem. Commun., vol. 3, pp.

281-284, 2007.

228. Adebahr J., Ciccosillo N., Shekibi Y., MacFarlane D.R., Hill A.J., Forsyth M., “The

“filler-effect” in organic ionic plastic crystals: Enhanced conductivity by the addition of

nano-sized TiO2”, Solid State Ionics, vol. 177, pp. 827-831, 2006.

229. Golodnitsky D., Ardel G., Peled E., “Ion-transport phenomena in concentrated PEO-

based composite polymer electrolytes”, Solid State Ionics, vol. 147, pp. 141-155, 2002.

230. Croce F., Settimi L., Scrosati B., “Superacid ZrO2-added, composite polymer electrolytes

with improved transport properties”, Electrochem. Commun., vol. 8, pp. 364-368, 2006.

211

231. Scrosati B., Croce F., Persi L., “Impedance Spectroscopy Study of PEO-Based

Nanocomposite Polymer Electrolytes”, J. Electrochem. Soc., vol. 147, pp. 1718-1721, 2000.

232. Chandra A., Srivastava P.C., Chandra S., “Ion transport studies in PEO-NH4I polymer

electrolytes with dispersed Al2O3”, J. Mater. Sci., vol. 30, pp. 3633-3638, 1995.

233. Pandey G.P., Hashmi S.A., Agrawal R.C., “Hot-press synthesized polyethylene oxide

based proton conducting nanocomposite polymer electrolyte dispersed with SiO2

nanoparticles”, Solid State Ionics, vol. 179, pp. 543-549, 2008.

234. Pitawala H.M.J.C, Dissanayake M.A.K.L., Seneviratne V.A., “Combined effect of Al2O3

nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer

electrolyte (PEO)9LiTf”, Solid State Ionics, vol. 178, pp. 885-888, 2007.

235. Shanmukaraj D., Wang G.X., Murugan R., Liu H.K., “Ionic conductivity and

electrochemical stability of poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic

fillers composites”, J. Phys. Chem. Solids, vol. 69, pp. 243-248, 2008.

236. Prajapati G.K., Gupta P.N., “Comparative study of the electrical and dielectric properties

of PVA–PEG–Al2O3–MI (M=Na, K, Ag) complex polymer electrolytes”, Physica B, vol.

406, pp. 3108-3113, 2011.

237. Ibrahim S., Yasin S.M.M., Nee N.M., Ahmad R., Johan M.R., “Conductivity, thermal and

infrared studies on plasticized polymer electrolytes with carbon nanotubes as filler”, J.

Non-Cryst. Solids, vol. 358, pp. 210-216, 2012.

238. Pradhan D.K., Choudhary R.N.P., Samantaray B.K., “Studies of dielectric and electrical

properties of plasticized polymer nanocomposite electrolytes”, Mater. Chem. Phys., vol.

115, pp. 557-561, 2009.

239. Noto V.D., Piga M., Lavina S., Negro E., Yoshida K., Ito R., Furukawa T., “Structure,

properties and proton conductivity of Nafion/[(TiO2).(WO3)0.148]TiO2 nanocomposite

membranes”, Electrochim. Acta, vol. 55, pp. 1431-1444, 2010.

240. Noto V.D., Piga M., Piga L., Polizzi S., Negro E., “New inorganic–organic proton

conducting membranes based on Nafion®

and [(ZrO2)·(SiO2)0.67] nanoparticles: Synthesis

vibrational studies and conductivity”, J. Power Sources, vol 178, pp. 561-574, 2008.

241. Slane S., Salomon M., “Composite gel electrolyte for rechargeable lithium batteries”, J.

Power Sources, vol. 55, pp. 7-10, 1995.

212

242. Deka M., Kumar A., “Electrical and electrochemical studies of poly(vinylidene fluoride)–

clay nanocomposite gel polymer electrolytes for Li-ion batteries”, J. Power Sources, vol.

196, pp. 1358-1364, 2011.

243. Sharma J.P., Sekhon S.S., “Nanodispersed polymer gel electrolytes: Conductivity

modification with the addition of PMMA and fumed silica”, Solid State Ionics, vol. 178, pp.

439-445, 2007.

244. Krejza O., Velická J., Sedlaříková M., Vondrák J., “The presence of nanostructured Al2O3

in PMMA-based gel electrolytes”, J. Power Sources, vol. 178, pp. 774-778, 2008.

245. Pandey G.P., Agrawal R.C., Hashmi S.A., “Magnesium ion-conducting gel polymer

electrolytes dispersed with nanosized magnesium oxide”, J. Power Sources, vol. 190, pp.

563-572, 2009.

246. Kumar D., Hashmi S.A., “Ion transport and ion–filler-polymer interaction in poly(methyl

methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica

nanoparticles”, J. Power Sources, vol. 195, pp. 5101-5108, 2010.

247. Kumar D., Suleman M., Hashmi S.A., “Studies on poly(vinylidene fluoride-co-

hexafluoropropylene) based gel electrolyte nanocomposite for sodium–sulfur batteries”,

Solid State Ionics, vol. 202, pp. 45-53, 2011.

248. Antonucci P.L., Arico A.S., Creti P., Ramunni E., Antonucci V., “Investigation of a direct

methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature

operation”, Solid State Ionics, vol. 125, pp. 431–437, 1999.

249. Baradie B., Dodelet J.P., Guay P., “Hybrid Nafion®-inorganic membrane with potential

applications for polymer electrolyte fuel cells”, J. Electroanal. Chem., vol. 489, pp. 209–

214, 1998.

250. Wasmus S., Valeriu A., Mateescu G.D., Tryk D.A., Savinell R.F., “Characterization of

H3PO4-equlibriated Nafion 117 membranes using 1H and 31P NMR spectroscopy”, J.

Membr. Sci., vol. 185, pp. 78–85, 2000.

251. Mex L., Muller J., “Plasma-polymerized electrolyte membrane for miniaturized DMFC”,

Membr. Technol., vol. 115, pp. 5–9, 1999.

252. Finsterwalder F., Hambitzer G., “Proton conductive thin films prepared by plasma

polymerization”, J. Membr. Sci., vol. 185, pp. 105–124, 2001.

213

253. Bahar B., Hobson A.R., Kolde J.A., Zuckerbrod D., “Ultrathin integral composite

membrane, US Patent, 5,547,551,1996.

254. Carretta N., Tricoli V., Picchioni F., “Ionomeric membranes based on partially sulfonated

poly(styrene): synthesis, proton conduction and methanol permeation”, J. Membr. Sci., vol.

166, pp. 189–197, 2000.

255. Noshay A., Robenson L.M., “Sulfonated Polysulfone”, J. Appl. Polym. Sci., vol. 20, pp.

1885–1903, 1976.

256. Kreuer K.D., “On the development of proton conducting polymer membranes for hydrogen

and methanol fuel cells”, J. Membr. Sci., vol. 185, pp. 29–39, 2001.

257. Vallejo E., Pourcelly G., Gavach C., Mercier R., Pineri M., “Sulfonated polyimide as

proton conductor exchange membranes, physicochemical properties and separating

H+/Mz+ by electrodialysis comparison with perfluorosulfonic membranes”, J. Membr. Sci.,

vol. 160, pp. 127–137, 1999.

258. Kobayashi T., Rikukawa M., Sanui K., Ogata N., “Proton conducting polymers derived

from poly(etherether-ketone) and poly(4- phenoxybenzoyl-1,4-phenylene)”, Solid State

Ionics, vol. 106, pp. 219–225, 1998.

259. Daniel M.F., Desbat B., Cruege F., Trinquet O., Lassegues J.C., “Solid state protonic

conductors: Poly(ethylene imine) sulfates and phosphates”, Solid State Ionics, vol. 28–30,

pp. 637-641, 1988.

260. Przyłuski J., Da browska A., Stys S., Wieczorek W., “Ambient temperature proton

polymeric electrolytes based on poly (ethylene oxide)-poly (methyl methacrylate) blends”,

Solid State Ionics, vol. 60, pp. 141-146, 1993.

261. Rodriguez D., Jegat C., Trinquet O., Grondin J., Lassègues J.C., “Proton conduction in

poly (acrylamide)-acid blends”, Solid State Ionics, vol. 61, pp. 195-202, 1993.

262. Wainright J.S., Wang J.T., Weng D., Savinell R.F., Litt M., “Acid-doped

polybenzimidazoles: a new polymer electrolyte”, J. Electrochem. Soc., vol. 142, pp. L121–

L123, 1995.

263. Weeks S.P., Polak A.J., “Differential scanning calorimetry and complex admittance

analysis of PVA/H3PO4 proton conducting polymer blends”, Sens. Actuators, vol. 11, pp.

377-385, 1987.

214

264. Hashmi S.A., Latham R.J., Linford R.G., Schlindwein W.S., “Studies on all solid state

electric double layer capacitors using proton and lithium ion conducting polymer

electrolytes”, J. Chem. Soc., Faraday Trans., vol. 93, pp. 4177-4182, 1997.

265. Gao H., Lian K., “Characterization of proton conducting polymer electrolytes for

electrochemical capacitors”, Electrochim. Acta, vol. 56, pp. 122-127, 2010.

266. Kumar G.G., Kim P., Nahm K., Elizabeth R.N., “Structural characterization of PVdF-

HFP/PEG/Al2O3 proton conducting membranes for fuel cells”, J. Membrane Sci., vol. 303,

pp. 126-131, 2007.

267. Kumar G.G., Kim P., Kim A.R., Nahm K.S., Elizabeth R.N., “Structural, thermal and ion

transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP

hybrid membranes”, Mater. Chem. Phys., vol. 115, pp. 40-46, 2009.

268. Doyle M., Choi S., Proulx G., “High-temperature proton conducting membranes based on

perfluorinated ionomer membrane–ionic liquid composites”, J. Electrochem. Soc., Vol.

147, pp. 34–37, 2000.

269. Wang J.T.W., Hsu S.L.C, “Enhanced high-temperature polymer electrolyte membrane for

fuel cells based on polybenzimidazole and ionic liquids”, Electrochim. Acta, vol. 56,

pp. 2842-2846, 2011.

270. Ye H., Huang J., Xu J.J., Kodiweera N.K.A.C., Jayakody J.R.P., Greenbaum S.G., “New

membranes based on ionic liquids for PEM fuel cells at elevated temperatures”, J. Power

Sources, vol. 178, pp. 651-660, 2008.

271. Fernicola A., Panero S., Scrosati B., Tamada M., Ohno H., “New Types of Brönsted Acid–

Base Ionic Liquids-Based Membranes for Applications in PEMFCs”, ChemPhysChem, vol.

8, pp. 1103-1107, 2007.

272. Lee S.Y., Yasuda T., Watanabe M., “Fabrication of protic ionic liquid/sulfonated

polyimide composite membranes for non-humidified fuel cells”, J. Power Sources, vol. 195,

pp. 5909-5914, 2010.

273. Parker J.M., Wright P.V., Lee C.C., “A double helical model for some alkali metal ion-

poly(ethylene oxide) complexes”, Polymer, vol. 22, pp. 1305-1307, 1981.

274. Papke B.L., Ratner M.A., Shriver D.F., “Conformation and Ion transport models for the

structure and ionic conductivity in complexes of polyethers with alkali metal salts”, J.

Electrochem. Soc., vol. 129, pp. 1694-1701, 1982.

215

275. Berthier C., Gorecki W., Minier M., Armand M.B., Chabagno J.M., Rigaud P.,

“Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide)

adducts”, Solid State Ionics, vol. 11, pp. 91-95, 1983.

276. Gadjourova Z., Andreev Y.G., Tunstall D.P., Bruce P.G., “Ionic conductivity in crystalline

polymer electrolytes”, Nature, vol. 412, pp. 520-523, 2001.

277. Cohen M.H., Turnbull D., “Molecular Transport in Liquids and Glasses”, J. Chem. Phys.,

vol. 31, pp. 1164, 1959.

278. Gibbs J.H., DiMarzio E.A., “Nature of the Glass Transition and the Glassy State”, J.

Chem. Phys., vol. 28, pp. 373, 1958.

279. Adam G., Gibbs J.H., “On the temperature dependence of cooperative relaxation

properties in glass forming liquids”, J. Chem. Phys., vol. 43, pp. 139, 1965.

280. Druger S.D., Nitzan A., Ratner M.A., “Dynamic bond percolation theory: A microscopic

model for diffusion in dynamically disordered systems. I. Definition and one-dimensional

case”, J. Chem. Phys., vol. 79, pp. 3133, 1983.

281. Druger S.D., Ratner M.A., Nitzan A., “Polymeric solid electrolytes: Dynamic bond

percolation and free volume models for diffusion”, Solid State Ionics, vol. 9–10, pp. 1115-

1120, 1983.

282. Ratner M.A., Nitzan A., “Conductivity in polymer ionics. Dynamic disorder and

correlation”, Faraday Discuss. Chem. Soc., vol. 88, pp. 19-42, 1989.

283. Druger S.D., “Ionic transport in polymer electrolytes based on renewing environments”, J.

Chem. Phys., vol. 100, pp. 3979, 1994.

284. Vincent C.A., “Polymer electrolytes”, Prog. Solid State Chem., vol. 17, pp. 145-261, 1987.

285. Ratner M.A., Shriver D.F., “Ion transport in solvent-free polymers”, Chem. Rev., vol. 88,

pp 109–124, 1988.

286. Siekierski M., Wieczorek W., Nadara K., “Mesoscale models of conductivity in polymeric

electrolytes—A comparative study”, Electrochim. Acta, vol. 53, pp. 1556-1567, 2007.

287. Ciosek M., Sannier L., Siekierski M., Golodnitsky D., Peled E., Scrosati B., Głowinkowski

S., Wieczorek W., “Ion transport phenomena in polymeric electrolytes”, Electrochim.

Acta, vol. 53, pp. 1409-1416, 2007.

288. Wieczorek W., Siekierski M., in Knauth P., Schoonman J. (Eds.), “Nanocomposites: Ionic

Conducting Materials and Structural Spectroscopies”, Springer, NY, 2008.

216

289. Wieczorek W., Such K., Wyciślik H., Płocharski J., “Modifications of crystalline structure

of PEO polymer electrolytes with ceramic additives”, Solid State Ionics, vol. 36, pp. 255-

257, 1989.

290. Kumar B., “From colloidal to composite electrolytes: properties, peculiarities, and

possibilities”, J. Power Sources, vol. 135, pp. 215-231, 2004.

291. Bhattacharyya A.J., Maier J., Bock R., Lange F.F., “New class of soft matter electrolytes

obtained via heterogeneous doping: Percolation effects in “soggy sand” electrolytes”,

Solid State Ionics, vol. 177, pp. 2565-2568, 2006.

292. Osińska M., Walkowiak M., Zalewska A., Jesionowski T., “Study of the role of ceramic

filler in composite gel electrolytes based on microporous polymer membranes”, J.

Membrane Sci., vol. 326, pp. 582-588, 2009.

293. Appetecchi G.B., Croce F., Persi L., Ronci F., Scrosati B., “Transport and interfacial

properties of composite polymer electrolytes”, Electrochim. Acta, vol. 45, pp. 1481-1490,

2000.

294. Sannier L., Zalewska A., Wieczorek W., Marczewski M., Marczewska H., “Impact of

“Super Acid” like filler on the properties of a PEGDME/LiClO4 system”, Electrochim.

Acta, vol. 52, pp. 5685-5689, 2007.

295. Nan C.W., Smith D.M., “A.c. electrical properties of composite solid electrolytes", Mater.

Sci. Eng. B, vol. 10, pp. 99-106, 1991.

296. Landauer R., “The Electrical Resistance of Binary Metallic Mixtures”, J. Appl. Phys., vol.

23, pp. 779, 1952.

297. Orädd G., Edman L., Ferry A., “Diffusion: a comparison between liquid and solid polymer

LiTFSI electrolytes”, Solid State Ionics, vol. 152–153, pp. 131-136, 2002.

298. Grillone A.M., Panero S., Retamal B.A., Scrosati B., “Proton Polymeric Gel Electrolyte

Membranes Based on Polymethylmethacrylate”, J. Electrochem. Soc., vol. 146, pp. 27-31,

1999.

299. Chandra S., Sekhon S.S., Arora N., “PMMA based protonic polymer gel electrolytes”,

Ionics, vol. 6, pp. 112-118, 2000.

300. Saito Y, Kataoka H, Quartarone E, Mustarelli P., “Carrier Migration Mechanism of

Physically Cross-Linked Polymer Gel Electrolytes Based on PVDF Membranes”, J. Phys.

Chem. B, vol. 106, pp. 7200-7204, 2002.

217

301. Huang H., Wunder S.L., “Ionic Conductivity of Microporous PVDF-HFP/PS Polymer

Blends”, J. Electrochem. Soc., vol. 148, pp. A279-A283, 2001.

302. Mahipal Y.K.., “Investigations on electroactive polymer electrolytes: synthesis,

characterizatio and electrochemical battery applications”, Ph. D. Thesis, 2011.

303. Amjadd S., Neelakrishnan S., Rudramoorthy R., “Review of design considerations and

technological challenges for successful development and deployment of plug-in hybrid

electric vehicles”, Renewable and Sustainable Energy Reviews, pp. 1104–1110, 2010.

304. Pandey G.P., Agrawal R.C., Hashmi S.A., “Magnesium ion-conducting gel polymer

electrolytes dispersed with fumed silica for rechargeable magnesium battery application”,

J. Solid State Electrochem., vol. 15, pp. 2253–2264, 2011.

305. Kumar G.G., Sampath S., “Electrochemical characterization of poly(vinylidene-fluoride)-

zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries”, Solid

State Ionics, vol. 160, pp. 289-300, 2003.

306. Winter M., Brodd R.J., “What are Batteries, Fuel Cells, and Supercapacitors?”, Chem.

Rev., vol. 104, pp. 4245-4269, 2004.

307. Fuel Cells 2000, www.fuelcells.org.

308. Larminie J., Dicks A., “Fuel Cell System Explained”, 2nd

Ed., John Wiley & Sons,

Chichester, 2003.

309. Kreuer K.D., “Hydrocarbon membranes”, in Vielstich W., Lamm A., Gasteiger H. A.,

(Eds.), “Handbook of Fuel Cells: Fundamental Technology and Applications”, vol. 3, John

Wiley & Sons, Chichester, pp. 436, 2003.

310. Hashmi S.A., Kumar A., Tripathi S.K., “Investigations on electrochemical

supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes”,

Euro. Polym. J., vol. 41, pp. 1373-1379, 2005.

311. Conway B. E., “Electrochemical Supercapacitors, Scientific Fundamentals and

Technological Applications”, Kulwar Academic, Plenum Publisher, New York, 1997.

312. Burke A. F., Murphy T. C., in “Materials for Energy Storage and Conversion: Batteries,

Capacitors and Fuel Cells”, edited by Goughtly D. H., Vyas B., Takamura T., Huff J. R.,

Material Research Society, Pittsburgh, 1995.

313. Canadian Wind Energy Industry, www.ic.gc.ca.

218

314. Sun Z., Yuan A., “Electrochemical Performance of Nickel Hydroxide/ Activated

Carbon Super-capacitors using a Modified Polyvinyl Alcohol Based Alkaline Polymer

Electrolyte”, Chinese J. Chem. Eng., vol. 17, pp. 150-155, 2009.

315. Lee K.-T., Lee J.-F., Wu N.-L., “Electrochemical characterizations on

MnO2supercapacitors with potassium polyacrylate and potassium polyacrylate-co-

polyacrylamide gelpolymer electrolytes”, Electrochim. Acta, vol. 54, pp. 6148-6153, 2009.

316. Hashmi S.A., Latham R.J., Linford R.G., Schlindwein W.S., “Conducting polymer-based

electrochemical redox supercapacitors using proton and lithium ion conducting polymer

electrolytes”, Faraday Discuss., vol. 47, pp. 28-33, 1998.

317. Pandey G.P., Kumar Y., Hashmi S.A., “Ionic liquid incorporated PEO based polymer

electrolyte for electrical double layer capacitors: A comparative study with lithium and

magnesium systems”, Solid State Ionics, vol. 190, pp. 93-98, 2011.

318. Sivaraman P., Thakur A., Kushwaha R.K., Ratna D., Samui A.B., “Poly(3-methyl

thiophene)-Activated Carbon Hybrid Supercapacitor Based on Gel Polymer Electrolyte

Batteries, Fuel Cells, and Energy Conversion”, Electrochem. Solid-State Lett., vol 9, pp.

A435-A438, 2006.

319. www.energyer.com

320. Freitas J.N.D., Benedetti J.E., Freitas F.S., Nogueira A.F., Paoli M.A.D., in: “Polymer

Electrolytes - Fundamentals and Applications”, edited by C. Sequeira, D. Santos,

Woodhead Publishing Limited, Oxford, pp. 381, 2010.

321. Muthuraaman B., Will G., Wang H., Moonie P., Bell J., “Increased charge transfer of Poly

(ethylene oxide) based electrolyte by addition of small molecule and its application in dye-

sensitized solar cells”, Electrochim. Acta, vol. 87, pp. 526-531, 2013.

322. Singh R., Jadhav N.A., Majumder S., Bhattacharya B., Singh P.K., “Novel biopolymer gel

electrolyte for dye-sensitized solar cell application”, Carbohydrate Polymers, vol. 91, pp.

682-685, 2013.

323. Ileperuma O.A., Dissanayake M.A.K.L., Somasunderam S., Bandara L.R.A.K.,

“Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-

based polymer electrolytes”, Sol. Energ. Mater. Sol. Cells, vol. 84, pp. 117-124, 2004.

219

324. Zhang X., Yang H., Xiong H.-M., Li F.-Y., Xia Y.-Y., “A quasi-solid-state dye-sensitized

solar cell based on the stable polymer-grafted nanoparticle composite electrolyte”, J.

Power Sources, vol. 160, pp. 1451-1455, 2006.

325. Wang G., Zhuo S., Wang L., Fang S., Lin Y., “Mono-ion transport electrolyte based on

ionic liquid polymer for all-solid-state dye-sensitized solar cells”, Sol. Energ., vol. 86, pp.

1546-1551, 2012.

326. Singh P.K., Kim K.-W., Park N.-G., Rhee H.-W., “Mesoporous nanocrystalline TiO2

electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell

application”, Synthetic Metals, vol. 158, pp. 590-593, 2008.

327. Wang M., Yin X., Xiao X.R., Zhou X.W., Yang Z.Z., Li X.P., Lin Y., “A new ionic liquid

based quasi-solid state electrolyte for dye-sensitized solar cells”, J. Photochemistry

Photobiology A Chemistry, vol. 194, pp. 20-26, 2008.

328. Fu X., in:“Polymer Electrolytes – Fundamentals and Applications”, edited by C. Sequeira,

D. Santos, Woodhead Publishing Limited, Oxford, pp. 471, 2010.

329. Granqvist C.G., “Handbook of Inorganic Electrochromic Materials”, Elsevier Science,

Amterdam, Netherlands, 1995.

330. Kobayashi N., Miura S., Nishimura M., Goh Y., “Gel electrolyte-based flexible

electrochromic devices showing subtractive primary colors”, Electrochim. Acta, vol. 53,

pp. 1643-1647, 2007.

331. Barbosa P.C., Silva M.M., Smith M.J., Gonçalves A., Fortunato E., “Studies of solid-state

electrochromic devices based on PEO/siliceous hybrids doped with lithium perchlorate”,

Electrochim. Acta, vol. 52, pp. 2938-2943, 2007.

332. Reiter J., Krejza O., Sedlaříková M., “Electrochromic devices employing methacrylate-

based polymer electrolytes”, Sol. Energ. Mater. Sol. Cells, vol. 93, pp.249-255, 2009.

333. Vasilopoulou M., Raptis I., Argitis P., Aspiotis I., Davazoglou D., “Polymeric electrolytes

for WO3-based all solid-state electrochromic displays”, Microelectronic Engineering, vol.

83, pp. 1414-1417, 2006.

334. Brazier A., Appetecchi G.B., Passerini S., Vuk A.S., Orel B., Donsanti F., Decker F.,

“Ionic liquids in electrochromic devices”, Electrochim. Acta, vol. 52, pp. 4792-4797, 2007.

335. Cummins D., Boschloo G., Ryan M., Corr D., Rao S.N., Fitzmaurice D., “Ultrafast

Electrochromic Windows Based on Redox-Chromophore Modified Nanostructured

220

Semiconducting and Conducting Films”, J. Phys. Chem. B, vol. 104, pp. 11449–11459,

2000.

336. Desai S., Shepherd R.L., Innis P.C., Murphy P., Hall C., Fabretto R., Wallace G.G., “Gel

electrolytes with ionic liquid plasticiser for electrochromic devices”, Electrochim. Acta,

vol. 56, pp. 4408-4413, 2011.

337. Roy D., Cambre J.N., Sumerlin B.S., “Future perspectives and recent advances in stimuli-

responsive materials”, Prog. Polym. Sci., vol. 35pp. 278-301, 2010.

338. Kim S.J., Kim H.I., Shin S.R., Kim S.I., “Electrical behavior of chitosan and

poly(hydroxyethyl methacrylate) hydrogel in the contact system”, J. Appl. Polym. Sci..

vol.92, pp. 915–919, 2004.

339. Gao Y., Xu S., Wu R., Wang J., Wei J., “Preparation and characteristic of electric stimuli

responsive hydrogel composed of polyvinyl alcohol/poly (sodium maleate-co-sodium

acrylate)”, Journal of Applied Polymer Science, vol. 107, pp. 391–395, 2008.

340. Lu X., Wu S., Wang L., Su Z., “Solid-state amperometric hydrogen sensor based

onpolymer electrolyte membrane fuel cell”, Sensors and Actuators B: Chemical, vol. 107,

pp. 812-817, 2005.

341. Wang Y., Yan H., Wang E., “Solid polymer electrolyte-based hydrogen sulfidesensor”,

Sensors and Actuators B: Chemical, vol. 87, pp. 115-121, 2002.

342. Chiou C,-Y., Chou T.-S., “Amperometric SO2 gas sensors based on solid

polymer electrolytes”, Sensors and Actuators B: Chemical, vol. 87, pp. 1-7, 2007.

343. Opekar F., Stul k K., “Electrochemical sensors with solid polymer electrolytes”, Analytica

Chimica Acta, vol. 385, pp. 151-162, 1999.

344. Chou T.C., Ng K.M., Wang S.H., “Gold-solid polymer electrolyte sensor for detecting

dissolved oxygen in water”, Sensors and Actuators B: Chemical, vol. 66, pp. 184-186, 2000.

345. Pavia D.L., Lampman G.M., Kriz G.S., Vyvyan J.R., “Introduction to Spectroscopy”, 4th

ed., Brooks/Cole, USA, (2009).

346. Hohne G., Hemminger W., Flammersheim H.J., “Differential Scanning Calorimetry”,

Springer-Verlag, Berlin Heidelberg, 1996.

347. Haines P.J., “Thermal methods of analysis: principles, applications and problems”,

Blackie Academic & Professionals, London, 1995.

221

348. Raistrick I.D., MacDonald J.K., Franceschetti D.R., (Eds.) “Impedance Spectroscopy-

Emphasizing Solid Materials and Systems”, Wiley, NY, 1987.

349. Bruce P.G., Vincent C.A., “Steady state current flow in solid binary electrolyte cells”, J.

Electroanal. Chem. Interfac. Electrochem., vol. 225, pp. 1-17.

350. Sotta D., Bernard J., Moynot V.S., “Application of electrochemical impedance

spectroscopy to the study of ionic transport in polymer-based electrolytes”, Prog. Organic

Coatings, vol. 69, pp. 207-214, 2010.

351. Randles J.E.B., “Kinetics of rapid electrode reactions”, Discussion Faraday Soc., vol. 1,

pp. 11-17, 1947.

352. MacDonald J.R., (Ed.) “Impedance Spectroscopy-Emphasizing Solid Materials and

Systems”, Wiley, NY, 1987.

353. Bagotsky V.S., “Fundamental of electrochemistry”, 2nd

Ed., Wiley, 2005.

354. Wang J., “Analytical electrochem.”, 3rd

Ed., Wiley, 2006.

355. Bard A.J., Faulkner L.R. (Eds.), “Electrochemical methods: fundamental and

applications”, 2nd

Ed., Wiley, 2000.

356. Armand M.B., ”Polymer Electrolytes”, Ann. Rev. Mater. Sci., vol. 16, pp. 245-261, 1986.

357. Owen J.R., “Superionic Solids and Solid electrolytes- Recent Trends”, (ed) Laskar A.L.,

Chandra S., Academic Press, NY, p.111, 1989.

358. Schuster M.F.H., Meyer W.H., “Anhydrous Proton-Conducting Polymers”, Ann. Rev.

Mater. Sci., vol. 33, pp. 233-261, 2003.

359. Prusinowska D., Wieczorek W., Wycislik H., Siekierski M., Przyluski J., Soltysiak J.,

“Conductivity and structural studies of PEO-NH4SCN electrolytes”, Solid State Ionics, vol.

72, pp. 52-59, 1994.

360. J. P. Sharma, K. Yamada and S. S. Sekhon, “Conductivity Study on PEO Based Polymer

Electrolytes Containing Hexafluorophosphate Anion: Effect of Plasticizer”, Macromol.

Symp., vol. 315, pp. 188-197, 2012.

361. Sharma J.P., Sekhon S.S., “Relative role of plasticizer and nano sized fumed silica on the

conductivity behavior of PEO-NH4PF6 polymer electrolytes”, Indian J. Eng. Mater. Sci.,

vol. 12, pp. 557-562, 2005.

362. Bandara L.R.A.K., Dissanayake M.A.K.L., Mellander B.E., “Ionic conductivity of

plasticized(PEO)-LiCF3SO3 electrolytes”,Electrochim. Acta, vol. 43, pp. 1447-1451, 1998.

222

363. Rhoo H.J., Kim H.T., Park J.K., Hwang T.S., “Ionic conduction in plasticized PVCPMMA

blend polymer electrolytes”, Electrochim. Acta, vol. 42, pp. 1571-1579, 1997.

364. Ramesh S., Arof A.K., Mater. Sci. Eng. B Solid, vol. 85, pp. 11, 2001.

365. Yue Z., McEwen I.J., Cowie J.M.G., “Novel gel polymer electrolytes based on a cellulose

ester with PEO side chains”, Solid State Ionics, vol. 156, pp. 155-162, 2003.

366. Srivastava N., Chandra S., “Studies on a new proton conducting polymer system:

poly(ethylene succinate) + NH4ClO4”, European Polymer J., vol. 36, pp. 421-433, 2000.

367. Papke B.L., Ratner M.A., Shriver D.F., “Vibrational spectroscopy and structure of

polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts”, J. Phys. Chem.

Solids, vol. 42, pp. 493-500, 1981.

368. Minier M., Berthier C., Gorecki W., “Thermal analysis and NMR study of a poly(ethylene

oxide) complex electrolyte : PEO(LiCF3SO3)x”, J. Physique, vol. 45, pp. 739-744, 1984.

369. Schantz S., “Light Scattering in Polymer electrolytes”, Ph.D. thesis, Univ. of Gothenburg,

1990.

370. Li Y., Wang J., Tang J., Liu Y., He Y., “Conductive performances of solid polymer

electrolyte films based on PVB/LiClO4 plasticized by PEG200, PEG400 and PEG600”, J.

Power Sources, vol. 187, pp. 305-311, 2009.

371. Reddy M.J., Sivakumar J., Rao U.V.S., Chu P.P., “Structural and ionic conductivity of

PEO blend PEG solid polymer electrolyte”, Solid State Ionics, vol. 177, pp. 253-256, 2006.

372. Fernandez M.E., Diosa J.E., Vargas R.A., “Impedance spectroscopy studies of the polymer

electrolyte based on poly(vinyl alcohol)–(NaI + 4AgI)-H2O”, Microelectronics J., vol. 39,

pp. 1344-1346, 2008.

373. Karan N.K., Pradhan D.K., Thomas R., Natesan B., Katiyar R.S., “Solid polymer

electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–

LiCF3SO3): Ionic conductivity and dielectric relaxation”, Solid State Ionics, vol. 179, pp.

689-696, 2008.

374. Ramesh S., Yahaya A.H., Arof A.K., “Dielectric behaviour of PVC-based polymer

electrolytes”, Solid State Ionics, vol. 152-153, pp. 291-294, 2002.

375. Agrawal S.L., Singh M., Tripathi M., Dwivedi M.M., Pandey. K., “Dielectric relaxation

studies on [PEO–SiO2]:NH4SCN nanocomposite polymer electrolyte films”, J. Mater. Sci.,

vol. 44, pp. 6060-6068, 2009.

223

376. Jonscher A.K., “The ‘universal’ dielectric response”, Nature, vol. 267, pp. 673-679, 1977.

377. Ravi M., Pavani Y., Kumar K.K., Bhavani S., Sharma A.K., Rao V.V.R.N., “Studies on

electrical and dielectric properties of PVP:KBrO4complexed polymer electrolyte

films”, Mater. Chem. Phys., vol. 130, pp. 442-448, 2011.

378. Hirankumar G., Selvasekarapandian S., Bhuvaneswari M.S., Baskaran R., Vijayakumar M.,

“Ag+ ion transport studies in a polyvinyl alcohol-based polymer electrolyte system”, J.

Solid State Electrochem., vol. 10, pp. 193-197, 2006.

379. Wagner J.B., Wagner C., “Electrical Conductivity Measurements on Cuprous Halides”, J.

Chem. Phys., vol. 26, pp. 1597, 1957.

380. Ibrahim S., Ahmad R., Johan M.R., “Conductivity and optical studies of plasticized solid

polymer electrolytes doped with carbon nanotube”, J. Luminescence vol. 132, pp. 147–152,

2012.

381. Vijayakumar M., Hirankumar G., Bhuvaneswari M.S., Selvasekarapandian S., “Influence

of B2O3 doping on conductivity of LiTiO2 electrode material”. J. Power Sources, vol. 117,

pp. 143-147, 2003.

382. Ibrahim S., Yasin S.M.M., Nee N.M., Ahmad R., Johan M.R., “Conductivity and

dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes”, Solid State

Comm., vol 152, pp. 426-502, 2012.

383. Ciuffa F., Croce F., D’Epifanio A., Panero S., Scrosati B., “Lithium and proton

conducting gel-type membranes”, J. Power Sources, vol. 127, pp. 53-57, 2004.

384. Zukowska G., Rogowska M., Wojda A., Monikowska E.Z., Florjanczyk Z., Wieczorek W.,

“The effect of solvent and proton donor type on the conductivity and physico-chemical

properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytes”, Solid

State Ionics, vol. 136-137, pp. 1205-1209, 2000.

385. Xi J., Qiu X., Li J., Tang X., Zhu W., Chen L., “PVDF–PEO blends based microporous

polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity”, J.

Power Sources, vol. 157, pp. 501-506, 2006.

386. Oh B., Kim Y.R., “Evaluation and characteristics of a blend polymer for a solid polymer

electrolyte”, Solid State Ionics, vol. 124, pp. 83-89, 1999.

224

387. Martinelli A., Navarra M.A., Matic A., Panero S., Jacobsson P., Borjesson L., Scrosati B.,

“Structure and functionality of PVdF/PAN based, composite proton conducting

membranes”, Electrochem. Acta, vol. 50, pp. 3992-3997, 2005.

388. Ding Y., Zhang P., Long Z., Jiang Y., Xu F., Di W., “The ionic conductivity and

mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion

batteries”, J. Membrane Science, vol. 329, pp. 56-59, 2009.

389. Stephan A.M, Kumar T.P., Renganathan N.G., Pitchchumani S., Thirunakaran R.,

Muniyandi N., “Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend

polymer electrolytes”, J. Power Sources, vol. 89, pp. 80-87, 2000.

390. Rajendran S., Sivakumar P., “An investigation of PVdF/PVC-based blend electrolytes with

EC/PC as plasticizers in lithium battery applications”, Physica B, vol. 403, pp. 509-516,

2008.

391. Fan L., Dang Z., Nan C.W., Li M., “Thermal, electrical and mechanical properties of

plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends”, Electrochim. Acta,

vol. 48, pp. 205-209, 2002.

392. Rajendran S., Sivakumar M., Subadevi R., “Investigations on the effect of various

plasticizers in PVA–PMMA solid polymer blend electrolytes”, Mater. Letters, vol. 58, pp.

641– 649, 2004.

393. Du C.H., Zhu B.K., Xu Y.Y., “The effects of quenching on the phase structure of

vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends”, J.

Mater. Sci., vol. 41, pp. 417–421, 2006.

394. Sim L.N., Majid S.R., Arof A.K., “FTIR studies of PEMA/PVdF-HFP blend polymer

electrolyte system incorporated with LiCF3SO3 salt”, Vibrational Spectroscopy, vol. 58, pp.

57– 66, 2012.

395. Chen H.W., Lin T.P., Chang F.C., “Ionic conductivity enhancement of the plasticized

PMMA/LiClO4 polymer nanocomposite electrolyte containing clay”, Polymer, vol. 43, pp.

5281-5288, 2002

396. Guitton J., Dongui B., Mosdale R., Forestier M., “New negative metallic electrode for solid

batteries with a solid protonic conductor (SPC) as electrolyte”, Solid State Ionics, vol. 28-

30, pp. 847-852, 1988.

225

397. Munichandraiah N., Scanlon L.G., Marsh R.A., Kumar B., Sircar A.K., “Influence of

zeolite on electrochemical and physicochemical properties of polyethylene oxide solid

electrolyte”, J. Appl. Electrochem., vol. 25, pp. 857–863, 1995.

398. Ahmad S., Agnihotry S.A., “Effect of nano γ-Al2O3 addition on ion dynamics in polymer

electrolytes”, Current Appl. Phys., vol. 9, pp.108–114, 2011.

399. Zhang P., Yang L.C., Li L.L., Ding M.L., Wu Y.P., Holze R., “Enhanced electrochemical

and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with

SiO2 nanowires”, J. Membrane Sci., vol. 379, pp.80-85, 2011.

400. Ferrari S., Quartarone E., Mustarelli P., Magistris A., Fagnoni M., Protti S., Gerbaldi C.,

Spinella A., “Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-

methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid”, J.

Power Sources, vol. 195, pp. 559-566, 2010.

401. Tripathi B.P., Shahi V.K., “Organic–inorganic nanocomposite polymer electrolyte

membranes for fuel cell applications”, Prog. Polym. Sci., vol. 36, pp.945–979, 2011.

402. Wu C.G., Lu M.I., Tsai C.C., Chuang H.J., “PVdF-HFP/metal oxide nanocomposites: The

matrices for high-conducting, low-leakage porous polymer electrolytes”, J. Power Sources,

vol. 159, pp. 295-300, 2006.

403. Braun D., Cherdron H., Rehahn M., Ritter H., Voit B., “Modification of Macromolecular

Substances”, Polymer Synthesis: Theory and Practice, pp. 362–367, Berlin: Springer, 2005.

404. Boudin F., Andrieu X., Jehoulet C., Olsen I.I., “Microporous PVdF gel for lithium-ion

batteries”, J. Power Sources, vol. 81–82, pp. 804-807, 1999.

405. Abbrent S., Pletstil J., Hlavata D., Lindgren J., Tegenfeldt J., Wendsjo A., “Crystallinity

and morphology of PVdF–HFP-based gel electrolytes”, Polymer, vol. 42, pp. 1407-1412,

2001.

406. Lin D.J., Chang C.L., Lee C.K., Cheng L.P., “Preparation and characterization of

microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO

solutions”, Eur. Polym. J., vol. 42, pp. 2407-2418, 2006.

407. Nicotera I., Coppola L., Oliviero C., Castriota M., Cazzanelli E., “Investigation of ionic

conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes”,

Solid State Ionics, vol. 177, pp. 581-588, 2006.

226

408. Zieba J.J., Zhang Y., Prasad P.N., “Sol-gel-processed inorganic oxides: organic polymer

composites for second-order nonlinear optical applications”, Sol–Gel Opt. II, vol. 1758,

pp. 287, 1992.

409. Qiao J.L., Hamaya T., Okada T., “New highly proton-conducting membrane poly

(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl- 1-

propanesulfonic acid (PVA/PAMPS) for low temperature direct methanol fuel cells

(DMFCs)”, Polymer, vol. 46, pp.10809e16, 2005.

410. Yang H.H., Han C.D., Kim J.K., “Rheology of miscible blends of poly(methyl

methacrylate) with poly(styrene-co-acrylonitrile) and with poly(vinylidene fluoride”,

Polymer, vol. 35, pp. 1503-1511, 1994.

411. Hahn B.R., Schönherr O.H., Wendorff J.H., “Evidence for a crystal-amorphous interphase

in PVDF and PVDF/PMMA blends”, Polymer, vol. 28, pp. 201-208, 1987.

412. Jamil T., Jamieson A.M., “Studies of ESR Nitroxide probe mobility in polymer blends”, J.

Polym. Sci. B: Polym. Phys., vol. 27, pp. 2553–2560, 1989.

413. Chen N.P., Hong L., “Surface morphology and composition of the casting films of PVdF-

PVP blend”, Polymer, vol. 43, pp. 1429-1436, 2002.

414. Greaves T.L., Drummond C.J., “Protic Ionic Liquids: Properties and Applications”,

Chem. Rev., vol. 108, pp. 206-237, 2008.

415. Anouti M., Caravanier M.C., Floch C.L., Lemordant L., “Alkylammonium-Based Protic

Ionic Liquids Part I: Preparation and Physicochemical Characterization”, J. Phys. Chem.

B, vol. 112, pp. 9406-9411, 2008.

416. Johnson K.E., Pagni R.M., Bartmess J., “Brønsted Acids in Ionic Liquids: Fundamentals,

Organic Reactions, and Comparisons”, Monatsh. Chem., vol. 138, pp. 1077-1101, 2007.

417. Nakamoto H., Noda A., Hayamizu K., Hayashi S., Hamaguchi H., Watanabe M., “Proton-

Conducting Properties of a Brønsted Acid−Base Ionic Liquid and Ionic Melts Consisting of

Bis(trifluoromethanesulfonyl)imide and Benzimidazole for Fuel Cell Electrolytes”, J. Phys.

Chem. C, vol. 111, pp. 1541-1548, 2007.

418. Ogihara W., Kosukegawa H., Ohno H., “Proton-conducting ionic liquids based upon

multivalent anions and alkylimidazolium cations”, Chem. Commun., pp. 3637-3639, 2006.

227

419. Martinelli A., Matic A., Jacobsson P., Borjesson J., Fernicola A., Panero S., Scrosati B.,

Ohno H., “Physical Properties of Proton Conducting Membranes Based on a Protic Ionic

Liquid”, J. Phys. Chem. B, vol. 111, pp. 12462-12467, 2007.

420. Yan F., Yu S., Zhang X., Qiu L., Chu F., You J., Lu J., “Enhanced Proton Conduction in

Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-

Based Microemulsions”, Chem. Mater., vol. 21, pp. 1480-1484, 2009.

421. Hasegawa R., Takahashi Y., Chatani Y., Tadokoro H., “Crystal Structures of Three

Crystalline Forms of Poly(vinylidene fluoride)”, Polymer J., vol. 3, pp.600 – 610, 1972.

422. Chen N., Hong L., “Surface phase morphology and composition of the casting films of

PVdF-PVP blend”, Polymer, vol. 43, pp. 1429-1436, 2002.

423. Talaty E.R., Raja S., Storhaung V.J., Doll A., Carper W.R., “Raman and Infrared Spectra

and ab Initio Calculations of C2-4MIM Imidazolium Hexafluorophosphate Ionic Liquids”,

J. Phys. Chem. B, vol. 108, pp. 13177-13184, 2004.

424. Carter D.A., Pemberton J.E. Woelfel K.J., “Orientation of 1- and 2-Methylimidazole on

Silver Electrodes Determined with Surface-Enhanced Raman Scattering”, J. Phys. Chem.

B, vol. 102, pp. 9870-9880, 1998

425. Jeon Y., Sung J., Seo C., Lim H., Cheong H., Kang M., Moon B., Ouchi Y., Kim D.,

“Structures of Ionic Liquids with Different Anions Studied by Infrared Vibration

Spectroscopy”, J. Phys. Chem. B, vol. 112, pp. 4735-4740, 2008.

426. Kiefer J., Fries J., Leipertz A., “Experimental Vibrational Study of Imidazolium-Based

Ionic Liquids: Raman and Infrared Spectra of 1-Ethyl-3-methylimidazolium

Bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium Ethylsulfate”, Appl.

Spectrosc., vol, 61, pp. 1306-13011, 2007.

427. Shi F., Deng Y., “Abnormal FT-IR and FTRaman spectra of ionic liquids confined in

nano-porous silica gel”, Spectrochim. Acta A, vol. 62, pp. 239–244, 2005.

428. Malek K., Puc A., Schroeder G., Rybachenko V.I., Proniewicz L.M., “FT-IR and FT-

Raman spectroscopies and DFT modeling of benzimidazolium salts”, Chem. Phy., vol. 327,

pp. 439–451, 2006.

429. Kahil H., Forestier M., Guitton J., in “Solid State Protonic Conductors III-84”,

Goodenough J.B., Jensen J., Potier A. (Eds), Odense University Press, pp. 84-89, 1985

228

430. Kahil H., Schouler E.J.L., Forestier M., Guitton J., “Characterization of the solid

composite electrode MnO2-γ, acetylene black, HUP/HUP by impedance spectroscopy”,

Solid State Ionics, vol. 18–19, pp. 892-896, 1986.

431. Guitton J., Poinsignon C., Sanchez J.Y., in: Colomban P (eds), “Proton conductors: Solid

Membranes and gels- materials and devices”, Cambridge University Press, pp. 539-550,

1992.

432. Poinsignon C., “Polymer electrolytes”, Mat. Sci. Eng. B, vol. 3, pp. 31-37, 1989.

433. Ali A.M.M., Mohamed N.S., Arof A.K., “Polyethylene oxide (PEO)–ammonium sulfate

((NH4)2SO4) complexes and electrochemical cell performance”, J. Power Sources, vol. 74,

pp. 135–141, 1998.

434. Agrawal R.C., Hashmi S.A., Pandey G.P., “Electrochemical cell performance studies on

all-solid-state battery using nano-composite polymer electrolyte membrane”, Ionics, vol.

13, pp. 295–298, 2007.

435. Ng L.S., Mohamad A.A., “Protonic battery based on a plasticized chitosan-NH4NO3solid

polymer electrolyte”, J. Power Sources, vol. 163, pp. 382–385, 2006.

436. Selvasekarapandian S., Hema M., Kawamura J., Kamishima O., Baskaran R.,

“Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable

proton battery”, J. Phys. Soc. Japan, vol. 79, pp. 163-168, 2010.

437. Pandey K., Lakshmi N., Chandra S., “A rechargeable solid-state proton battery with an

intercalating cathode and an anode containing a hydrogen-storage material”, J. Power

Sources, vol. 76, pp.116-123, 1998.

438. Lakshmi N., Chandra S., “Rechargeable solid-state battery using a proton-conducting

composite as electrolyte”, J. Power Sources, vol. 108, pp. 256–260, 2002.

439. Vanysek P., Electrochemical Series, CRC Press, Boca Raton, 2000.