forest service northeastern research station the allegheny

108
United States Department of Agriculture Forest Service Northeastern Research Station Northeastern Area State and Private Forestry Allegheny National Forest General Technical Report NE-339 Analysis of Forest Health Monitoring Surveys on the Allegheny National Forest (1998-2001) Randall S. Morin Andrew M. Liebhold Kurt W. Gottschalk Chris W. Woodall Daniel B. Twardus Robert L. White Stephen B. Horsley Todd E. Ristau

Upload: others

Post on 18-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Forest Service Northeastern Research Station the Allegheny

United StatesDepartment of Agriculture

Forest Service

Northeastern Research Station

Northeastern AreaState and Private Forestry

Allegheny National Forest

General TechnicalReport NE-339

Analysis of Forest Health Monitoring Surveys on the Allegheny National Forest (1998-2001)Randall S. MorinAndrew M. LiebholdKurt W. GottschalkChris W. WoodallDaniel B. TwardusRobert L. WhiteStephen B. HorsleyTodd E. Ristau

Page 2: Forest Service Northeastern Research Station the Allegheny

AbstractDescribes forest vegetation and health conditions on the Allegheny National Forest (ANF). During the past 20 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical aerial surveys (1984-98), Forest Inventory and Analysis plot data collected in 1989, and FHM plot data collected 1998-2001 were analyzed to compare disturbed and undisturbed areas. Tree mortality and crown dieback levels were compared between undefoliated areas and areas defoliated by cherry scallopshell moth, elm spanworm, and gypsy moth. American beech mortality was compared inside and outside the beech bark disease killing front. This study illustrates the value of an intensified grid of P3 plots and demonstrates the integration of aerial survey and plot data.

Published by: For additional copies:USDA FOREST SERVICE USDA Forest Service 11 CAMPUS BLVD SUITE 200 Publications DistributionNEWTOWN SQUARE PA 19073-3294 359 Main Road Delaware, OH 43015-8640February 2006 Fax: (740)368-0152

Visit our homepage at: http://www.fs.fed.us/ne

The AuthorsRANDALL S. MORIN is a research forester with the Northeastern Research Station at Newtown Square, PA. ANDREW M. LIEBHOLD and KURT W. GOTTSCHALK are research entomologist and research forester, respectively, with the Northeastern Research Station at Morgantown, WV. CHRIS W. WOODALL is a research forester with the North Central Research Station at St. Paul, MN. DANIEL B. TWARDUS is a forest health specialist with Northeastern Area, State and Private Forestry, in Morgantown, WV. ROBERT L. WHITE is a forest silviculturist with the Allegheny National Forest at Warren, Pennsylvania. STEPHEN B. HORSLEY and TODD E. RISTAU are research plant physiologist and research ecologist, respectively, with the Northeastern Research Station at Irvine, PA.

Manuscript received for publication 22 February 2005

Cover PhotosClockwise from top left: Allegheny Reservoir, by Janeal Hedman, USDA Forest Service; Cladonia coniocraea, courtesy of Yale University Press; Logan Falls, by Greg Porter, USDA Forest Service; Gypsy moth larva, by John H. Gent, USDA Forest Service, www.forestryimages.org.

This publication/database reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

CAUTION:PESTICIDES

Page 3: Forest Service Northeastern Research Station the Allegheny

ContentsExecutive Summary ........................................................................................... 1 Current Forest Conditions ................................................................................. 1 Disturbance Processes ..................................................................................... 1 Additional Forest Health Indicators ................................................................... 2 Lichen Communities ........................................................................................ 2 Down Woody Material ...................................................................................... 2 Vegetation Diversity ......................................................................................... 2 Ozone Bioindicator Plants ................................................................................ 2Introduction ......................................................................................................... 3 Objectives ......................................................................................................... 3 Location ............................................................................................................ 3 Climate .............................................................................................................. 4 History ............................................................................................................... 5 Early Timber Removals .................................................................................... 5 Effects of Deer Density ..................................................................................... 6 Multiple-use Forest Management ...................................................................... 7 Recent Disturbance Events .............................................................................. 8Overview Of Analyses ....................................................................................... 9 Description of Data ........................................................................................... 9 Forest Inventory and Analysis Data ................................................................... 9 Forest Health Monitoring Data .......................................................................... 9 Aerial Survey Data ..........................................................................................10Methods ..............................................................................................................10 Kriged Surfaces ...............................................................................................10 Species Diversity and Richness.......................................................................11 Effects of Forest Pests .....................................................................................12Current Forest Conditions ................................................................................13 Overstory Conditions .......................................................................................13 Forest Types ..................................................................................................13 Tree-Species Abundance ................................................................................13 Diameter Distribution.......................................................................................14 Spatial Distribution of Selected Tree Species ....................................................14 Plot Age Class, Stand-Development Class, and Relative Density ...................17 Age-Class Distribution .....................................................................................17 Distribution by Stand-Development Class .........................................................17 Relative Density .............................................................................................17 Live-Tree Distribution by Size Class for Indiana Bat Habitat ...........................17 Summary of Crown Condition, Tree Damage, and Standing Dead .................19 Crown Dieback ...............................................................................................19 Crown Density ................................................................................................21

Page 4: Forest Service Northeastern Research Station the Allegheny

Crown Ratio ...................................................................................................21 Foliage Transparency ......................................................................................23 Tree Damage .................................................................................................23 Standing Dead Trees ......................................................................................24 Understory Conditions .....................................................................................31 Seedling and Sapling Counts ...........................................................................31 Sawtimber Plots .............................................................................................31 Poletimber Plots .............................................................................................33 Seedling/Sapling Plots ....................................................................................34 Seedling and Sapling Richness and Diversity ....................................................35 Sustainability of Tree Species ..........................................................................35Disturbance Processes on the Allegheny National Forest ...........................38 Cherry Scallopshell Moth .................................................................................39 Elm Spanworm.................................................................................................40 Gypsy Moth ......................................................................................................43 Beech Bark Disease Complex .........................................................................45 Sugar Maple Decline........................................................................................46Additional Forest Health Monitoring Indicators ..............................................48 Lichen Communities ........................................................................................48 Down Woody Materials ....................................................................................52 Estimates and Summaries of DWM Fuel Loadings ............................................54 Ecology of CWD on the ANF ............................................................................55 Summary of DWM ..........................................................................................57 Soils .................................................................................................................58 Vegetation Diversity .........................................................................................62 Ozone Bioindicator Plants................................................................................65Acknowledgments .............................................................................................68Literature Cited ..................................................................................................68Appendix I ..........................................................................................................77 1989 FIA Survey Plot Designs .........................................................................77 Common and Scientific Names of Tree Species Found on ANF .....................78 Region 9 Forest Cover Types ..........................................................................79 Distribution of FHM and FIA Forest Type Groups and Forest Types ...............80 Variogram Parameters for Kriged Maps ...........................................................81 Lichen Species Sampled on the ANF ..............................................................82 Lichen Species Pollution Tolerances ...............................................................83 DWM Plot Designs (1999 and 2000) ...............................................................84 Quadrat Ground-Cover Variables ....................................................................85Appendix II .........................................................................................................87 Vegetation Species and Percentage of Subplots Sampled .............................87 Introduced Vegetation Species and Percent of Subplots Sampled ...............101

Page 5: Forest Service Northeastern Research Station the Allegheny

Executive SummaryCurrent Forest Conditions

• CurrentconditionsontheAlleghenyNationalForest(ANF)havebeenshapedlargelybytimberremovalsattheturnofthe�9thcentury,thedeclineandsubsequentreboundofpopulationsofwhite-taileddeer,multiple-usemanagementbytheUSDAForestServiceoverthepast75years,anddisturbanceeventsthathaveoccurredduringthepast�5years.

• NearlyhalfoftheforestlandintheANFconsistsofthemixeduplandhardwoodsandAlleghenyhardwoodsforesttypes.

• BlackcherryandredmaplearethemostabundanttreespeciesontheANF.

• Asummaryofeven-agedhardwoodstandsthroughouttheANFrevealedanoverallinverseJ-shapediameterdistributionwhichusuallyindicatesuneven-agedstands.Theabundanceofsmallerdiameterstemsresultsfromthefollowing:�)thediameterdistributioninolderstands(80to�00years)isaninverseJshapebecausefastergrowingspeciesrapidlyoutgrewslowergrowingspecies.Thus,thediameterdistributionisstratifiedbyspeciesgrowthrate;and2)inyoungerstandsthatoriginatedduringthepast40years,specieslowinfoodpreferencetodeerorthatareresilienttorepeatedbrowsingmakeupalargeproportionofsmall-diameterstems.

• Formostspecies,theaveragenumberofstandingdeadtreesisgreaterontheANFthanforotherforestedportionsofPennsylvania.

• AverageconditionsacrosstheANFeasilymeetsuitableandoptimalhabitatrequirementsfortheIndianabat.

• Overstorytreespeciesrichnessishigherinthestemexclusionandunderstoryreinitiationcategoriesthaninthestandinitiationcategory.

• Becauseblackcherryisabundantinallstand-sizecategories,thisspeciesprobablywillincreaseindominanceontheANFoverthenextcentury.

• Duetotheoverwhelmingabundanceofnon-oakregeneration,littleoakforestlikelywillbesustainedoverthelongtermbothinareaswheretimberharvestingoccursandisprohibited.

Disturbance Processes• Thefrequencyofdefoliationbythecherryscallopshellmothwassignificantlyrelatedtothe

percentageofblackcherrybasalareainstands.

• Thenumberofyearsofdefoliationbythecherryscallopshellmothwassignificantlyassociatedwiththepercentageofstandingdeadblackcherry.Crowndiebackofblackcherryincreasedwithyearsofdefoliationbycherryscallopshellmoth,thoughtherelationshipwasnotstatisticallysignificant.Managersshouldconsidersuppressionactivitiesfollowingadefoliationepisodesothattreedamagecanbemitigatedshouldanotherdefoliationeventoccur.

Page 6: Forest Service Northeastern Research Station the Allegheny

2

• Thefrequencyofdefoliationbytheelmspanwormwassignificantlyassociatedwiththeproportionofblackcherryinstands.

* Therewasatendencyforgreaterlevelsofhostcrowndiebackandtreemortalityinstandsdefoliatedbyelmspanworm.

• Thefrequencyofdefoliationbygypsymothwassignificantlyrelatedtothepercentageofoakbasalareainstands.

• ThepercentageofstandingdeadAmericanbeechwasmorethantwiceasgreatinsidethanoutsidethekillingfrontofbeechbarkdisease.

• Mostofthebasalareaofstandingdeadsugarmaplewasonupperslopesbutmortalitywasgreaterindefoliatedthaninundefoliatedareasregardlessofslopeposition.Crowndiebackofsugarmaplealsowashigherondefoliatedthanundefoliatedtreesregardlessofslopeposition.

Additional Forest Health IndicatorsLichen Communities

• Fifty-twolichenspeciesweresampledontheANF.LichenspeciesthataresensitivetopollutionareuncommonontheANF.

Down Woody Material• Duffaccountedfor64percentofdownwoodymaterials(byweight)ontheANF.

• Theweightsofduffand�00-hrfuelswerehigheronplotsinPennsylvaniaoutsidetheANF.

• Theweightof�,000-hrfuelswashigheronplotswithintheANFthanonotherforestedplotsinPennsylvaniaoutsidetheANF.

Vegetation Diversity• Inall,540speciesweresampledinsurveysofunderstoryvegetationontheANF.Another

�84specimensremainunidentifiedorpartiallyidentified;someofthesemaybeadditionalspecies.

• FortynonnativespecieswereidentifiedontheANF.

Ozone Bioindicator Plants• Nearlyhalfoftheplantssampledforozone(O3)damage(44.6percent)showedsymptoms

(generallylessthan25percentofleafareawithdamage)ofO3injuryin�998.Bycontrast,lessthan25percentofthesampledplantsshowedinjurysymptomsin2000,andlessthan8percentshowedsymptomsin�999and200�.

• BlackberryhadthemostO3damageas40to60percentofthesampledplantsshowedsymptomsofinjury(generallylessthan25percentofleafarea)in�998-2000.

Page 7: Forest Service Northeastern Research Station the Allegheny

3

IntroductionInthisreportwepresentinformationcollectedandanalyzedovera4-yearperiodaspartofaforesthealthassessmentoftheAlleghenyNationalForest(ANF).Aninterimassessment,“Forest Health Conditions on the Allegheny National Forest (1989-1999): Analysis of Forest Health Monitoring Surveys”(Morinetal.200�),wasacompilationofaerialpestsurveysanddatacollectedfrominventoryplotsoverthefirst2yearsofthe4-yearassessment.ThecurrentreportincludesresultsforallForestHealthMonitoring(FHM)plotsestablishedthroughouttheANFaswellasthefullsuiteofforesthealthindicators,e.g.,lichencommunities,soils,downwoodymaterials,ozonebioindicatorplants,andvegetation,whichwerenotincludedinthe200�report.

ThenationalFHMprogramwasinitiatedbytheUSDAForestServicein�990tomonitor,assess,andreportthestatusofandtrendsinforesthealthacrosstheNation.Methodsweredevelopedtocollectdataonforesthealthindicatorssuchastreemortality,damage,andgrowth,regeneration,crowncondition,plantdiversity,vegetationstructure,ozone,lichens,downwoodydebrisandfuelloadings,andsoilchemistry.TheseindicatorswereincludedintheforesthealthassessmentfortheANF.Alsoanalyzedinthisassessmentwerepestdatacollectedduringaerialsurveys.ANFpersonnelcollecteddataatanintensifiedspatialresolutionsothatinformationcouldbesummarizedattheNationalForestscale.

ObjectivesThefollowingissueswereaddressedintheassessment:

• Forestwideoverstoryandunderstoryconditions.

• Tree-crownconditionsasareflectionoftreeandforesthealth.

• Treemortalityandrelationshipstopossiblecauses.

• HabitatconditionsfortheendangeredIndianabat(Myotis sodalis).

• Pest-causeddamageandrelationshipstoforestconditions.

• Diversityanddistributionoflichens.

• Soilcharacteristicsandrelationshipstoforesthealth.

• Downwoodymaterialandfuelloadings.

• Compositionanddistributionofherbaceousvegetation.

• Groundlevelozoneinjury.

Theaerialpestsurveysandthedatacollectiononforesthealthplotswillcontinuesothatcurrentinformationontrendsandchangeisavailabletoplanners.

LocationTheANFislocatedinnorthwesternPennsylvania(Fig.�)ontheunglaciatedportionoftheAlleghenyPlateau.TheForestcomprisesportionsofWarren,Forest,McKean,andElkCounties.Theareawithintheforest

Figure 1.—The Allegheny National Forest in Pennsylvania overlayed on percent forested land (1-km grid cells--percent of each cell that is forest; NLCD data from Multi-Resolution Land Characteristics Consortium).

Page 8: Forest Service Northeastern Research Station the Allegheny

4

proclamationboundaryisnearly740,500acres,about70percentofwhichisfederalland(5�3,000acres).TheruggedplateaucountryinwhichtheANFliesincludesnumerouscreeksandstreamsthathavecreatedarollingandsometimessteeptopography(elevationupto�,300feet).

ClimateWintersarelongandcoldwhilesummersarecomparativelyshort.Thegrowingseasonisusuallyabout�48days.Precipitationisplentifulthroughout

theyearandaverages40to45inchesannually;snowfallaverages55to85inchesannually.ExceptforJanuaryandFebruary,monthlyprecipitationusuallytotals3to4inches(Fig.2).PrecipitationgenerallypeaksinJunewithameanofnearly5inchesforthatmonth.Infrequentdryperiodsofvaryingdurationandintensityaremostlikelyduringsummerandfall.ThePalmerDroughtSeverityIndex(PDSI)(Julyonly)from�895to�940indicatesdroughtevents(PDSIlessthanorequalto-�)4ofevery5years(Fig.3).Between�94�and�987,PDSIindicatesdroughts�ofevery4years.Therewerefoursignificant

MONTH AVG. TEMP. (F) AVG. PRECIP (in.)JAN 25.5 2.8FEB 26.5 2.46MAR 34.6 3.39APR 46.1 3.68MAY 57.1 4JUN 65.9 4.76JUL 70.2 4.29AUG 68.5 3.87SEP 61.9 3.83OCT 51.1 3.41NOV 40.1 3.89DEC 29.5 3.38

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

JAN

FEB

MAR AP

R

MAY JU

N

JUL

AU

G

SEP

OC

T

NO

V

DE

C

Prec

ipita

tion

(inch

es)

0

10

20

30

40

50

60

70

80

Tem

pera

ture

(deg

rees

Fah

renh

eit)

PrecipitationTemperature

1896 1.471897 -0.351898 -1.251899 -2.071900 -2.881901 -3.721902 1.371903 -1.171904 -0.291905 0.041906 0.431907 0.441908 -0.921909 -2.121910 -2.91911 -3.441912 0.521913 -1.031914 -1.821915 0.971916 -0.731917 0.411918 -2.231919 -1.56

-8

-6

-4

-2

0

2

4

6

1895

1899

1903

1907

1911

1915

1919

1923

1927

1931

1935

1939

1943

1947

1951

1955

1959

1963

1967

1971

1975

1979

1983

1987

1991

1995

1999

2003

Year (July only)

Palm

er D

roug

ht S

ever

ity In

dex

Figure 2.—Average monthly precipitation and temperature for Warren, PA, 1926-94, data from Pennsylvania State University, College of Earth and Mineral Science, Department of Meteorology.

Figure 3.—Palmer Drought Severity Index (July only) for Warren, PA, 1940-2004, data from National Climatic Data Center.

Page 9: Forest Service Northeastern Research Station the Allegheny

5

droughteventsontheANFfrom�988to200�followingarelativelydrought-freeperiodfrom�972to�987.Thedroughtsinthelate�980sand�990scoincidedwithseveralsevereoutbreaksofinsectdefoliators.

HistoryConditionsontheANFhavechangeddramaticallysincetheearly�800s.Today,theForestischaracterizedbyanabundanceofblackcherry,sugarandredmaple,andotherhardwoods.MostofthecommercialblackcherrytimberintheUnitedStatesisfromtheAlleghenyPlateau(Marquis�975).TheoriginalforestwasdominatedbyeasternhemlockandAmericanbeech(Lutz�930).Standsofeasternwhitepineoriginatedfollowingnumerouscatastrophesinwell-definedpatches(Marquis�975)thatoccurredasadistinctforesttype.Theseareasmeasuredintensratherthanhundredsofacres(HoughandForbes�943).Currentforestconditionshavebeenshapedlargelybytimber

removalsattheturnofthe�9thcentury,thedeclineandsubsequentreboundofpopulationsofwhite-taileddeer(Odocoileus virginianus),multiple-usemanagementbytheForestServiceoverthepast75years,anddisturbancesthathaveoccurredduringthepast�5years.

Early Timber RemovalsThefirstEuropeansettlersreachedtheareain�796and�797(Kussart�938).Atfirst,treeswerecuttoclearlandforagricultureandprovidetimberforcabinsandbarns(Marquis�975).Notlongaftersettlementofthearea,forestbasedindustriesweredeveloped.Inthelate�850s,thetanningindustrybeganusinghemlockbarkasasourceoftanninforcuringleather(Marquis�975).TheCivilWarcreatedaboomfortanneriesbecauseofthedemandforharnesses,militaryequipment,andindustrialbelting.ThevastsupplyofhemlockontheAlleghenyPlateauhelpedmeetthisdemand.Attheendofthe�9thcentury,thetanningindustrywasusingmassivequantitiesofhemlockbarkfromthePlateau.AchuteforslidinghemlockbarkdownthehillsideisshowninFigure4.Figure5showsatrainloadofhemlocktanbark.

Between�850and�900therewasincreaseddemandforlumbertobuildhomes,stores,andfurniture.Thedemandforpaperandotherwood-pulpproductsincreased.Whenbandsawscameintousearound�880,

Figure 4.—A log and bark landing of the Goodyear Lumber Company around 1912 (photo from Charles Catlin Collection).

Figure 5.—A trainload of hemlock tanbark of the Central Pennsylvania Lumber Company in McKean County.

Page 10: Forest Service Northeastern Research Station the Allegheny

6

somesawmillscouldcutmorethan�00,000boardfeetperday.

Around�890,anewforestindustry,woodchemicals,begantochangeforestdevelopment.Harvestedtimberwasprocuredandrefinedtomakeaceticacid,charcoal,woodalcohol,andotherdistillationproducts(Marquis�975).Overthenext40years,thisindustryprovidedamarketfornearlyeverysize,species,andqualityoftreegrowinginthearea.PilesofchemicalwoodareshowninFigure6.

Harvestingduringthiseraclearednearlyeverytreethatwasusable.Theoncelarge,contiguousforestontheAlleghenyPlateauwasalmostcompletelyremovedinwhatmusthavebeenoneofthehighestrecordsofforestutilization(HorstandSmith�969;Taber�974).Followingremovaloftheoriginalforest,regenerationtothesamespeciesoccurredbutindifferentproportions.Fast-growing,shade-intolerantspeciessuchasblackcherryandspeciesintermediateinshadetolerancesuchasredmapleincreasedinproportionwhileslowergrowing,shade-tolerantspeciessuchasbeechandhemlockdecreased.Thus,thesecond-growthforestwasessentiallyeven-aged,havingarisenfromnearlycompleteforestremovalsoverarelativelyshortperiod.

Effects of Deer DensityDeerpopulationshavehadandcontinuetohaveamajorimpactonthedevelopmentofvegetationontheAlleghenyPlateau.Attheturnofthecenturyandfollowingaperiodofintensivetimberharvestingthatsupportedthewoodchemicalindustry,deerpopulationswerelow.Unregulatedhuntingresultedinthenearextirpationofdeerfromsomeareas.Asaresult,treeseedlingsbecameestablishedandthrivedinmostareaswhereextensivetimberharvesthadoccurred.

Timber-cuttingtrendsandestimateddeerpopulationontheANFareshowninFigure7

(Redding�995).Theregenerationinharvestedareasservesasforagefordeer.Intheearly20thcentury,thedeerpopulationreboundedduetothepassageofgamelaws,restockingofdeer,andregulationofantlerlessharvests.Densitiesincreasedrapidlyinthepresenceofavirtuallylimitlesssupplyoffoodduringthefirstquarterofthe20thcentury.Asforestvegetationmaturedandgrewabovebrowsingheight,thefoodsupplydwindled.Populationscrashedtwicefrom�930through�980followingseverewinters(early�940sandlate�970s)butthenrecovered.Since�980,deerdensitieshavebeenmoreconstantlargelyduetoeffortsbythePennsylvaniaGameCommissiontoregulatepopulationlevels,though

Figure 6.—Bolts of chemical wood at the Otto Chemical Company in Sergeant, McKean County.

1911 4 981915 9 901919 14 811923 19 561927 22 111931 24 51935 27 51939 43 0 51943 22 51947 15 81951 21 21955 25 81959 30 131963 35 211967 40 261971 45 351975 50 411979 32 251983 32 541987 34 841991 26 701995 29 481999 30 3

0

20

40

60

80

100

120

1907

1915

1923

1931

1939

1947

1955

1963

1971

1979

1987

1995

2000

Dee

r/Sq.

Mile

- M

illio

ns o

f Bd.

Ft.

Deer/Sq. MileActual CutEstimated Cut

Figure 7.—Deer population and timber cutting trends on the Allegheny National Forest (reproduced from Redding 1995 and updated to 2001 with ANF data).

Page 11: Forest Service Northeastern Research Station the Allegheny

7

densitiesstillremainabovethelevelthatallowmanyspeciestoregenerate.Thishasbeenthecasesince�990despiteareductioninforestharvestingontheANF.

Thelong-termimpactfromyearsofhighdeerdensitieshasbeenthelossofunderstoryandmidstoryvegetationovermuchoftheANF(MarquisandBrenneman�980;Tilghman�989;Horsleyetal.2003).Seedlingsofmanyspeciesarenotabundant,andmostunderstoriesaredominatedbyfern,grass,rootsuckersofAmericanbeech,orstripedmaple(USDAFor.Serv.�995).OntheANF,themostimportantfactorlimitingseedlingestablishmentontheANFisbrowsingbywhite-taileddeer(MarquisandBrenneman�980;Tilghman�989;Horsleyetal.2003).ThemaximumdeerdensitythatallowsdesirabletreeseedlingstodevelopinheavilyforestedareasofnorthernPennsylvaniaisabout20persquaremile(Tilghman�989;deCalesta�994).Fromthewinterof2000to200�,deerpopulationsinthefour-countyareathatincludestheANFaveraged3�.5persquaremile,adecreasefromestimatesforthepreviousyear(R.White,PAGameComm.,200�,pers.commun.).

ThecurrentoverstoryontheANFwasestablishedwhenthedeerherdwasminimal.In�980,thePennsylvaniaGameCommissionsetadensitygoalof20deerpersquaremileforthefour-countyarea.Todate,thisdensityhasnotbeenachievedandthecurrentgoalfortheANFisabout20deerpersquaremile(USDAFor.Serv.2000).Horsleyetal.(2003)foundthattreeregenerationcanbediverse,atthisdeerdensity,inheavilyforestedregionswhereforestmanagementispracticed.

Multiple-use Forest ManagementSincemuchofthelandhadbeencutoverwhentheANFwasestablishedin�923,earlymanagementfocusedondevelopingthesecond-growthforestandreforestingareaswhereseedlingsfailedtodevelop.Thefirstchallengefacingmanagerswasensuringthesurvivaloftheyoungtreesgrowingamidloggingslash.CivilianConservationCorpsenrolleesfromANFcampsplantedtrees,builtforestroads,andconstructedrecreationsites.Protectingtheforestfromwildfiresanderosionwereothermajorconcerns.Sincemoststandsbegandevelopingaroundthesametime,mostofthetreesontheANFareroughly70to�00yearsold.Today,managementontheANF

emphasizesforest-ecosystemsustainabilityandmultiple-use.

Currently,therangeofForestServicemanagementandresearchactivitiesarebasedontheresearchandsilviculturalguidelinesestablishedbytheNortheasternResearchStation.Theseactivitiesaredesignedtobenefitvegetation,water,wildlife,andpeople.Forexample,achievingadequatenaturalregenerationoftreespeciesisamajorconcernontheAlleghenyPlateau.EffortshavefocusedonunderstandingthegrowthanddevelopmentofAlleghenyhardwoodandoakstands,particularlywithrespecttorequirementsforregeneratingtreeseedlings.

OntheANF,foresthealthandtheeffectofthedeerherdontheregenerationofspeciespreferredasfoodhaveraisedconcerns(USDAFor.Serv.2000).Duringthepast�5years,managershavebeenincreasinglychallengedbynativeandexoticdisturbanceagents.TheANFisresponsibleformonitoringanddescribingchangesinhealthandvigorofstandconditions(USDAFor.Serv.2000).

From�985to�995,treemortalityincreasedinAlleghenyhardwoodforests(McWilliamsetal.�996;�999).Duringthissameperiodnearly250,000acresweresprayedwithinsecticidetoreducedefoliationbythegypsymoth,elmspanworm,andforesttentcaterpillar.MostofthisacreagewassprayedwiththebiologicalinsecticideBacillus thuringiensis(B.t.).Despitethiseffort,theANFhasexperiencedbothsuddenandgradualtreemortality(Stoutetal.�995).

AdequatenaturalregenerationofavarietyofspeciesontheANFisanothermajorconcern.Adequatenumbersofseedlingsmustbepresentbeforeafinalharvesttoassuresatisfactorypostharvestseedlingstockingorgrowth.Speciescompositionoftheadvanceseedlingslargelydeterminesthespeciescompositionoftheresultingstand(Marquisetal.�992).Stoutetal.(�995)foundadequateregenerationononly8percentofthe�2,000-acresample,andthatunderstorystockingwithfernsexceeded30percentonmorethan70percentofthestudyarea.Marquisetal.(�992)foundthatadequateregenerationwasnearlyimpossiblewhenfernstockingexceededthatpercentage.Asurveyof6,000plotsontheANF

Page 12: Forest Service Northeastern Research Station the Allegheny

8

revealedinterferenceon70percentofthestudyarea,andinterferencebyfernswasfoundon46percentofthearea(USDAFor.Serv.�995).Stripedmapleseedlings,beechrootsuckers,andgrassesareothersourcesofinterference(HorsleyandBjorkbom�983;HorsleyandMarquis�983).

Even-agesilvicultureoftenisusedtoreproducestandsinthecherry-mapletype.GrisezandPeace(�973)reportedsatisfactorynaturalregenerationononly35of65clearcutsfromtheearly�970s.Becauseofregenerationfailure,clearcuttingwaslargelyabandonedexceptinareaswithdesirableadvancedregeneration.Shelterwoodcuttingisusefulinincreasingthenumberofdesirableadvanceseedlings(Marquis�978).Since�988,nearly90percentofthefinalharvesting(non-salvageharvests)ontheANFhasbeenshelterwoodcuts.Whenthepercentageofgroundcoverand/ornumberofinterferingstemsexceedsthresholds,herbicidesoftenareusedtocontrolinterferingvegetationsuchashay-scentedandNewYorkfern,stripedmaple,grasses,androotsuckersofAmericanbeech(Horsley�99�).Reforestationactivitiessuchassitepreparation,fencing,planting,andfertilizationandreleasetreatmentsalsoplayaroleinassuringseedlingestablishmentandgrowth.Afteradequateregenerationisestablished,theremainingoverstorytreesareremoved.

Locallandmanagerssharesimilarconcernsregardingfuturespeciescompositionandforestsustainabilityinareaswhereactivereforestationorharvestactivityisprohibited.Treesthatdiemaynotbereplacedthroughnaturalprocessesbyanadequatequantityoftreeseedlingsorappropriatespeciescapableofreplacingthem(USDAFor.Serv.200�).

Recent Disturbance EventsDuringthepast�5years,thefollowingnativeandexoticdisturbanceagentshavebeenofparticularconcernontheANF(Stoutetal.�995):

• Pearthrips(Taeniothrips inconsequens)

• Foresttentcaterpillar(Malacosoma distria)

• Gypsymoth(Lymantria dispar)

• Cherryscallopshellmoth(Hydria prunivorata)

• Fallcankerworm(Alsophila pometaria)

• Elmspanworm(Ennomos subsignarius)

• Oakleaftier(Croesia semipurpurana)

• Lindenlooper(Erannis tiliaria)

• Beechbarkdiseasecomplex

• Mapledecline

• Ashdieback

Manyfactorsareinvolvedinthecause-effectrelationshipofmapledecline,includingsoilmoisture,Armillariarootrot,sugarmapleborer,insectdefoliators,andairpollution(Horsleyetal.2000,2002;MarçaisandWargo2000;Baileyetal.2004).Ashvirusesandcankerfungiarefactorsinashdieback(Manion�99�).

Since�985,morethan86percentoftheANFhasbeendefoliatedatleastonce.Althoughgypsymothdefoliationpeakedinthemid-�980s,damagewasobservedbetween�993and�995.Treesalsowerestressedbyseveredroughtsduringthe�988,�99�,�995,and�999growingseasons.Treemortalitywassubstantialintheoaktypein�988andinotherforesttypesinthesummerof�994.Sometreedeclinehascontinuedsincethen,butcertainareaswithfeweraffectedcrownshaverecoveredpartially(USDAFor.Serv.200�).

Toprovideaninitialcharacterizationofmortality/declineinthemostheavilyimpactedareas,McWilliamsetal.(�999)analyzedstandplot-leveldatacollectedbetween�994and�996in869stands(�8,876acres)withsymptomsofdeclineandmortality.Oftheexistingbasalareainthesestands,�2.3percentwasclassifiedasdeadand6.4percentconsideredatrisk.Insomestands,deadandatrisktreesconstitutedamajority;inothers,theywereaminorcomponent.Blackcherry,sugarmaple,andredmapleaccountedformorethan83percentofthetotallivebasalareapriortodeclineinthesampledstands.Thediebackandmortalityofsugarmaple,Americanbeech,andredmaplewerethemostsignificant,withlevelsofmortalityandtreesatriskat43,20,and�3percentofthebasalarea,respectively.

McWilliamsetal.(�999)alsoevaluatedunderstoryvegetation.Thenumberoftreeseedlingswasadequateononly8percentofthesampledstands.Vegetationthatinterfereswithtreeseedlingdevelopmentandgrowthwaspresentinsufficientquantitiestorequiretreatment

Page 13: Forest Service Northeastern Research Station the Allegheny

9

in93percentofthestandsexamined.McWilliamsetal.(�999)concludedthatsparseregenerationandtheabundanceofinterferingvegetationcontinuetoraisequestionsaboutthesustainabilityofforestecosystemsonsiteswheretreemortalityanddeclineareormaybecomemostsevere.

Overview Of AnalysesDescription of DataTheanalysesinthisreportarebasedprimarilyonthreesourcesofdata:�)ForestServiceForestInventoryandAnalysis(FIA)plotdata,2)FHMplotdata,and3)aerialsurveysofdefoliation.TheobjectivewastodescribeandquantifyvegetationcharacteristicsandinsectanddiseasefactorsontheANF,andtodeterminetheeffectofinsectsanddiseasesontreeandstanddamageandoverallforesthealth.

Forest Inventory and Analysis DataSince�930,theobjectiveoftheFIAprogramhasbeentoperiodicallyassesstheextentandconditionoftheNation’sforests,andreportontrendsinthisimportantresource.IntheEasternUnitedStates,inventorieswerecondutedonastate-by-statebasis,usuallyevery5to�5years.ThefirstFIAinventoryofPennsylvaniawasconductedin�958.Plotswereremeasuredin�968,�977-78,and�989-90(Alerich�993).Recently,FIAswitchedfromperiodictoannualinventories.Forexample,inPennsylvania,20percentoftheplotsaremeasuredeachyear.ThisplotnetworkwithinFIAisknownasPhase2.

Differentarrangementsoffixed-andvariable-radiusplotshavebeenusedtoselectsampletrees.Foreachtree,severalvariablesaremeasured,includingdiameteratbreastheight(d.b.h.)forliveanddeadtrees,species,andvariablesforestimatingvolume,growthrate,andquality.ThelastperiodicforestinventoryoftheANFwasconductedin�988-90when�68FIAplotsweremeasured(Alerich�993).UsuallythereisoneFIAplotforevery6,000acres(Hansenetal.�992),thoughsamplingintensityishigherontheANF(aboutoneplotforevery3,000acres).Forthissurvey,twoplotdesignswereused:remeasuredplotswerea�0-pointclusterofbasalareafactor(BAF)37.5prismplotswhilenewplotswerefixedradiuswithvariableradiuspoints(AppendixI).

Eighty-ninepercentoftheplotsvisitedin�988-90wereremeasurementsfromthe�977-78inventory.Theanalysesinthisreportthatarebasedon�988-90FIAsurveydataincludeall�68plotsunlessstatedotherwise.

Forest Health Monitoring DataThenationalFHMprogramwasimplementedinNewEnglandin�990(Brooksetal.�992)tomonitor,assess,andreportonthelong-termstatus,changes,andtrendsinforestecosystemhealthatregionalandnationalscales.FHMwasdevelopedduetoincreasingconcernsaboutthehealthoftheNation’sforestswithregardtopollution,insects,diseases,climaticchange,andotherstressors.

TheplotcomponentofFHM(nowknownasPhase3withinFIA)isanetworkofabout4,600permanentplotscoveringall50States.Asystematicsampleoftheplotsismeasuredeachyear.Eachpermanentplothasfour�/24-acre,fixed-area,circularsubplots(Fig.8)(USDAFor.Serv.�998;2002).�Alltrees5inchesandlargerind.b.h.

�U.S.DepartmentofAgriculture,ForestService.2002.Forest inventory and analysis national core field guide, volume 2: field data collection procedures for phase 2 plots, version 1.6.InternalreportonfilewthU.S.DepartmentofAgriculture,ForestService.ForestInventoryandAnalysis,20��4thSt.,Washington,DC.

Subplot:24.0-foot radius(7.32 m)

Annular Plot:58.9-foot radius(17.95 m)

Distance betweensubplot centers is120-foot (36.6 m)

Microplot:6.8-foot radius (2.07 m).Center is 12 ft. (3.7 m)

@ 90 azimuth fromsubplot center

0

T1 (30)0

T2 (150)0

T3 (270)0

Figure 8.—FHM field plot design.

Page 14: Forest Service Northeastern Research Station the Allegheny

�0

aremeasuredonthesesubplots.Seedlingsandsaplingsaremeasuredon�/300-acre,fixed-area,circularmicroplotsoffset�2feeteastofsubplotcenter.Measurementsofforesthealth-relatedindicatorsaretakeninadditiontothebasictree-measurementdatacollectedonPhase2FIAplots.Aforesthealthindicatorisdefinedasanyenvironmentalcomponentthatquantitativelyestimatestheconditionorchangeinconditionofecologicalresources,themagnitudeofstress,ortheexposureofabiologicalcomponenttostress.IndicatorscurrentlybeingmeasuredonFHMplotsaretreemortality,damage,growth,regeneration,crowncondition,plantdiversity,vegetationstructure,ozonebioindicatorplants,lichencommunities,downwoodymaterials,fuelloading,andsoilchemistry.

Throughoutmostofthecountry,FHMplotsarelocatedonahexagonalgridwithoneplotper96,000acres.Anintensifiednetworkof�73FHMplotswasestablishedontheANFin�998.Eachplotwasmeasuredatleastoncein�998,�999,2000,and200�.Forthissurvey,�68plotswereco-locatedwiththe�988-90FIAplotsand5wereco-locatedwithnewlyestablishedFIAplots.Theshapesofplotsandspecifictreessampleddifferedduetothedifferentplotdesigns.TheapproximatelocationsoftheFHMandFIAplotsareshowninFigure9.

Aerial Survey DataThesymptomsofforeststressorsoftencanbedetectedremotelybyaerialphotographyand/orsatelliteimagery.ThesurveycomponentofFHMdetectionmonitoringconsistsofanaerialsurveytodetectdamageintheformofcanopydefoliationandmortalityandthusmonitortheoccurrenceand/orspreadofinsect,disease,blowdown,andotherforestdisturbances.

Aerialsurveyssupplyalandscape-leveloverviewofforesthealthconditionsatarelativelylowcost(McConnelletal.2000).Forestdefoliationusuallyisdocumentedbyaremotesensingtechniqueknownassketch-mapping.Asketch-mapiscreatedwhileflyinginanaircraft

andobservingdamageandoutliningitslocationontopographicmaps.Sketch-mappingisanacquiredanddifficultskillthatissomewhatsubjectivebecausehumanobserversmustrelyontheirjudgementinidentifyinganddelineatingdamagedareas.

Thecumulativedefoliationfrequency(�984-98)fortheANFisshowninFigure�0.AllacreagevaluesinthisreportincludetheentireareawithintheproclamationboundaryoftheANF(notjustpublicland).TheareadefoliatedbyeachmajorinsectpestontheANFisshowninFigure��.Therewaslittledefoliationfrom�999to200�.

MethodsKriged SurfacesWeusedtheordinarykrigingprocedure(DeutschandJournel�998)tointerpolatesurfacesofvariousvariablesofinterestontheANFfrompointmeasurements(FIAandFHMplotdata).Krigingisageostatisticalmethodthatprovidesunbiasedestimatesatunsampledlocationsasweightedaveragesofvaluesfromnearbyplotlocations

Figure 9.—FIA and FHM plot locations on the ANF (approximate coordinates).

Page 15: Forest Service Northeastern Research Station the Allegheny

��

(IsaaksandSrivistava�989).Weightsaredeterminedonthebasisofasemivariogram,astatisticalmodeloftherelationshipbetweenspatialautocorrelationanddistancebetweenpairsofsampledvalues.Forthisanalysiswegeneratedmapsfromplotdatabycalculatingkrigedestimatesonagridof�-by�-kmcells.Variographyand

krigingwereperformedusingtheGSLIBsoftwarelibrary(DeutschandJournel�998).

Species Diversity and RichnessSpeciesdiversityisthetermusedtodescribethenumberofdifferentspeciespresentinanareaandthedistribution

1984 0.54051561 0 0 01985 9.596427425 0 0 01986 78.68064932 0 0 01987 157.5753886 0 0 01988 1.234718616 0 0 01989 0.751407255 0 0 01990 0 0 0 01991 3.294975241 0 23.452 01992 48.86062955 0 72.67 01993 2.046853898 4.367844796 338.876 4.4828217441994 0 53.0122303 0 20.185925591995 0 287.6273524 0 01996 0 15.63619762 0 01997 0 0 0 01998 0 0 0 01999 0 0 0 02000 0 0 0 02001 0 0 0 0

0

50

100

150

200

250

300

350

400

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

Def

olia

tion

(thou

sand

acr

es)

Forest tent caterpillarElm SpanwormCherry scallopshell mothGypsy moth

Figure 10.—Years of defoliation (percent of area) by all damaging agents (1984-98); percentage of land area and acreage in each category in parentheses.

Figure 11.—Area defoliated by major insect pests since 1984.

Page 16: Forest Service Northeastern Research Station the Allegheny

�2

ofindividualsamongspecies.Evennessisthetermusedtodescribehowindividualsinacommunityaredistributedamongvariousspecies.Ifthenumberofindividualsisthesameforeachspecies,thecommunityissaidtobecompletelyeven,thoughthisisrareinnature.Whenaspecieshasmoreindividualsthantheotherspecies,itissaidtobedominant.Degreeofdominanceisanotherattributeofspeciesdiversity.Theeasiestwaytomeasurespeciesdiversityistocountthenumberofspeciesatasite;thismeasureistermedspeciesrichness.However,speciesrichnessdoesnotprovideacompletepictureofdiversityinanecosystembecauseabundanceisexcluded.Diversityindicesarecalculatednumericvaluesorgraphicalexpressionsusedtodescribespeciescompositionofacommunityinasinglenumberforcomparisonwithvaluesfromothercommunities.TheShannonindexiscommonlyusedtodescribespeciesdiversityofasite.Itemphasizesspeciesrichnessbutalsotakesintoaccounttheproportionalabundanceofthespecies.Itiscalculatedusingthefollowingformula:

H´=–Spilnp

i

whereH´representsthediversityofacommunity,pi

representstheproportionofeachindividualspeciestothetotal,andlnp

irepresentsthenaturallogarithmof

pi(Magurran�988).Anindexofevennessbasedonthe

Shannonindexcanbecalculatedusingthemaximumvalueofthatindexifalloftheindividualssampledweredistributedevenlyamongthespeciespresent.ThemeasureofevennessisderivedfromtheratiooftheobservedShannondiversitytoitsmaximum,calculatedas:

E = H´/Hmax

=H´/lnS

whereSrepresentsthenumberofspeciesinthesample.H´istheobservedShannonindexandHmaxisthevalueofH´whenthetotalnumberofindividualsmeasured(N)isdividedequallyamongthespeciesencountered(S).ValuesofEareforcedbetween0and�with�representingasituationinwhichallspeciesareequallyabundant(Magurran�988).

Measuresofdominancearebasedontheabundanceofthemostcommonspeciesratherthanincorporating

speciesrichness.TheBerger-Parkerindex(d)isasimpledominancemeasurethatrepresentsthedegreetowhichacommunityisdominatedbyonespeciesandcanbeusefulindescribingmonocultures.Itiscalculatedas:

d =Nmax

/N

whereNmax

representsthenumberofindividualsinthemostabundantspecies,andNisthetotalnumberofindividualsofallspecies.Anincreaseinthevalueofdaccompaniesadecreaseindiversityandanincreaseindominance(Magurran�988).

Effects of Forest PestsTreeconditionswereassessedusingtreemeasurementstakenin�988-90aspartoftheFIAprogramandin�998,�999,2000and200�aspartoftheFHMprogram.Weusedthe�988-90FIAdatatoanalyzetheeffectsofgypsymothdefoliationfrom�985to�987.Thecherryscallopshellmothandelmspanwormanalyseswereperformedusing�998-200�FHMdata.Inthecaseofremeasuredplots,onlythemostrecentmeasurementwasused.

Thefrequencyofdefoliationateachplotlocationwascalculatedusingageographicinformationsystemtodeterminecoincidenceofplotlocationswithyearlysetsofdefoliationpolygons.Defoliationlayerswerecompiledbydigitizingsketch-mapsofcanopydefoliationgeneratedduringaerialsurveysconductedyearlyfrom�984to�999.

Onewayanalysisofvariance(ANOVA)wasusedtotestboththeeffectoftreespeciescompositionondefoliationandofdefoliationonpercentstandingdeadbasalareaandpercentcrowndieback.APvalueisameasureofprobabilitythatadifferencebetweengroupsduringanexperimenthappenedbychance.Forexample,aPvalueof0.0�meansthereisa�in�00chancetheresultoccurredbychance.Differencesbetweengroupmeansareindicatedbythelettersa,b,andc.Estimateswerecalculatedasaveragesofplotvalues.Toanalyzetheeffectdefoliationonmortalityandcrowndieback,weexcludedplotswithlessthan�0percenthost-speciesbasalareabecauseweexpectedanexcessivelyhighsamplingerrorofmortalityandcrown-diebackestimatesonhosts.In

Page 17: Forest Service Northeastern Research Station the Allegheny

�3

otherwords,aplotwithonetreeofahostspeciesthatwasdeadwouldhave�00percentmortality,inflatingtheestimates.Crowndiebackisdefinedasrecentmortality(3to�0years)ofbrancheswithfinetwigsandreflectstheseverityofrecentstressesonatree.However,itmaybemeasurableonlyforseveralyearsasmostdeadfinetwigsorbranchesdonotremainonthetreeforalongtime.Oncetheyfall,thereisnovisibleindicatorofhowlargethetreecrownshouldhavebeen,thoughitlikelywouldappearsmallerthannormalforsometimedependingontheseverityofthedieback.Thevariableisestimatedasapercentageofthelivecrownareathatisdeadforeachtree(USDAFor.Serv.�998).

Current Forest ConditionsOverstory ConditionsInthissectionweassesscurrentoverstoryconditionsacrosstheANFusing4yearsofFHMdata(�998-200�)andpastoverstoryconditionsusingthe�989FIAsurvey.Variablesdiscussedincludeforesttype,tree-speciesabundance,diameterdistribution,standageandsizeclassbyplot,treecrowndiebackanddamage,abundanceand

speciescompositionofstandingdeadtrees,andIndianabathabitat.AlltreespeciesthatweresampledintheFHMandFIAsurveysarelistedinAppendixI.

Forest TypesTheforesttypesusedbytheEasternRegion(9)oftheForestServicearedefinedinAppendixI.WeclassifiedeachFHMplotconditionintoRegion9foresttypesbycalculatingthepercentageofthelivebasalareaofeachspeciesandcombinationofspecies.Insomecasestherewerenooverstorytreesonasubplotsoseedling/saplingdatawereusedtodetermineforesttype.ThebreakdownofRegion9foresttypesontheANFisshowninTable�.Nearly50percentofthelandareaisinmixeduplandhardwood(25percent)andAlleghenyhardwood(24percent)foresttypes.Otherthanredmaple(�7percent),allotherforesttypesaccountforlessthan�0percentofthelandarea.Fourpercentofthelandareaisclassifiedasnonforestbecausetreesorseedlingswerenotsampled,probablybecausepartofaplotfellonaroad,utilityright-of-way,orinanopening.ThedistributionofplotsontheANFbyFHMandFIAforesttypegroupsandforesttypesisshowninAppendixI.

Tree-Species AbundanceFigure�2showstree-speciesabundanceexpressedastheaveragelivebasalareaperacrecalculatedfromthe�989FIAand�998-200�FHMdataforthe�0mostabundantspeciesontheANF.ThenumberoftreessampledofeachspeciesalsoisshowninFigure�2.Thelatternumbersrepresentonlysamplesizeandhavenorelationtoabundance.Blackcherryandredmaplewerethetwomostabundantspecies,whichisconsistentwiththeforest-typeinformationinTable�.Blackcherry,redmaple,Americanbeech,easternhemlock,andsweetbirchincreasedinabundancewhilesugarmaple,northernredoak,andwhiteashdecreasedinabundance.Decreasesinsugarmaplelikelyreflecttheeffectsofelmspanwormdefoliation,drought,andpoorsoilnutrition(Baileyetal.2004)whiledecreasesinnorthernredoaklikelyreflecttheeffectsofgypsymothdefoliationanddrought(Morinetal.2004).Decreasesinwhiteashprobablyreflectanobserveddeclineduetomultiplestressors.

Table 1.—Current distribution of Region 9 forest types on the ANF (1998-2001 FHM data)

Foresttype Percentofarea

Mixeduplandhardwoods 25.5

Alleghenyhardwoods 23.6

Redmaple �7.2

Northernhardwoods 8.5

Hemlock 4.7

Whiteoak/redoak 4.5

Nonforest 4.0

Oak/hardwoodtransition 3.9

Redoak �.7

Sugarmaple �.6

Whiteoak �.2

Blackbirch/hickory �.0

Whitespruce/Norwayspruce 0.6

Chestnutoak 0.6

Pincherry 0.6

Aspen 0.4

Redpine 0.4

Page 18: Forest Service Northeastern Research Station the Allegheny

�4

Figure�3showsthepercentageoftotalaveragebasalareaperacreforthe�0mostabundanttreespeciesandthetotalofallotherspecies.BlackcherryandredmapleaccountformorethanhalfofthetotalaveragebasalareaperacreontheANF.

Diameter DistributionThedistributionofbasalareaandnumberoftreesbydiameteracrosstheANF(80-to��0-year-oldhighforestandyoungerstandsregeneratedoverthepast40years)calculatedfrom�998-200�FHMdataareshowninFigure�4.Figure�4ashowsthenumberoftreesperacreandbasalareaperacreofallspeciesby5-inchdiameterclasses.ThenumberoftreesperacreofallspeciesformsaninverseJ-shapecurvethatistypicalofuneven-agedstands(OliverandLarson�996;Marquis�992).However,standsontheANFareeven-aged,havingregeneratedbetween�890and�930.Theinverse-Jdiameterdistributionoccursbecauseofthedifferenceingrowthratesofthemixofspeciesthatdevelopedfollowingforestremovalsattheturnofthe�9thcentury.YoungseedlingsofAmericanbeech,sugarmaple,easternhemlock(slowgrowing),redmaple,andblackcherry(fastgrowing)grewtogetherbeforeoverstoryremoval.Followingtheoverstoryremovalcut,fast-growingspeciesrapidlyoutgrewslowergrowingones,resultinginadiameterdistributionstratifiedbyspeciesgrowthrate(inverseJ).Inyoungerstandsthatoriginatedduringthepast40years,deerhavehadasubstantialimpactonthespeciesofregenerationpresentbeforeoverstoryremoval.Speciesthatarelowinfoodpreferencetodeer(blackcherry)orthatareresilienttorepeatedbrowsing(Americanbeech)makeupalargeproportionoftheregenerationintheseyoungerstands.

Basalareawashighestinthe�0-to�5-inchdiameterclass.Figure�4bshowsthediameterdistributionofbasalareaforthefivemostcommonspeciesandoakspp.Blackcherrybasalareaincreasedwithdiameterwhileeasternhemlock,sugarmaple,andAmericanbeech

decreasedwithdiameter.Thehighestpercentageofredmaplebasalareawasinthe�0-to�5-inchdiameterclass;thehighestpercentageofoakbasalareawasinthe�5-to20-inchdiameterclass.

Spatial Distribution of Selected Tree SpeciesAkrigedsurfaceofpercentbasalareawascreatedforeachofthe�0mostabundantspeciesontheANF.Wegeneratedmaps(Figs.�5-�6)fromFHMplotdatabycalculatingkrigedestimatesona�-kmgrid.ThekrigingparametersforeachsurfacearelistedinAppendixI.

FHM FIAWhite ash 1.895665315 2.27671428White oak 2.460391486 2.376998477Yellow birch 3.034925521 2.949361647Sweet birch 5.136962302 3.961160962Northern red oak 5.634035826 6.561312846Sugar maple 8.21430938 8.21430938Eastern hemlock 10.54506786 9.004664591American beech 11.71303693 10.45137202Red maple 30.54221883 27.83559258Black cherry 31.35339938 28.95016698

0 5 10 15 20 25 30 35

White ash

White oak

Yellow birch

Sweet birch

Northern red oak

Sugar maple

Eastern hemlock

American beech

Red maple

Black cherry

Mean Live Basal Area/Acre (ft2)

1998-2001 FHM surveys1989 FIA survey

1075 trees1672 trees

1148 trees1839 trees

674 trees995 trees

543 trees750 trees

464 trees911 trees

109 trees286 trees

341 trees346 trees

170 trees229 trees

79 trees154 trees

52 trees132 trees

Figure 12.—Average live basal area per acre for major tree species on the ANF.

27%

25%9%

9%

8%

7%

5%

4%2% 2%2%

Black cherryRed mapleAmerican beechEastern hemlockOtherSugar mapleNorthern red oakSweet birchYellow birchWhite oakWhite ash

Figure 13.—Percentage of total live basal area for major tree species on the ANF (1998-2001 FHM data).

Page 19: Forest Service Northeastern Research Station the Allegheny

�5

Figure�5showskrigedsurfacesofpercentbasalareaforblackcherry,redmaple,Americanbeech,easternhemlock,andsugarmaple.Thesoutheasterntwo-thirdsoftheANFhadthelargestcomponentofblackcherry.Thelowestestimatedvalueforpercentbasalareaofblackcherrywaszeroandthehighestwas65.Redmaplehadamoreuniformdistribution,thoughthesouthernthirdoftheANFhasthehighestredmaplecomponentfollowed

bythenorthernthird.Theredmaplecomponentislowestinthecentralportionbutnocellwasestimatedatlessthan6percentbasalareaforredmaple.Thehighestestimatedvaluewas53percentforbasalareaofredmaple.AmericanbeechisasmallcomponentonmostoftheANF;itismostprevalentinabandfromthewest-centralbordertothenortheasterncorner.Thehighestestimatewas42percentforbasalareaofbeech.Percent

Figure 14.—Diameter distributions by a) number of trees and b) basal area per acre on the ANF.

Diameter ClassSpecies 1-5 5-10 10-15 15-20 20+

basal area all species 12.8 23.3 33.7 29.6 23.4Black cherry 3.0 2.6 8.1 9.0 9.7Red maple 1.7 5.3 9.7 8.4 5.8American beech 3.0 3.1 2.4 1.7 1.2Eastern hemlock 0.6 3.6 3.3 1.9 1.4Oak spp. 0.1 0.7 2.7 3.7 2.6Sugar maple 1.1 3.0 2.6 1.2 0.6

trees/acre all species 389.3 80.5 41.1 18.6 7.8oak spp. 1.7 2.0 3.2 2.3 0.9sugar maple 19.9 10.2 3.3 0.8 0.2eastern hemlock 6.9 12.5 4.2 1.1 0.5American beech 83.7 12.2 2.9 1.1 0.5red maple 41.6 17.3 11.7 5.4 2.0black cherry 116.6 9.4 9.7 5.6 3.2

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

1-5 5-10 10-15 15-20 20+

Diameter Class (inches)

Tree

s/A

cre

(no.

)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Bas

al a

rea/

acre

(sq.

ft.)

Trees/acreBasal area/acre

a

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Black cherry Red maple Americanbeech

Easternhemlock

Oak spp. Sugar maple

Species

Mea

n B

asal

Are

a/A

cre

(ft2)

1-55-1010-1515-2020+

b

Page 20: Forest Service Northeastern Research Station the Allegheny

�6

black cherry red maple

American beech eastern hemlock

sugar maple

Figure 15.—Kriged surfaces of percent basal area of black cherry, red maple, American beech, eastern hemlock, and sugar maple on the ANF; NLCD data from Multi-Resolution Land Characteristics Consortium.

Page 21: Forest Service Northeastern Research Station the Allegheny

�7

basalareaofeasternhemlockwaslessthan�0onmostoftheANF.Smallareasofgreaterhemlockdensityprobablyrepresentconcentrationsofthisspeciesonlowerslopesorbottomlands.Thecomponentofsugarmapleishigherintheeasterntwo-thirdsoftheANF.Percentbasalareaoflessthan�0sugarmaplewasonmostoftheANF;thehighestestimatewas70percent.

Figure�6showskrigedsurfacesofpercentbasalareaofnorthernredoak,sweetbirch,yellowbirch,whiteoak,andwhiteash.Thenorthernredoakcomponentisgreatestalongthenorthern,western,andsouthernboundariesoftheANFinareasborderingtheAlleghenyandClarionRivers.Estimatesofpercentofbasalareaofredoakrangedfromzeroto32.Percentbasalareaofsweetbirchwasestimatedatlessthan�0onmostoftheANF.SeveralareasonthewesternhalfoftheANFhaveahighercomponentofsweetbirch;thehighestestimateforbasalareawas�9percent.Percentbasalareaofyellowbirchwasestimatedatlessthan�0acrosstheANF.Thewhiteoakcomponentishighestalongthenorthern,western,andsouthernbordersoftheForest.Estimatesofpercentbasalareaofwhiteoakrangedfromzeroto36.Whiteashwasestimatedatlessthan�0percentacrossmostoftheANF.

Plot Age Class, Stand-Development Class, and Relative DensityDatadescribingeachplotasaunit(ratherthanexaminingindividualtrees)wasusedtocharacterizetreeageclasses,sizeclasses,andrelativedensityacrosstheANF.

Age-Class DistributionThelandareaineachageclassstratifiedbyEasternRegionforesttypeisshowninFigure�7.Nearly70percentofthelandareaischaracterizedby60-to�00-year-oldforestsduetowidespreadclearcuttingattheturnofthecentury.Mostofthismatureforestisinmixeduplandhardwoods,Alleghenyhardwoods,andredmapleforesttypes.TheAlleghenyhardwoodtypeconstitutesasmallportionofthe�00+yearageclass.Foresttypesdominatedbylongerlivedspeciesdominatethisoldestclass.

Distribution by Stand-Development ClassBasedonstand-developmentcategoriesdescribedbyOliverandLarson(�996),weassignedeachsubplotastanddevelopmentclass.Theclasseswerestandinitiation(0to�4years),stemexclusion(�5to49years),andunderstoryreinitiation(50+years).ThedistributionofsubplotsontheANFforeachstand-developmentclassisshowninFigure�8.Morethanhalfofthesubplotswereintheunderstoryreinitiationphase(asexpectedduetoalargepercentageoftreesontheANFthatare60to�00yearsold;Fig.�6),andcontained80to200ft2ofbasalareaperacre.

Relative DensityRelativeplotdensitywascalculatedusingthemethodofStoutandNyland(�986)(Fig.�9).Plotswereclassifiedaspoorly,moderately,orwellstockedaccordingtoANFprotocol.2Fifty-eightpercentoftheforestintheunderstoryreinitiationclasswasclassifiedasmoderatelystocked,andabout�8percentwasclassifiedaswellstocked.Thestandinitiationcategorycouldnotbeincludedbecausethemethoddescribedabovewasinappropriate.

Live-Tree Distribution by Size Class for Indiana Bat HabitatLivetreesprovideimportanthabitatformammals,birds,andinsects.TheIndianabat,listedasendangeredbytheUSDIFishandWildlifeService,hasbeenaconcernontheANF.TheANFForestPlanasamended(USDAFor.Serv.2000)listsspecificfactorsthatcanbeusedtoevaluatetheIndianabat’sroostinghabitat:

2U.S.DepartmentofAgriculture,ForestService.2000.Final environmental impact statement for the eastwide project.Warren,PA:U.S.DepartmentofAgriculture,ForestService,AlleghenyNationalForest.�02p.

Indianabatrequirements(no.oflivetrees)

ANFconditions(no.oflivetrees/acre)

D.b.h.class Suitable Optimal (Mean±SE)

>9 8/acre �6/acre 79.08±3.�9

>20 �/acre 3/acre 7.84±0.66

Theseincludecriteriafornumbersandsizesoflivetreesperacreaccordingtothebat’shabitatsuitabilityindexmodel(Rommeetal.�995).Forhabitattobeconsidered

Page 22: Forest Service Northeastern Research Station the Allegheny

�8

northern red oak sweet birch

yellow birch white oak

white ash

Figure 16.—Kriged surfaces of percent basal area of northern red oak, sweet birch, yellow birch, white oak, and white ash on the ANF; NLCD data from Multi-Resolution Land Characteristics Consortium.

Page 23: Forest Service Northeastern Research Station the Allegheny

�9

AGE CLASSFOREST TYPE 0-20 20-40 40-60 60-80 80-100Sum of above 3.541960405 1.589595376 2.019340318 5.598217197 5.780346821Hemlock 0 0 1.957173699Northern hardwoods 0.578034682 0 1.589595376 3.757225434Red maple 1.584994509 0.144508671 0.578034682 4.759959682 8.670520231Allegheny hardwoods 1.156069364 1.80234104 2.47563974 7.831696965 7.26066474Mixed upland hardwoods 0.544102601 1.011560694 3.007775289 12.80343367 6.352337428

0

5

10

15

20

25

30

35

40

0-20 20-40 40-60 60-80 80-100 100+

Stand Age (years)

Perc

ent o

f For

est A

rea

Mixed upland hardwoodsAllegheny hardwoodsRed mapleNorthern hardwoodsEastern hemlockAll other forest types

Stand Development Class 0-40 40-80 80-120 120-160 160-200Stand initiation 3.612716763 2.312138728 1.589595376 0.289017341 0.144508671Stem exclusion 1.156069364 2.89017341 2.023121387 1.734104046 0.722543353Understory reinitiation 8.38150289 11.12716763 18.6416185 17.91907514 14.01734104

0

2

4

6

8

10

12

14

16

18

20

0-40 40-80 80-120 120-160 160-200 200-240 >240

Basal Area/Acre ( ft2)

Perc

ent o

f For

est A

rea

Stand initiationStem exclusionUnderstory reinitiation

Figure 17.—Distribution of stand age by forest type.

Figure 18.—Distribution of basal area by stand-development class.

suitable,5percentofthelandscapeunderconsiderationmustbeforestedandmeetthecriteriainthe“suitable”column.Forhabitattobeclassifiedasoptimal,30percentofthelandscapemustbeforestedandmeetthecriteriainthe“optimal”column.TheANFis94percentforested(USDAFor.Serv.2000).Thelive-treedensityestimatesimplythattheaverageconditionacrosstheANFeasilymeetsbothsuitableandoptimallive-treehabitatrequirements.Nearly60percentoftheplots

meetbothsuitableandoptimalconditionsforbothdiameterclasses.

Summary of Crown Condition, Tree Damage, and Standing DeadCrown DiebackThepercentageofbasalareaofmajorspeciesincrown-diebackcategoriesmeasuredduringthe�998-200�FHMsurveysisshowninTable2.Treeswithlessthan

Page 24: Forest Service Northeastern Research Station the Allegheny

20

25percentdiebackgenerallyarehealthyandusuallyrecover,thosewith25to49percentdiebackareinfairhealthandmightrecover,andtreeswith50percentormorecrowndiebackareinpoorhealthandprobablywillnotrecover(GottschalkandMacFarlane�993).Standingdeadtrees(�00-percentdieback)areincludedinTable2.

Crowndiebackgenerallywaslowformostspecies,rangingfrom50to�00percentfor�0to�5percentofthebasalareaofAmericanbeech,sugarmaple,sweetbirch,yellowbirch,whiteoak,andwhiteash.AshdeclineisprevalentintheNortheasternUnitedStates(Sinclairetal.�988).Ashyellows,adiseasecausedbyphytoplasma-likeorganisms,hasbeenassociatedwithdyingtreesincertainareaswhereashisdeclining(Sinclairetal.�996).However,notalldyingtreesareinfectedwiththeseorganisms(MatteoniandSinclair�985).Currently,ashdeclineisthoughttohavemultiplecauses(Schlesinger�990).Northernredoakapparentlyhasrecoveredwellfromgypsymothdefoliationandstressfromdroughtinthelate�980s.

Akrigedsurfaceofpercentcrowndiebackforallspeciesestimatedfromthe�998-200�FHMsurveysisshowninFigure20.NotethatTable2providesthepercentofbasalareaincrown-diebackcategories.Bycontrast,thesemapsareestimatedvaluesofpercentcrowndieback

Table 2.—Percent basal area of major tree species on the ANF, by crown-dieback class (1998-2001 FHM data)

Crowndieback(%)

Species 0-24.9 25-49.9 50-95 �00(Dead)

Blackcherry 88.9 2.4 �.0 7.6

Redmaple 9�.4 2.5 0.3 5.8

Americanbeech 86.0 3.� �.5 9.4

Easternhemlock 9�.5 �.9 �.4 5.2

Sugarmaple 8�.2 2.6 �.3 �4.8

Northernredoak 95.2 0.0 0.0 4.8

Sweetbirch 88.3 0.0 0.2 ��.5

Yellowbirch 84.8 �.8 0.0 �3.4

Whiteoak 88.4 0.0 0.0 ��.6

Whiteash 85.8 0.0 6.7 7.5

Poorly Stocked (<40% Moderately Stocked (40-79%) Well Stocked (>80%)Stem exclusion 4.89 6.03Understory reinitiation 13.14 57.65

0

10

20

30

40

50

60

70

Poorly Stocked (<40%) Moderately Stocked(40-79%)

Well Stocked (>80%)

Perc

ent o

f For

est A

rea

Stem exclusionUnderstory reinitiation

Figure 19.—Distribution of stocking levels by stand-development class.

averagedforeachplot.Estimateddiebackvalueswerehighestonthesoutheasterntwo-thirdsoftheANF.Thisisconsistentwiththeareasthathadthemostnumerousdefoliations(Fig.�0).

KrigedsurfacesofcrowndiebackalsoweregeneratedforselectedspeciesontheANFestimatedfromthe�998-200�FHMsurveys(Fig.2�).Diebackofblackcherrywasgreatestinthesoutheasterntwo-thirdsoftheANF,whileredmaplediebackwaslowinallareasexceptthefarwesterncorner.CrowndiebackofAmericanbeech,

Page 25: Forest Service Northeastern Research Station the Allegheny

2�

easternhemlock,andsugarmaplewaslowovermostoftheANF;whiteashdiebackwashighinthecentralportion.

Crown DensityCrowndensity,anestimateofcrownconditioninrelationtoatypicaltreeforthesitewhereitisfound,isdefinedastheamountofcrownbranches,foliage,andreproductivestructuresthatblocklightvisibilitythroughthecrown.Crowndensitycanserveasanindicatorofexpectedgrowthinthenearfuture.3

Percentbasalareaofmajorspeciesincrown-densitycategoriesmeasuredduringthe�998-200�FHMsurveysisshowninTable3.Treeswithhigherdensitiesshouldbeconsideredhealthierandmorevigorous.

Americanbeechhadthehighestpercentageofbasalarea(27)inthelessthan25percentcrown-densitycategoryfollowedbysweetbirch(25percent).Blackcherry,easternhemlock,andnorthernredoakhave30to40percentoftheirbasalareaperacreinthe25to50percentcrown-densitycategory,thoughblackcherryusuallyhasalowerfoliagedensity.Northernredoakandwhiteoakbothhadlessthan�percentofbasalareainthelowestcategory.

Steinman(2000)reportedthattreeswithcrowndensitiesoflessthan30percentarethemostlikelytodie.Crowndensityasanindicatoroftreehealthisusefulforlong-termmonitoringastrendsareevaluatedagainstabaselinemeasurement.Thecrowndensitiesestablishedinthisreportwillserveasthatbaseline.

Crown RatioLivecrownratioisapercentagedeterminedbydividinglivecrownheightbytotaltreeheight.Livecrownheightisthedistancefromthelivecrowntoptothe“obviouslivecrown”base.3

Percentbasalareaofmajorspeciesincrown-ratiocategoriesmeasuredduringthe�998-200�FHMsurveysisshowninTable4.Treesinthelessthan25percentcrown-ratiocategoryprobablyareunhealthy.Wheretreesgrowclosetogetherandself-prune,onewouldnotexpectahighproportioninthe75+percentcrown-ratiocategoryexceptforhighlyshadetolerantspeciessuchasbeech,sugarmaple,andhemlock.

3U.S.DepartmentofAgriculture,ForestService.2002.Forest inventory and analysis national core field guide, volume 2: field data collection procedures for phase 3 plots, version 1.6.InternalreportonfilewithU.S.DepartmentofAgriculture,ForestService,ForestInventoryandAnalysis,20��4thSt.,Washington,DC.

Figure 20.—Kriged surface of percent crown dieback of all species; NLCD data from Multi-Resolution Land Characteristics Consortium.

Table 3.—Percent basal area of major tree species on the ANF, by crown-density class (1998-2001 FHM data)

Crowndensity(%)

Species 0-24.9 25-49.9 50-74.9 75-�00

Blackcherry �0.4 40.2 47.4 2.0

Redmaple 7.0 20.6 63.� 9.2

Americanbeech 27.� 20.5 46.9 5.5

Easternhemlock 9.0 32.8 49.8 8.3

Sugarmaple �6.� 23.5 49.2 ��.3

Northernredoak 0.9 29.6 55.6 �3.9

Sweetbirch 24.8 ��.8 50.4 �3.0

Yellowbirch 9.8 22.0 57.0 ��.3

Whiteoak 0.4 �8.4 56.5 24.7

Whiteash 7.9 26.� 55.9 �0.�

Page 26: Forest Service Northeastern Research Station the Allegheny

22

Figure 21.—Kriged surface of percent crown dieback of selected species (1998-2001 FHM data; NLCD data from Multi-Resolution Land Characteristics Consortium).

black cherry red maple

American beech eastern hemlock

sugar maple white ash

Page 27: Forest Service Northeastern Research Station the Allegheny

23

Foliage TransparencyFoliagetransparencyistheamountofskylightvisiblethroughthelive,usuallyfoliatedportionofthecrown.Thenormalrangeoffoliagetransparencyvariesbyspecies.Forexample,blackcherryandwhiteashgenerallyhavehighertransparencythanmanyotherspecies.However,changesinfoliagetransparencycanoccurduetodefoliationorreducedfoliageresultingfromstressesinprecedingyears.3

Percentbasalareaofmajorspeciesinfoliage-transparencycategoriesmeasuredduringthe�998-200�FHMsurveysisshowninTable5.ThetransparencyforAmericanbeechwashigherthanwouldbeexpectedforthisshadetolerantspecies.Foliagetransparencyasanindicatoroftreehealthisusefulforlong-termmonitoringastrendsareevaluatedagainstabaselinemeasurement.Thetransparenciesestablishedinthisreportwillserveasthatbaseline.

Tree DamageDuringFHMsurveys,damagewasassessedforeachtreebeginningattheroots.Asmanyasthreedamagescanberecordedpertreeinthefollowingorder:roots,rootsandlowerbole,lowerbole,lowerandupperbole,upperbole,crownstem,andbranches.�Insomeinstances,notallofthedamageonatreeisrecorded,resultinginanunderestimationofdamagesontheupperpartofthetree.However,thisbiasissmallasthreedamageswereonlyrecordedon2percentofthesampledtrees.PercentbasalareaofmajortreespeciesontheANFthatincureddamageisshowninTable6.Thepercentageofbasalareawithoutsignsorsymptomsrangedfrom4�forAmericanbeechto89forwhiteoak.Conksandadvancedsignsofdecaywerethemostfrequentlyobserveddamage,rangingfrom8percentforwhiteoakto40percentforyellowbirch.Conksarethefruitingbodiesoffungithatcausedecay.

Discolorationanddecayarethemajorcausesofdefectandlossinwoodqualityofyellowbirch.Nectria galligenaisthemostcommonanddamagingstemdiseaseofthis

species(Erdmann�990).Therefore,muchofthedecayonyellowandsweetbirchmaybeduetoinfectionbytheNectriafungus.Theextensiveconksandadvanceddecayreportedinnorthernredoakrequiresfurtherevaluation.DecayonAmericanbeechisattributedatleastpartlytotheeffectsofbeechbarkdisease.Affectedtreesmayliveforseveralyears(Houston�994).

Theobserveddecayontreesbytree-sizeclassusingthe�998-200�FHMdataisshowninTable7.Exceptfornorthernredoakandwhiteash,thepercentageof

Table 4.—Percent basal area of major tree species on the ANF, by crown-ratio class (1998-2001 FHM data)

Livecrownratio(%)

Species 0-24.9 25-49.9 50-74.9 75-�00

Blackcherry 7.0 74.6 �7.5 0.9

Redmaple �.4 34.5 57.3 6.9

Americanbeech �.2 �7.0 39.9 4�.9

Easternhemlock �.7 5.5 26.6 66.2

Sugarmaple 3.9 27.9 55.� �3.�

Northernredoak 0.� 54.7 4�.2 3.9

Sweetbirch 0.7 42.5 49.7 7.�

Yellowbirch �.6 3�.7 52.8 �3.9

Whiteoak 0.0 40.9 54.8 4.4

Whiteash 8.� 66.2 24.7 0.9

Table 5.—Percent basal area of major tree species on the ANF, by foliage-transparency class (1998-2001 FHM data)

Foliagetransparency(%)

Species 0-24.9 25-49.9 50-74.9 75-�00

Blackcherry 58.� 40.4 �.0 0.6

Redmaple 80.6 �8.9 0.3 0.2

Americanbeech 76.5 22.5 0.7 0.3

Easternhemlock 93.6 4.8 0.2 �.5

Sugarmaple 83.4 �5.5 0.2 0.8

Northernredoak 72.8 27.2 0.0 0.0

Sweetbirch 86.6 �3.4 0.0 0.0

Yellowbirch 76.3 23.7 0.0 0.0

Whiteoak 96.2 3.8 0.0 0.0

Whiteash 66.4 28.0 �.� 4.5

Page 28: Forest Service Northeastern Research Station the Allegheny

24

basalareawithobserveddecayincreasedwithdiameterclass.Thistrendcanbeexpectedaspartofnormaltreesenescence.Decayobservedinnorthernredoakwasatypicalasitwashighestinthe5-to�0-inchdiameterclass.

Standing Dead TreesStandingdeadtrees(atnormalbackgroundlevels),anaturalcomponentofhealthyforestecosystems,playanimportantroleinnutrientcyclingandprovidewildlifehabitat.Treemortalityisincreasinglyaffectedbyfactorssuchasdiseaseandinsectdamageasaforestages(GreifandArchibold2000).Standingdeadisnotatruemeasureofmortalitybecauseadeadtreecanberemoved,fallover,orremainstandingforanumberofyears.However,numberofstandingdeadtreescanprovideanindirectmeasureofpastmortality.

LiveanddeadbasalareaperacreandpercentageofbasalareathatisstandingdeadformajortreespeciesontheANFareshowninTable8.Amongthefivemostdominantspecies,mortalityappearedtobeproportionallygreatestinsugarmaple.ThisincreaseinpercentdeadsugarmaplelikelyisduetoageneraldeclineinthatspeciesontheunglaciatedportionofthenorthernAlleghenyPlateau(Horsleyetal.2000).Beechbarkdiseaseandelmspanwormdefoliationcontributedtothe

Tabl

e 6.

—Pe

rcen

t ba

sal a

rea

of m

ajor

tre

e sp

ecie

s on

AN

F, b

y da

mag

e si

gns

and

sym

ptom

s (1

998-

2001

FH

M d

ata)

No

Ope

nBr

oken

Bol

eBr

oken

/D

ead

Brok

en/D

ead

Dam

aged

Bud

sSp

ecie

sD

amag

eC

anke

rD

ecay

Wou

ndR

esin

osis

Cra

cks

or R

oots

Dea

d R

oots

Vine

sTe

rmin

alBr

anch

esor

Fol

iage

Dis

colo

ratio

nO

ther

Bla

ck c

herr

y59

.34.

726

.93.

10.

34.

90.

00.

10.

51.

68.

40.

00.

00.

0R

ed m

aple

55.0

4.1

35.1

2.5

0.0

8.4

0.0

0.0

0.2

1.6

2.0

0.0

0.2

0.0

East

ern

hem

lock

67.5

5.3

15.5

4.8

0.0

4.2

0.0

0.2

0.0

9.5

1.8

0.7

0.0

0.0

Amer

ican

bee

ch41

.44.

838

.37.

50.

05.

61.

20.

00.

25.

51.

40.

30.

116

.3Su

gar m

aple

53.6

11.0

30.8

7.7

0.0

5.8

0.1

0.3

0.1

7.8

1.6

0.0

0.0

0.2

Nor

ther

n re

d oa

k56

.90.

034

.50.

00.

05.

50.

00.

00.

60.

22.

80.

00.

00.

0Sw

eet b

irch

61.4

17.4

25.0

6.1

0.0

2.8

0.0

0.0

0.5

0.5

1.8

0.0

0.0

0.0

Yello

w b

irch

50.6

12.3

39.8

3.4

0.0

1.7

0.0

0.0

0.0

1.8

1.4

0.0

0.0

0.0

Whi

te o

ak89

.10.

08.

50.

00.

01.

90.

00.

00.

00.

51.

40.

00.

00.

0W

hite

ash

82.4

0.0

12.5

0.0

0.0

0.0

1.6

0.0

0.0

2.6

7.7

0.0

0.0

0.0 Table 7.—Percent basal area of major tree species with

observed decay on the ANF, by diameter class (1998-2001 FHM data)

Diameterclass(inches)

Species 0-4.9 5-9.9 �0-�4.9 �5-�9.9 >20

Easternhemlock 0.0 2.5 ��.3 2�.9 45.�

Redmaple �6.2 26.4 29.8 35.6 52.8

Sugarmaple �5.7 3�.3 34.2 �5.0 49.3

Yellowbirch 0.9 37.2 38.6 46.5 54.5

Sweetbirch 2.3 �7.3 24.� 52.5 NA

Americanbeech �3.9 30.3 26.6 66.6 47.4

Whiteash 0.0 �0.4 �8.3 7.0 �5.8

Blackcherry �.5 �4.6 �9.0 29.7 36.6

Northernredoak 0.0 23.2 8.7 6.2 0.0

Whiteoak 0.0 6.7 6.� 30.3 53.6

Page 29: Forest Service Northeastern Research Station the Allegheny

25

increaseinthepercentageofdeadAmericanbeech.Thehighmortalityofwhiteoaklikelyisduetodefoliationbygypsymoth.Theeffectsofthesedisturbancesarediscussedindetailinsubsequentsections.MostbirchtreesbecomeinfectedwiththeNectriafungusandfewexceed60yearsofage.Oncedead,theytendtodecayandfallfairlysoon,probablyaccountingforthedecreaseinthebasalareaofstandingdeadbirchfromthe�988-90surveytothe�998-200�surveys.

ThepercentoftotalstandingbasalareathatisdeadbydiameterclassformajorspeciesontheANFisshowninTable9.SeveralpointscanbemadefromTable9:

• Nearlyone-thirdoftheblackcherrybasalareainthe5-to�0-inchd.b.h.classwasdead.Standingdeadaccountedforlessthan��percentintheotherdiameterclasses.Thehighpercentageofstandingdeadinthesmallestclasslikelywasduetoself-thinningofthisshade-intolerantspecies.

• Percentstandingdeadredmaplewashighest(nearly�0percent)inthe5-to�0-inchd.b.h.class,probablyduetoself-thinning.Theproportionofstandingdeadwaslessthan8percentintheotherclasses.

• TheproportionofstandingdeadAmericanbeechwashighestinthelargestd.b.h.class.

Twenty-sevenpercentofthebasalareainthatclasswasdead,probablyduetobeechbarkdisease.Defoliationbygypsymothandelmspanwormalsocontributedtobeechmortality.Thebasalareaofstandingdeadbeechwas�5percentorlessintheotherdiameterclasses.

• Alargeproportionofsugarmaplebasalareawasinstandingdeadinthe5-to20-inchd.b.h.classes.Morethan22percentofthebasalareainthesmallestdiameterclasswasdead.

Table 9.—Percent of total standing basal area that is dead for major species on the ANF, by diameter class (1998-2001 FHM data)

Diameterclass(inches)

Species 5-9.9 �0-�4.9 �5-�9.9 20+

Northernredoak 33.9 2.2 4.4 3.4

Blackcherry 29.� �0.2 6.0 0.9

Sugarmaple 22.3 �4.8 �2.7 0.0

Whiteash �9.5 2�.0 0.0 0.0

Sweetbirch �4.6 �7.9 6.5 NA

Yellowbirch �4.� 2�.7 0.0 0.0

Whiteoak �0.5 �0.3 9.8 22.3

Redmaple 9.5 7.4 4.4 3.�

Americanbeech 7.4 �5.0 3.� 27.0

Easternhemlock 2.7 3.0 7.� �4.7

Table 8.—Live and dead basal area per acre (ft2) and percent basal area that is standing dead for major tree species on the ANF

Basalarea/acre�998-200�a

Basalarea/acre�989b

Species Live Dead Percentdead Live Dead Percentdead

Blackcherry 32.5 2.7 7.6 29.0 2.4 7.5

Redmaple 3� �.9 5.8 27.8 2.� 7.0

Americanbeech ��.4 �.2 9.4 �0.5 0.2 �.7

Easternhemlock �0.7 0.6 5.2 9.0 0.3 3.4

Sugarmaple 8.5 �.5 �4.8 �0.� �.� 9.4

Northernredoak 5.7 0.3 4.8 6.6 0.6 8.3

Sweetbirch 5.2 0.7 ��.5 3.9 �.6 28.9

Yellowbirch 2.9 0.5 �3.4 2.9 �.0 25.�

Whiteoak 2.5 0.3 ��.6 2.4 0.3 ��.2

Whiteash 2 0.2 7.5 2.3 0.3 �2.3aFHMdata.bFIAdata.

Page 30: Forest Service Northeastern Research Station the Allegheny

26

Sugarmapledeclineisdiscussedindetailinasubsequentsection.

• Nearly�5percentofthebasalareaofeasternhemlockinthelargestdiameterclasswasdead.Theproportionofstandingdeadwaslessthan8percentintheotherclasses.Thereasonsforthismortalityarenotcompletelyunderstood.

• Standingdeadnorthernredoakwashighest(nearly34percent)inthe5-to�0-inchclass,mostlikelyfromself-thinning.Standingdeadbasalareawaslessthan5percentintheotherclasses.SincemostoakmortalityontheANFoccurredmorethan�2yearsago,acombinationofblowdownandsalvageoperationssincethegypsymothoutbreaksof�985-88mightaccountforlowerproportionsofstandingdeadnorthernredoak.

• Birchmortalityrangedfrom�4to22percentinthe5-to�5-inchd.b.h.classes.Therewasnoyellowbirchmortalityinthelargestclasses,probablybecausetherearefewtreesofthisspeciesinthoseclassesontheANF.

• Standingdeadbasalareaofwhiteoakwashighest(22percent)inthelargestclassversusabout�0percentintheotherclasses.Aswitheasternhemlock,thereasonsforthismortalityarenotcompletelyunderstood.

• Nearly20percentofthestandingbasalareaofwhiteashinthe5-to�5-inchd.b.h.classeswasdead,likelyduetoashdeclinethathasbeenobservedlocallyforseveraldecades.

Spatial Distribution of Dead-Tree Basal AreaAkrigedsurfaceofpercentstandingdeadbasalarea(allspecies)estimatedfromthe�998-200�FHMdataisshowninFigure22.Thegreatestproportionofstandingdeadwasinthecentraltwo-thirdsoftheANF.Thisalsoistheareathathasbeendefoliatedthemostoften(Fig.�0).

Figure 22.—Kriged surface of percent standing dead basal area (1998-2001 FHM data; NLCD data from Multi-Resolution Land Characteristics Consortium).

Table 10.—Number of standing dead trees per acre in the ANF, by species and diameter class (1998-2001 FHM data); Pennsylvania state averages from McWilliams et. al. (2004)

Diameterclass(inches) Pennsylvania

Species >9 >�2 >20 Total stateaverage

Blackcherry 2.0 0.9 0.0 2.9 �.2

Redmaple �.5 0.8 0.� 2.4 �.7

Americanbeech 0.9 0.4 0.� �.4 0.7

Easternhemlock 0.3 0.2 0.� 0.7 0.6

Sugarmaple �.2 0.2 0.0 �.4 0.9

Northernredoak 0.� 0.� 0.0 0.3 �.0

Sweetbirch 0.6 0.2 0.0 0.8 0.7

Yellowbirch 0.4 0.� 0.0 0.5 0.3

Whiteoaks 0.2 0.2 0.0 0.5 0.8

Whiteash 0.2 0.� 0.0 0.2 0.4

Aspen 0.6 0.� 0.0 0.7 0.2

Total 8.0 3.4 0.4 ��.8 8.5

Number and Distribution of Standing Dead Trees Per AcreStandingdeadtreesprovidestructure,nesting,orroostingsitesfornumerousspeciesofwildlife,andareimportantforagingsitesforspeciesthatrelyoninsectsforfood.Table�0showsthenumberofstandingdeadtreesperacrebyspeciesandd.b.h.classontheANFaswellas

Page 31: Forest Service Northeastern Research Station the Allegheny

27

stateaveragesasreportedbyMcWilliamset.al.(2004).Formostspecies(exceptionsarenorthernredoak,whiteoak,andwhiteash),thenumberofstandingdeadtreesperacreisgreaterontheANFthantheaveragefortherestofPennsylvania.Forblackcherry,Americanbeech,andaspenthenumberofstandingdeadtreesisatleasttwicethestatewideaverage.

Dead Tree or Snag Longevity

Becausedeadtreesprovidehabitatforwildlife,thelengthoftimetheyremainstandingisimportant.Treespeciesvaryinthetimetheyremainstandingafterdeath.BlackcherryandtheoaksgenerallyremainstandinglongerthanmaplesandAmericanbeech.Samplesizesaresufficientforredmaple,sugarmaple,andblackcherrytodrawsomegeneralconclusions.InTable��,thefirstcolumnshowsthepercentageofstandingdeadtreesthatfellsincethe�988-90survey(by200�).Ofthe�2redmaplesthatweredeadin�989,allremainstanding.Seventeenpercentofthesugarmapleshadfallenversusonly3percentoftheblackcherrys.Althoughsamplesizesweresmallfortheremainingdeadtreespeciesexceptbigtoothaspen,virtuallyallofthesetreesarestanding

after�0years.Aspenwouldbeexpectedtofallmorequicklybecauseitswoodissoft.

Indianabatspreferlargertrees(9+inchesd.b.h.)withflakybarkthattheycrawlunderforshelter(Menzeletal.200�).AsshowninTable��,largerdeadtreestendtoremainstandinglongerthansmallertrees.SincevirtuallyallIndianabatmaternitycoloniesarefoundunderexfoliatingbark,thecharacteristicsofindividualsnagsmaybemoreimportantthanthespeciesitself(Rommeetal.�995).

Distribution of Dead Trees by Size Class for Indiana Bat Habitat

InevaluatinghabitatfortheIndianabatontheANF,itishighlylikelythatatleast5percentoftheareaissuitableasconditionsontheForestmeettherequirementsforoptimal-deadtreehabitatinthesmallerd.b.h.classes:

Table 11.—Comparison of size and percentage of trees that were standing and dead in 1989 with their status (standing or fallen) during the 1998-2001 reinventory

Fallentrees D.b.h. Meand.b.h.of

Species Number Percent Range Mean fallentrees

-----Inches----- Inches

Easternhemlock 3 0 5to�4 8.� NA

Redmaple �2 0 5.�to�9.� 8 NA

Sugarmaple 23 �7.4 5.5to23.2 8.3 6.2

Yellowbirch 2 0 8.9to��.7 �0.3 NA

Sweetbirch 2 0 6.8to9.5 8.2 NA

Americanhornbeam � 0 5.6 5.6 NA

Americanbeech 2 0 5.3to8.9 7.� NA

Whiteash 2 0 7.4to9.4 8.4 NA

Bigtoothaspen 3 33.3 5.7to�7.� ��.3 5.7

Blackcherry 32 3.� 5to20.8 9.5 9.7

Whiteoak � 0 �2.8 �2.8 NA

Northernredoak 2 0 �8.3to�8.8 �8.6 NA

Indianabatrequirements(no.ofdeadtrees)

ANFconditions(no.ofdeadtrees/acre)

D.b.h.class Suitable Optimal (Mean±SE)

>9 3/acre 5/acre 8.34±0.79

>�2 0.�/acre 3.49±0.48

>20 0.5/acre 0.39±0.��

Page 32: Forest Service Northeastern Research Station the Allegheny

28

Becausetheestimatedaveragenumberofdeadtreesinthelargestsizeclassisslightlybelowthethresholdforoptimalhabitat(0.39peracreversus0.5peracre),itislesscertainthatconditionsontheANFmeetthatcriterion,thoughitispossiblethatoptimalconditionswouldbemetas94percentoftheANFisforested(USDAFor.Serv.2000).Thirty-fivepercentoftheplots

metrequirementsforsuitablehabitatversus7percentforoptimalconditions.

Figure23showskrigedsurfacerepresentationsofthespatialarrangementoftheestimatednumberofdeadtreesperacrebyd.b.h.classfrom�998-200�FHMdata.

Figure 23.—Kriged surfaces of number of standing dead trees (1998-2001 FHM data; NLCD data from Multi-Resolution Land Characteristics Consortium).

< 9″ d.b.h. > 9″ d.b.h.

> 12″ d.b.h. > 20″ d.b.h.

Page 33: Forest Service Northeastern Research Station the Allegheny

29

Overstory Species Richness and DiversityAllindiceswerecalculatedbyplotcondition;categorieswithfewerthansevenplotconditionswereexcludedduetosmallsamplesizes.Theaveragespeciesrichness,Shannonindex,Shannonevenness,andBerger-ParkerindexwerecalculatedforeachFHMplotconditionbyEasternRegionforesttype(Table�2)andstanddevelopmentcategory(Table�3).AmongEasternRegiontypes,speciesrichnessrangedfrom2.0inthesugarmapletypeto6.25inthewhiteoak/redoaktype.TheShannonindexrangedfrom0.5inthesugarmapletypeto�.47inthewhiteoak/redoaktype.Shannonevennessrangedfrom0.32inthesugarmapletypeto0.52inthenorthernhardwoodstype.TheBerger-Parkerindexrangedfrom0.4inthemixeduplandhardwoodstypeto0.74inthesugarmapletype.

Foresttypeisareflectionofsiteconditionsfavoringonesetofvegetationoveranother,andsitedifferencesmight

accountforvariationindiversity.Indefiningforesttypes,anameisassignedwhenthedefiningspeciesrepresentsmorethanhalfofthebasalarea.Foresttypesdefinedasmixedhaveinherentlymorediversitythanthosedefinedassinglespeciesortwospecies.However,itispossiblethatspeciescomprisingtheremaining50percentofthebasalareaaremorediverseinsomeforesttypesthaninothers.

Differencesinspeciesdiversitycanberelatedtoavarietyofecologicalfactorsandlanduses.Silviculturalpracticesincertainstandsmighthavereducedtheabundanceofsomespeciesandfavoredothers.However,fewsilviculturalpracticescompletelyeliminatespecies.Physiographyandsoilsstronglydeterminethecomposition,size,andproductivityofvegetation(Barnesetal.�992).Soilmoisture,nutrients,andpHcontrolspeciescomposition,size,andproductivity.Whitney(�986)observedthathardwoodswerecommononricher,

Table 12.—Overstory richness and diversity indices for trees at least 5.0 inches d.b.h., by Region 9 forest type (1998-2001 FHM data)

Species Shannon Shannon Berger- No.ofplot

Foresttype richness index evenness parkerindex conditions

Mixeduplandhardwoods 5.59 �.44 0.46 0.40 50

Alleghenyhardwoods 3.74 0.98 0.35 0.57 42

Redmaple 3.93 0.99 0.34 0.60 30

Northernhardwoods 5.82 �.44 0.52 0.4� �7

Hemlock 4.9� �.�4 0.39 0.57 ��

Whiteoak/redoak 6.25 �.47 0.45 0.45 8

Sugarmaple 2.00 0.50 0.32 0.74 8

Oak/hardwoodtransition 5.86 �.44 0.44 0.46 7

Stand-developmentcategory

Speciesrichness

Shannonindex

Shannonevenness

Berger-parkerindex

No.ofplotconditions

No.ofdeerpermile2

Standinitiation(0-�4years)

2.�7 0.58 0.47 0.7� �7 25-28

Stemexclusion(�5-49years)

3.67 0.77 0.30 0.7� �9 2�-50

Understoryreinitiation(50+years)

4.95 �.26 0.42 0.48 �53 0-2�

Table 13.—Overstory richness and diversity indices for trees at least 5.0 inches d.b.h., by stand development stage (1998-2001 FHM data) and deer density

Page 34: Forest Service Northeastern Research Station the Allegheny

30

finertexturedsoilsofmorainesandridgesinpresettlementpinesitesinMichigan.Coarse-textured,excessivelydrainedsoilsofridgesfavoredoakswhilefinertexturedsoilsofuplandssupportedmorenutrient-demandinghardwoods.Americanbeechandsugarmaplegrewoncoarsertexturedloams,whilehemlockgrewonfinertexturedloamsandclays.InNewYork,thecompositionofoverstoryspecieswaspositivelyrelatedtosoiltexture,stoniness,pH,specificconductance,soilmoisture,andpercentorganicmatter(SeischabandBernard�99�;�996;BernardandSeischab�995).DifferencesinsoilsweresignificantamongcommunitiesattheWaterlooBarrensinMainewherecationexchangecapacity(CEC),pH,Ca,Mg,P,percentorganicmatter,andtotalNdifferedsignificantlyamongfivevegetationcommunitytypesidentified(Copenheaveretal.2000).ThesekindsofrelationshipsmeritfurtherinvestigationontheANF.

Amongstand-developmentcategories,speciesrichnessrangedfrom2.�7inthestandinitiationphaseto4.95intheunderstoryreinitationphase(Table�3).TheShannonindexrangedfrom0.58inthestandinitiationphase(0to�4yearsold)to�.26intheunderstoryreinitiationphase(50+yearsold).Shannonevennessrangedfrom0.3inthestemexclusionphase(�5to49yearsold)to0.47inthestandinitiationphase.TheBerger-Parkerindexrangedfrom0.48intheunderstoryreinitationphaseto0.7�inthestemexclusionandstandinitiationphases.

Disturbanceplaysanimportantroleintheassemblyandmaintenanceofplantcommunitiesbeneaththecanopyofforests.Itcanbedefinedasthemechanism(s)thatlimitplantbiomassbycausingitspartialortotaldestruction(Grime200�).Aforestedcommunityusuallyhasanunderstorythatisstableduetothenaturalcyclingofsmall-scaledisturbances(Odum�969).HalpernandSpies(�995)suggestedthattherearetwoclassesofdisturbanceeffects:initialeffectsthatoccurasadirectresultofthedisturbanceandlong-termeffectsonspeciesrecovery.Initialeffectsconsistprimarilyofdestructionofvegetationandofpropagulesthroughmodificationofhabitatsuchasseedbeddisturbance,changesinlight,temperature,andmoisture(GilliamandRoberts2003).Long-termeffectsresultfromchangesinspecies

composition,ratesofstanddevelopment,andcompetitiveinteractions.

Table�3showsthatoverstoryspeciesrichnessishigherinthestemexclusionandunderstoryreinitiationcategoriesthaninthestandinitiationcategory.Severalfactorslikelycontributedtothisresult,particularlydeerbrowsing.Speciesrichnessofoverstorytreesishighestwheredeerdensitieswerelowestatthetimethestandsoriginated,likelyreflectingtheabilityofdeertoselectivelyremovespeciespreferredasfood.Also,inthestandinitiationphase,theremaybeasmanyspeciespresentasintheotherphases(oratleastmorethanarereflectedinthespeciesrichnessvalue).However,slowergrowing,moreshade-tolerantspeciessuchasAmericanbeechandsugarmapleweretoosmall(atleast5inchesd.b.h.)tobemeasured.Fastergrowing,intolerantspeciessuchasblackandpincherrytendtodominatefirst,attaininglargerdiametersfaster.Asaresult,fewerspeciesweremeasuredinyoungerstands.Additionalresearchisneededtoconfirmtheimportanceofthesefactors.

SpeciesintheunderstorycanreappearfollowingdisturbancebyoneormoreoffourbasicmechanismssummarizedbyGilliamandRoberts(2003):�)Survivalinsitu--plantsmaysurviveinvegetativeformduetothepatchynatureofdisturbanceandlowseverityofsomedisturbances,2)Vegetativeregeneration--manyplantsreproducevegetatively(Bierzychudek�982),newshootsformwhentheabovegroundportionofvegetationiskilledordamaged,3)Regenerationfromtheseedbank,and4)Regenerationbydispersedpropagules.Persistenceofcommunitycompositioninforestunderstoriesisreferredtoasstability,resistance,orresilience(Halpern�989).

OliverandLarson(�996)describedtwopatternsofstanddevelopmentafteradisturbance:relayfloristicsandinitialfloristics.Relayfloristicsisonespeciesafteranotherinvadingasiteina“relaylike”manner.Bycontrast,accordingtotheinitialfloristicspattern,speciesthatpredominatelaterhavebeenpresentsincethedisturbance.Thedevelopmentpatternafteradisturbanceusuallyfollowstheinitialfloristicsconcept.

Page 35: Forest Service Northeastern Research Station the Allegheny

3�

Understory ConditionsSeedling and Sapling CountsSeveralstudieshavereportedlowstockingofseedlings/saplingsinforestedstandunderstoriesonvariousportionsoftheANF(USDAFor.Serv.�995;McWilliamsetal.�996;�999;USDAFor.Serv.2000).Browsingassociatedwithhighdeerpopulationsformorethan70yearshasresultedinalackofunderstoryconditionsasdeerselectivelyremovedherbaceousplants,shrubs,andtreeseedlings.Whendesirednativeplantswereremovedordied,othervegetation(beech,stripedmaple,ferns,andgrass)occupiedmuchofthevacantgrowingspaceinterferingwiththedevelopmentandgrowthoftreeseedlings.

Whereinterferingplantsareabundant,itisdifficultforseedlings(andothernativeplants)tobecomeestablished.Thishasimportantconsequenceswhencatastrophicremovalevents(e.g.,winddamage)occur.Itisdifficultforvigorousyoungtreestogrowfromseed,gaindominanceoverinterferingplants,andreplacetreesthatdie.

Itisimportanttoquantifydensitiesofseedlingsandsaplingstopredictfuturestandcomposition.FHMplotsaredividedintothreestand-sizeclassesbasedontheaveraged.b.h.ofalllivetreesthatarenotovertopped.Standsizesaredefinedassawtimber(��+inchesd.b.h.),poletimber(5to�0.9inchesd.b.h.),andseedling/sapling

(lessthan5inchesd.b.h.).Forthisanalysiswecalculatedthenumberofseedlingsandsaplingsperacreforeachsizeclass.TheoaktypesarethemostdistinctlydifferentforesttypesontheANF,andgreatconcernhasbeenexpressedabouthowtodeveloptheoakseedlingcomponent.ThisseparationisimportantbecauseofthedistinctdifferencesbetweentheseforestecosystemsandconcernsrelatedtothesustainabilityoftheoakforesttypegroupintheeasternUnitedStates(Johnsonetal.2002).Therefore,wecalculatedseedlingandsaplingdensityseparatelyfornon-oakandoaksawtimberplots.Seedlingandsaplingdataarecollectedat6.8-foot,fixed-radiuscircularmicroplots.Aseedlingwasdefinedasatreeatleast�foottallbutlessthan�inchd.b.h.Saplingsweredefinedaslivetrees�to4.9inchesd.b.h.Itshouldbenotedthatseedlingslessthan�foottallarenotcountedaccordingtoFHMprotocol;thisaffectstheestimatedspeciesdistribution.ANFprotocolincludescountingallseedlingswithawoodystem(i.e.,atleast2yearsold)andtwonormalleaves(eveniflessthan�foottall)(Marquisetal.�992).

Sawtimber PlotsNon-Oak PlotsAmericanbeechwasthemostabundantseedlingspeciesonnon-oaksawtimberplotsfollowedbyblackcherry,stripedmaple,birchspp.,andredmaple(Fig.24).Mostofthebeechstemsprobablyoriginatedfromrootsprouts.Specieswithanaverageoffewerthan�00seedlingsper

Species Seedlings/acreRed maple 110.5603448Birch spp. 137.0689655Striped maple 162.2844828Black cherry 197.1982759American beech 697.6293103

0 100 200 300 400 500 600 700 800

Red maple

Birch spp.

Striped maple

Black cherry

American beech

Seedlings/Acre (no.)

Figure 24.—Number of seedlings per acre on non-oak sawtimber plots (116 plot conditions).

Page 36: Forest Service Northeastern Research Station the Allegheny

32

acreincludedserviceberry,easternhophornbeam,easternhemlock,Americanhornbeam,sassafras,northernredoak,whiteoak,blackgum,chokecherry,cucumbertree,whiteash,Norwayspruce,sugarmaple,pincherry,Americanchestnut,easternwhitepine,andAmericanmountain-ash.

Americanbeechwasthemostabundantsaplingonnon-oaksawtimberplotsfollowedbysugarmaple,redmaple,andserviceberry(Fig.25).Specieswithfewerthan�0saplingsperacreincludedstripedmaple,easternhemlock,Americanhornbeam,easternhophornbeam,sweetbirch,yellowbirch,whiteash,andeasternwhitepine.

Americanbeechismorethantwiceasabundantasanyspeciesinboththeseedlingandsaplingclasses,withnearlyasmanystems/acreineachsizeclassasallotherspeciescombined.Thishasraisedconcernsaboutlong-termforestsustainability,particularlyasAmericanbeechissusceptibletothebeechbarkdiseasecomplex.Reforestationpracticesshouldbeimplementedtoencouragetheestablishmentanddevelopmentofothertreespecies.

Oak PlotsRedmaplewasthemostabundantseedlingonoaksawtimberplotsfollowedcloselybyAmericanbeechandamuchlowerabundanceofbirchspp.,oakspp.,blackcherry,stripedmaple,andserviceberry(Fig.26).Oftheoakseedlings,55percentwerenorthernredoak,24percentwerewhiteoak,�3percentwere

Species Saplings/acreServiceberry 10.34482759Red maple 19.39655172Sugar maple 23.92241379American beech 67.88793103

0 10 20 30 40 50 60 70 8

Serviceberry

Red maple

Sugar maple

American beech

Saplings/Acre (no.)0

Figure 25.—Number of saplings per acre on non-oak sawtimber plots (116 plot conditions).

Species Seedlings/acreServiceberry 80.76923077Striped maple 89.42307692Black cherry 100.9615385Oak spp. 109.6153846Birch spp. 207.6923077American beech 617.3076923Red maple 651.9230769

0 100 200 300 400 500 600 700

Serviceberry

Striped maple

Black cherry

Oak spp.

Birch spp.

American beech

Red maple

Seedlings/Acre (no.)

Figure 26.—Number of seedlings per acre on oak sawtimber plots (26 plot conditions).

chestnutoak,and8percentwerescarletoak.Specieswithfewerthan50seedlingsperacreincludedwhiteash,hawthorn,whiteoak,sassafras,chestnutoak,scarletoak,chokecherry,easternhophornbeam,pignuthickory,blackgum,cucumbertree,Americanchestnut,sugarmaple,andeasternwhitepine.

Page 37: Forest Service Northeastern Research Station the Allegheny

33

Americanbeechwasthemostabundantsaplingonoaksawtimberplotsfollowedbyredmaple,birchspp.,oakspp.,andsugarmaple(Fig.27).Oftheoaksaplings,blackandchestnutoakeachaccountedfor33percentwhilewhiteandnorthernredoakeachaccountedfor�7percent.Specieswithfewerthan�0saplingsperacreincludedblackgum,hawthorn,blackoak,chestnutoak,serviceberry,northernredoak,whiteoak,cucumbertree,whiteash,hickoryspp.,andeasternwhitepine.

Non-oakseedlingsandsaplingsare�7and�5timestimesmoreabundant,respectively,thanalloakspeciescombined.ANFsilviculturalguidelinesreflecttheimportanceofadequatenumbersofoakseedlingsandsaplingsindeterminingfuturespeciescomposition(Horsleyetal.�994).Unlessthisoverwhelmingabundanceofnon-oakregenerationchangesthroughnaturalcausesorreforestation,littleoakforestwillbesustainedoverthelongterm,bothwheretimberharvestingoccursandwhereitisprohibited.

Poletimber PlotsNodistinctionwasmadebetweennon-oakversusoakpoletimberplotsduetothesmallsamplesizeforoakpoletimber.Thedistributionofseedlingsinpoletimberplotswassimilartothatfornon-oaksawtimberplots.Americanbeechwasthemostabundantspeciesfollowedbystripedmaple,birchspp.,serviceberry,redmaple,andblackcherry(Fig.28).Incontrasttothenon-oaksawtimberplots(Fig.24),thenumberofseedlings

peracreissubstantiallyloweronthepoletimberplotsprimarilyduetothedecreaseinAmericanbeechandblackcherryseedlings.Thisdecreaseprobablyisduetotherelativelyhighdensityofstemsinpoletimberversussawtimberstands,which,inturn,resultedinaloweramountoflightreachingtheforestfloor.Specieswithfewerthan50seedlingsperacreincludedsugarmaple,sassafras,pincherry,Americanhornbeam,northernredoak,Americanbasswood,quakingaspen,easternhophornbeam,whiteash,andeasternhemlock.

Figure 27.—Number of saplings per acre on oak sawtimber plots (26 plot conditions).

Species Saplings/acreSugar maple 11.53846154Oak spp. 17.30769231Birch spp. 25.96153846Red maple 66.34615385American beech 124.0384615

0 20 40 60 80 100 120 140

Sugar maple

Oak spp.

Birch spp.

Red maple

American beech

Saplings/Acre (no.)

Species Seedlings/acreBlack cherry 60.32608696Red maple 70.10869565Serviceberry 86.41304348Birch spp. 96.19565217Striped maple 110.8695652American beech 158.1521739

0 20 40 60 80 100 120 140 160 180

Black cherry

Red maple

Serviceberry

Birch spp.

Striped maple

American beech

Seedlings/Acre (no.)

Figure 28.—Number of seedlings per acre on poletimber plots (46 plot conditions).

Page 38: Forest Service Northeastern Research Station the Allegheny

34

Sweetbirchwasthemostabundantsaplingonpoletimberplotsfollowedbyblackcherry,Americanbeech,sugarmaple,redmaple,andyellowbirch(Fig.29).Birchspp.hadtwiceasmanysaplingsperacreasotherspecies.Speciesexcluded(thosewithfewerthan�0saplingsperacre)wereserviceberry,stripedmaple,easternhemlock,pincherry,bluespruce,sassafras,quakingaspen,chokecherry,easternhophornbeam,andwhiteash.

Sweetbirchsaplingsweremuchmoreabundantandblackcherrysaplingsweresomewhatmoreabundantonpoletimberplots(Fig.29)thanonsawtimberplots(Fig.25).Thisprobablyreflectsdifferencesindeerdensityatthetimeofstandinitiationortheeffectsofself-thinningofshade-intolerantblackcherry.Theimpactofdeerwasmuchloweratthetimecurrentsawtimberstandswereinitiated.BothsweetbirchandblackcherryareintermediatetolowinpreferencebydeerontheAlleghenyPlateau(Healy�97�).Sugarandredmaplesaplingsaresimilarinabundance.

Seedling/Sapling PlotsOakandnon-oakplotsagainwerecombinedforanalysisduetosmallnumbersofplotsintheseparatetypes.Blackcherrywasthemostabundantseedlingonseedling/saplingplotsfollowedbyAmericanbeech,redmaple,birchspp.,serviceberry,andpincherry(Fig.30).Speciesexcluded(thosewithfewerthan90seedlingsperacre)werestripedmaple,northernredoak,whiteoak,easternhophornbeam,chokecherry,Americanhornbeam,whiteash,andeasternhemlock.

Blackcherry,redmaple,birch,serviceberry,andpincherryseedlingsweremuchmoreabundantonseedling/saplingplots(Fig.30)thanonsawtimberplots(Fig.24).Americanbeechissimilarinseedlingabundanceonsawtimberandseedling/saplingplots.Again,thisreflectsdifferencesindeerimpactatthetimeofinitiationofcurrentsawtimberandseedling/saplingstands.

Blackcherrysaplingswerethemostabundantspeciesonseedling/saplingplotsfollowedbysweetbirch,red

Species Saplings/acreYellow birch 13.04347826Red maple 16.30434783Sugar maple 16.30434783American beech 57.06521739Black cherry 65.2173913Sweet birch 102.7173913

0 20 40 60 80 100 120

Yellow birch

Red maple

Sugar maple

American beech

Black cherry

Sweet birch

Saplings/Acre (no.)

Figure 29.—Number of saplings per acre on poletimber plots (46 plot conditions).

Species Seedlings/acrePin cherry 146.4285714Serviceberry 432.1428571Birch spp. 492.8571429Red maple 532.1428571American beech 592.8571429Black cherry 1085.714286

0 200 400 600 800 1000 1200

Pin cherry

Serviceberry

Birch spp.

Red maple

American beech

Black cherry

Seedlings/Acre (no.)

Figure 30.—Number of seedlings per acre on seedling/sapling plots (21 plot conditions).

Page 39: Forest Service Northeastern Research Station the Allegheny

35

maple,pincherry,andAmericanbeech(Fig.3�).Onceblackcherryestablishesitselfasaseedlinginanopeningwhereitisfreetogrow,growthisrapidandthisspeciesdominatesthesite.Specieswithfewerthan60saplingsperacreincludedstripedmaple,chokecherry,yellowbirch,northernredoak,sugarmaple,easternhemlock,whiteoak,easternhophornbeam,andserviceberry.

Sinceblackcherryisanabundantsaplinginallthestandsizes,thisspeciesislikelytoincreaseindominanceontheANFoverthenextcentury.Asstatedearlier,themostimportantfactorinthedominanceofblackcherryisthatitisnotpreferredbywhite-taileddeer.Thevirtualabsenceofoakregenerationindicatesthatoak-dominatedstandsmaytransitiontostandsdominatedbyotherspeciesunlessstepsaretakentoensureitsinclusion.Marquisetal.(�992)outlinedstandardsforachievingdesirableregenerationinhardwoodforestsoftheAllegheniesbasedonsurveysusingplots.Thestandardswereadjustedtoestimatewhethereach6.8-foot-radiusFHMmicroplotwouldbeconsideredstockedwithdesirableregeneration.Whenthesecriteriawereused,only64of692FHMmicroplots(9.2percent)metthestandardsforadequatestockingoftreeseedlings.

Thislowpercentageunderscoresboththeadverseeffectofdeer(Tilgman�989;Horsleyetal.2003)andtheneedforreforestationpracticesthatenhanceseedlingdevelopmentanddiversity,e.g.,herbicide/fencing(Horsleyetal.�994)andreleasetreatments(RistauandHorsley�999).

Seedling and Sapling Richness and DiversityAveragespeciesrichness,Shannonindex,Shannonevenness,andBerger-ParkerindexofseedlingsandsaplingswerecalculatedforeachFHMplotcondition

byEasternRegionforesttypeandstand-developmentcategory(Tables�4-�7).

Sincedevelopmentfollowingadisturbanceusuallyfollowstheinitialfloristicsconcept(OliverandLarson�996),sitesinthestandinitiationphasecontainmanyspecies.Asthecanopyclosesandthestemexclusionphaseoccurs,onlyshade-tolerantspeciessurviveintheunderstoryasadvanceregeneration,e.g.,sugarmapleandAmericanbeech.

Sustainability of Tree SpeciesAnalysisofsurveydatacollectedin�992froma6,000-plotsampleon60percentoftheANFraisedconcernsaboutlong-termtreespeciessustainability/diversity(USDAFor.Serv.�995).Specifically,certainspeciesrepresentedintheoverstorytreetallyarenotrepresentedatallorarepoorlyrepresentedinthetreeseedlingtally.Analysisof�998-200�FHMdataraisedsimilarconcerns,thoughtheFHManalysiswasnotdesignedtoaddresssustainability.Table�8summarizestheaveragenumberofstemsperacretalliedforfoursizeclasses--seedling(atleast�foottallandlessthan0.9inchd.b.h.),sapling(�to4.9inchesd.b.h.),trees5to�0.9inchesd.b.h.,andtrees��ormoreinchesd.b.h.onFHMplots.

Sixtreespecieswithoverstorytreestalliedhadnoseedlingsorsaplingstallied(redpine,shagbarkhickory,

Species Saplings/acreAmerican beech 64.28571429Pin cherry 67.85714286Red maple 135.7142857Sweet birch 175Black cherry 653.5714286

0 100 200 300 400 500 600 700

American beech

Pin cherry

Red maple

Sweet birch

Black cherry

Saplings/Acre (no.)

Figure 31.—Number of saplings per acre on seedling/sapling plots (21 plot conditions).

Page 40: Forest Service Northeastern Research Station the Allegheny

36

Table 14.—Seedling richness and diversity indices, by Eastern Region forest type (1998-2001 FHM data)

ForesttypeSpeciesrichness

Shannonindex

Shannonevenness

Berger-parkerindex

No.ofplotconditions

Mixeduplandhardwoods 2.52 0.56 0.28 0.25 50

Alleghenyhardwoods 2.62 0.58 0.23 0.22 42

Redmaple 2.50 0.56 0.25 0.26 30

Northernhardwoods �.82 0.46 0.30 0.35 �7

Hemlock 2.55 0.50 0.22 0.34 ��

Whiteoak/redoak 3.25 0.68 0.42 0.36 8

Sugarmaple 5.00 0.7� 0.2� 0.�2 8

Oak/hardwoodtransition �.00 0.�5 0.�2 0.75 7

Table 15.—Seedling richness and diversity indices, by stand development stage (1998-2001 FHM data)

StanddevelopmentstageSpeciesrichness

Shannonindex

Shannonevenness

Berger-parkerindex

No.ofplotconditions

Standinitiation(0-�4years) 4.53 0.68 0.�8 0.�� �7

Stemexclusion(�4-49years) 2.89 0.5� 0.2� 0.33 �9

Understoryreinitiation(50+years) 2.37 0.54 0.27 0.30 �53

Table 16.—Sapling richness and diversity indices, by Eastern Region forest type (1998-2001 FHM data)

ForesttypeSpeciesrichness

Shannonindex

ShannonEvenness

Berger-parkerindex

No.ofplotconditions

Mixeduplandhardwoods �.50 0.26 0.37 0.86 50

Alleghenyhardwoods �.97 0.46 0.33 0.79 42

Redmaple �.72 0.36 0.33 0.80 30

Northernhardwoods �.29 0.�8 0.30 0.89 �7

Hemlock 2.00 0.23 0.�6 0.93 ��

Whiteoak/redoak �.43 0.23 0.�7 0.88 8

Sugarmaple 2.43 0.59 0.27 0.74 8

Oak/hardwoodtransition 2.00 0.46 0.3� 0.79 7

Table 17.—Sapling richness and diversity indices, by stand development stage (1998-2001 FHM data)

StanddevelopmentcategorySpeciesrichness

Shannonindex

Shannonevenness

Berger-parkerindex

No.ofplotconditions

Standinitiation(0-�4years) 2.29 0.50 0.�8 0.77 �7

Stemexclusion(�4-49years) 2.�6 0.47 0.28 0.79 �9

Understoryreinitiation(50+years) �.53 0.29 0.35 0.84 �53

Page 41: Forest Service Northeastern Research Station the Allegheny

37

Table 18.—Number of stems per acre by species and size class (1998-2001 FHM data)

SpeciesTrees5-��

inchesd.b.h.Trees�2+

inchesd.b.h. Saplings Seedlings

Norwayspruce 5 � 0 75

whitespruce 7 � 0 0bluespruce �5 0 25 0slashpine 0 � 0 0redpine 8 6 0 0easternwhitepine 7 4 �2.5 37.5easternhemlock 400 �27 200 237.5stripedmaple � 0 425 4687.5redmaple 579 473 �200 7387.5sugarmaple 326 92 575 437.5mountianmaple 0 0 0 25serviceberry 56 3 287.5 4287.5birchspp. 0 0 �25 �7�2.5yellowbirch ��4 33 287.5 487.5sweetbirch �66 58 �462.5 3862.5Americanhornbeam �� 0 ��2.5 3�2.5hickoryspp. 2 0 �2.5 0pignuthickory 2 0 0 25shagbarkhickory � 0 0 0mockernuthickory 4 0 0 0Americanchestnut 0 0 0 62.5hawthorn 0 0 37.5 �75commonpersimmon � 0 0 �2.5Americanbeech 376 �05 24�2.5 �9462.5ashspp. � � 0 �2.5whiteash �7 33 25 3�2.5yellow-poplar 0 �4 0 0cucumbertree �3 23 �2.5 87.5blackgum �� 0 37.5 �00easternhophornbeam 9 0 �00 437.5sycamore � 0 0 0bigtoothaspen 9 �� �75 25quakingaspen 8 4 �2.5 37.5cherryandplumspp. 0 0 0 25pincherry 37 � 262.5 650blackcherry 335 47� 3362.5 85�2.5chokecherry 0 0 0 ��2.5whiteoak 32 46 �2.5 250scarletoak 2 5 0 37.5chestnutoak 9 �6 0 62.5northernredoak 2� 85 37.5 637.5blackoak �3 �2 0 0sassafras �2 0 �2.5 450Americanmountain-ash 0 0 0 �2.5basswoodspp. 0 2 0 0Americanbasswood 8 �7 0 37.5

Page 42: Forest Service Northeastern Research Station the Allegheny

38

mockernuthickory,yellow-poplar,sycamore,andblackoak).Onlyyellow-poplarhadasufficientnumberofoverstorytreessampledtojustifyinitialinferencesfromthedata.Othertreespecieswithsubstantiallyfewerseedlingsorsaplingstalliedthanoverstorytreesincludeeasternwhitepine,easternhemlock,sugarmaple,whiteash,cucumbertree,blackgum,bigtoothaspen,quakingaspen,whiteoak,scarletoak,chestnutoak,andAmericanbasswood.Thelackofseedlingsofthesespeciesmaybeduetoseedcropissues(infrequentorsmallcrops),poorseedlingsurvivalduetooverbrowsingbydeer,orpoorsitequality.Alloftheseconditionsraisequestionsaboutsustainabilityoverthelongterm.Whenoverstorytreesofthesespeciesdie,areblowndown,orareremoved,willtheybereplacedbyadequatenumbersofyoung,vigorouslygrowingstemsofthesamespecies?

Seedlingsofsomespeciesareephemeral,particularlywheredeerbrowsingissignificantandthereissubstantialinterferencefromotherplants,e.g.,fern,grass,stripedmaple,andAmericanbeechrootsuckers.Forexample,sugarmaplemaydevelopnumerousseedlingsinitiallybutfewbecomeestablishedandgrowtoalargersizeclass.InTable�8,thesugarmapleshownforthesaplingand5-to��-inchd.b.h.classesgenerallyarethesameageasstemsinthegreaterthan��-inchclass;thesearestemsthatweresuppressedbyfastergrowingspeciesfollowingforestremovalsattheturnofthe�9thcentury.Redmaplehasmanysmallseedlingsbutoftenfailstodevelopwell-established,largerseedlingsorsaplingsthatcanbecomeacodominantcomponentofthenextstand.Thisspeciesishighlypreferredbydeerandrequiresseveralyearsoflowbrowsingimpacttobecomeestablishedinthemoderateshadeofstandswithoverabundantnumbersoflargesaplingsandsmallpoles.

Additionalresearchisneededtoassessthedynamicsoftree-seedlingdevelopmentanddeterminetheconditionsforsuccessfulregeneration.Inmanagedareas,localresearchanddatafromANFpost-reforestationtreatmentsurveyssuggestthattreespeciesandherbaceousdiversityisimprovedwhereareafencing(oftensupplementedbyanherbicidetreatment)isused,e.g.,seedlingsofsomespeciespreferredbydeerbegintodevelopovertime.Anassessmentofindividualspecieshasnotbeencompleted.

Disturbance Processes on the Allegheny National ForestTheroleofnsectsandpathogensinnaturaldisturbancedynamicsusuallyispositiveastheycyclenutrientsfromfoliagetosoils,killweakornoncompetitivetrees,anddecomposedeadtrees(HaackandByler�993).Mostinsectsanddiseasesrarelyreachepidemiclevels,butsomeinsectpestscausesignificantdamageatoutbreaklevels(Mason�987).Between�99�and�996,nativeinsectsthatreachedoutbreaklevelsontheANFincludedcherryscallopshellmoth,elmspanworm,foresttentcaterpillar,andoakleaftier.Collectively,thesecaterpillarsdefoliated6��,000acres.

Exoticorganismsareaseriousthreattotheecologicalbalancethathasevolvedthroughthousandsofyearsofcoexistenceamongnativeinsects,pathogens,andhost-treespecies(HaackandByler�993;Liebholdetal.�995).Non-nativepestspecieshavemorefrequentoutbreaksduetotheirlackofnaturalenemies.DamagingexoticorganismsontheANFincludegypsymoth,beechbarkdisease,andpearthrips.ThegypsymothreachedoutbreaklevelsontheANFfrom�986to�988and�99�to�993.Moreover,thebeechscaleNectriacomplexhasbeenexpandingitsrangesouthwardfromNewEnglandandNewYorkformanyyears.ItreachedthenorthernportionoftheANFintheearly�980s.BeechmortalityassociatedwiththisdiseasefirstbecameevidentontheANFin�986.ThediseasecomplexinvolvestheinteractionoftheEuropeanscaleinsectCryptococcus fagisugawiththeexoticcankerfungusNectria coccineavar.faginataorthenativeNectria galligena.Nectria coccineavar.faginataisnowthoughttobeanintroducedorganismbecauseofitspatternofoccurrenceinbeechscale-infestedareasandabsenceinuninfectedforests(Houston�994).

Naturalclimaticdisturbance(particularlydrought)hasplayedasubstantialroleinshapingtheforestecosystemsontheAlleghenyPlateau.Foursignificantdroughteventsbetween�988and�999coincidedwithoutbreaksofinsectdefoliators.StormactivityalsohasaffectedtheANF;in�985,nearly�0,600acresofforestlandweredamagedseverelybyseverallargetornados.

Page 43: Forest Service Northeastern Research Station the Allegheny

39

Cherry Scallopshell MothThenativecherryscallopshellmoth,Hydria prunivorata(Lepidoptera:Geometridae),distributedwidelyintheEasternUnitedStatesandCanada,isnotconsideredaseriouspestinmostareas.Larvae(Fig.32)formsheltersbyfasteningtogetherthemarginsofleaves.Larvaeaggregatewithinthesesheltersandfeedontheupperepidermisoftheleaves.Aslarvaegrow,thesheltersareenlargedorreformedonnew,undefoliatedbranches(Craighead�950).Thisprogressivefeedingoftendefoliatesentiretrees,reducingradialgrowththefollowingyear.Declineinsomestandscanoccurifrepeateddefoliationsorotherstressesoccurinsuccessiveyears(ShultzandAllen�975;USDAFor.Serv.�979)orinthesameyear.Thecherryscallopshellmothhasonegenerationperyear.Pupaeoverwinterintheleaflitterorintheuppersoillayerandadultsemergeinlatespringtoearlysummer.FemalesbeginlayingeggsinlateJuneandcontinuethroughmidsummer.Pyramid-shapeeggmassesarelaidonetofourlayersdeepontheundersidesofleaves(USDAFor.Serv.�979).

ThemostrecentcherryscallopshellmothoutbreakontheANFoccurredfrom�993

through�996(Figs.33-34).Outbreakshaveoccurredaboutevery�0yearsonthenorthernAlleghenyPlateau.Previousoutbreaksoccurredfrom�972to�974and�982to�984(Bonstedt�985).Outbreaksusuallylast2to3yearsandtreedecline/mortalitycanfollowafteranoutbreak.OntheANF,declinehasbeenobservedwhenrepeateddefoliationorotherstresses,e.g.,severedrought,occurconcurrentlyorinsuccessiveyears.Figure34showstheareadefoliatedbythecherryscallopshellmothontheANFduringthelastoutbreak.The�995defoliationaffected290,000acres(205,000onfederalland),mostlyonthesoutheasterntwo-thirdsoftheANF,despiteanimportantcomponentofblackcherryscatteredthroughoutthenorthernportion.

Becauseblackcherryisthepreferredhostofcherryscallopshellmothlarvae(USDAFor.Serv.�979),andstandsdominatedbythisspeciesweredefoliatedmostoftenduringoutbreaks(Table�9);therewasasignificant

Figure 32.—Cherry scallopshell moth larva (photo by James B. Hanson, USDA Forest Service, www.forestryimages.org).

Figure 33.—Frequency of cherry scallopshell moth defoliation from 1993 to 1996 on the ANF.

Page 44: Forest Service Northeastern Research Station the Allegheny

40

relationshipbetweenpercentblackcherrybasalareaandyearsofdefoliation(Table�9).Thenumberofyearsofdefoliationwassignificantlyassociatedwithpercentstandingdeadblackcherry(Table�9)(Morinetal.2004).Crowndiebackofthisspeciesincreasedwithyearsofcherryscallopshellmothdefoliation,thoughtherelationshipwasnotsignificant(Table�9).Withrespecttocrownconditionandmortality,blackcherryisaffectedonlybytwoormoredefoliationevents,somanagersshouldconsidersuppressionactivitiesfollowinganinitialdefoliationevent.

Elm SpanwormTheelmspanworm,Ennomos subsignarius(Lepidoptera:Geometridae),isanativespeciesthatisfoundthroughouttheEasternUnitedStatesandaportionofCanada.Outbreaksarerelativelyuncommon,thoughmajormultiyearoutbreakshaveoccurredinConnecticut

andNorthCarolina.Thispestisresponsibleforperiodicseveredefoliationsofhardwoodssuchasash,hickory,walnut,beech,blackcherry,elm,basswood,redmaple,sugarmaple,andyellowbirch.Twoconsecutivesummersofdefoliationcancausediebackandevenmortalitywhenaninvasionofsecondarypestsoccurs(USDAFor.Serv.�979).

Elmspanwormhasonegenerationperyear.Femaleslayeggsinsmallgroupsontheundersideofbranches;afteroverwintering,eggsusuallyhatchinMayorJune.Larvae(Fig.35)feedonthelowersurfaceofleavesbuteventuallyconsumeeverythingbuttheveins(Fig.36)(USDAFor.Serv.�979).ThisspeciesishighlypolyphagousandnearlyallmajorhardwoodspeciesontheANFarehostsexceptforyellow-poplarandcucumbertree.

Table 19.—Mean stand characteristics averaged over FHM plots grouped by years of defoliation by cherry scallopshell moth (1998-2001 FHM data); number of plots in parentheses (P values given for one-way analyses of variance)

Characteristicfor Yearsofdefoliation

blackcherry(%) 0 � 2or3 Pvalue

Basalarea �6.33a(8�) 30.62b(80) 38.87b(�2) 0.000�*

Mortality 5.45a(30) 5.65a(58) �7.38b(9) 0.0209*

Dieback 7.24(30) 6.86(58) 8.87(9) 0.7530*Significantata=0.05level.

years cherry scallop shell defoliation (thousands of acres) percent of area1984 0 01985 0 01986 0 01987 0 01988 0 01989 0 01990 0 01991 0 01992 0 01993 4.367844796 0.5898507491994 53.0122303 7.1589777581995 287.6273524 38.842316331996 15.63619762 2.111572941997 0 01998 0 0

0

50

100

150

200

250

300

350

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Def

olia

tion

(thou

sand

acr

es)

Figure 34.—Acres defoliated by cherry scallopshell moth on the ANF.

Page 45: Forest Service Northeastern Research Station the Allegheny

4�

ThemostrecentelmspanwormoutbreakontheANFoccurredfrom�99�through�993(Figs.37-38).Theinsectpopulationcollapsedearlyin�994.Itisinterestingthatthewesternone-thirdoftheANFhadlittledefoliationeventhoughpreferredhosttreespecieswererelativelyabundantthere.In�993,theareadefoliatedbytheelmspanwormwithintheproclamationboundaryoftheANFcoverednearly340,000acres(Fig.38).In�992,defoliationwassubstantialfollowingtheaerialmappingsurvey,sotheacreagereportedinFigure38doesnotreflecttotaldefoliationforthatyear.

ThemosthighlypreferredhostsofelmspanwormontheANFareblackcherry,redmaple,sugarmaple,andAmericanbeech,thoughthefrequencyofdefoliationwassignificantlyassociatedonlywiththeproportionofblackcherryinstands(Table20).

Aswiththecherryscallopshellmoth,therewasatendencyforgreaterlevelsofhostcrowndiebackandtreemortalityinstandsdefoliatedbyelmspanworm(Table20).Therelationshipbetweensugarmaplemortalityandyearsofelmspanwormdefoliationwasnotsignificanteventhoughmortalitywashigh.This

resultprobablyreflectstheconsiderableheterogeneityinsitecharacteristics(e.g.,soilnutrition)andlowsamplesize.Also,itmaybethatcrowndiebackwaslowfortwoorthreeyearsofdefoliationbecausemanytreesalreadyhaddied.Generally,sugarmapleonpoorsitesdieiftheysuffermorethanonedefoliation.Ongoodsitessugarmaplemightsurvivetwoormoredefoliationevents.

Figure 35.—Elm spanworm larva (photo by Arnold T. Drooz, USDA Forest Service, www.forestryimages.org).

Figure 36.—Elm spanworm defoliation (photo by Arnold T. Drooz, USDA Forest Service, www.forestryimages.org).

Figure 37.—Frequency of elm spanworm defoliation from 1991 to 1993 on the ANF.

Page 46: Forest Service Northeastern Research Station the Allegheny

42

year elm spanworm defoliation (thousands of acres) percent of area1984 0 01985 0 01986 0 01987 0 01988 0 01989 0 01990 0 01991 23.452 31992 72.67 101993 338.876 461994 0 01995 0 01996 0 01997 0 01998 0 0

0

50

100

150

200

250

300

350

400

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Def

olia

tion

(thou

sand

acr

es)

Table 20.—Mean stand characteristics averaged over FHM plots grouped by years of defoliation by elm spanworm (1998-2001 FHM data); number of plots in parentheses (P values given for one-way analyses of variance)

Yearsofdefoliation

Standcharacteristic(%) 0 � 2or3 Pvalue

Black Cherry

Basalarea �5.35a(75) 3�.46b(86) 3�.85b(�2) 0.000�*

Mortality 8.94(3�) 7.54(59) �5.36(�0) 0.3782

Dieback 5.29(3�) 7.79(59) 7.7(�0) 0.3�85

Red Maple

Basalarea 22.93(75) 23.79(86) 23.57(�2) 0.964�

Mortality 4.7�(58) 4.95(56) 9.93(8) 0.289�

Dieback 3.82(58) 4.4�(56) 4.92(8) 0.634

Sugar Maple

Basalarea 6.39(75) �0.29(86) 7.�2(�2) 0.�978

Mortality 8.22(�5) �5.84(3�) 3�.05(4) 0.���9

Dieback 3.68(�5) ��.��(3�) �.33(4) 0.�420

American Beech

Basalarea 9.65(75) �0.4(86) 7.83(�2) 0.7823

Mortality 3.6(28) ��.5(27) 9.56(5) 0.237

Dieback 5.06(28) 8.76(27) 6.�9(5) 0.2565*Significantata=0.05level.

Figure 38.—Acres defoliated by elm spanworm on the ANF.

Page 47: Forest Service Northeastern Research Station the Allegheny

43

Gypsy MothThegypsymoth,Lymantria disparL.(Lepidoptera:Lymantriidae),wasintroducedfromEuropearound�868nearBoston,Massachusetts.Outbreaksbegantooccurinthatareaabout�0yearslater.ItsrangehascontinuedtoexpandandnowextendsasfarwestasWisconsin(Fig.39).Thecurrentestimatedrateofspreadisabout�3milesperyear(Liebholdetal.�992).

Gypsymothsspendthewinterintheeggstage.InAprilorearlyMay,theeggshatchandlarvae(Fig.40)feeduntilJune.Afterfeedingiscomplete,thelarvaepupateandemergeasadultmothsafterabout2weeks.Theadultsthenmateandthefemalelayseggs,usuallyontreetrunks.Thegypsymothhasonegenerationperyear(USDAFor.Serv.�979).

West VirginiaWest VirginiaWest VirginiaWest VirginiaWest VirginiaWest VirginiaWest VirginiaWest VirginiaWest Virginia

District of ColumbiaDistrict of ColumbiaDistrict of ColumbiaDistrict of ColumbiaDistrict of ColumbiaDistrict of ColumbiaDistrict of ColumbiaDistrict of ColumbiaDistrict of Columbia

OhioOhioOhioOhioOhioOhioOhioOhioOhio

KentuckyKentuckyKentuckyKentuckyKentuckyKentuckyKentuckyKentuckyKentucky

PennsylvaniaPennsylvaniaPennsylvaniaPennsylvaniaPennsylvaniaPennsylvaniaPennsylvaniaPennsylvaniaPennsylvania

New JerseyNew JerseyNew JerseyNew JerseyNew JerseyNew JerseyNew JerseyNew JerseyNew Jersey

MarylandMarylandMarylandMarylandMarylandMarylandMarylandMarylandMaryland

DelawareDelawareDelawareDelawareDelawareDelawareDelawareDelawareDelaware

ConnecticutConnecticutConnecticutConnecticutConnecticutConnecticutConnecticutConnecticutConnecticut

MichiganMichiganMichiganMichiganMichiganMichiganMichiganMichiganMichigan

WisconsinWisconsinWisconsinWisconsinWisconsinWisconsinWisconsinWisconsinWisconsin

North CarolinaNorth CarolinaNorth CarolinaNorth CarolinaNorth CarolinaNorth CarolinaNorth CarolinaNorth CarolinaNorth Carolina

VermontVermontVermontVermontVermontVermontVermontVermontVermont

TennesseeTennesseeTennesseeTennesseeTennesseeTennesseeTennesseeTennesseeTennessee

NewNewNewNewNewNewNewNewNewHampshireHampshireHampshireHampshireHampshireHampshireHampshireHampshireHampshire

MassachusettsMassachusettsMassachusettsMassachusettsMassachusettsMassachusettsMassachusettsMassachusettsMassachusetts

Rhode IslandRhode IslandRhode IslandRhode IslandRhode IslandRhode IslandRhode IslandRhode IslandRhode Island

IllinoisIllinoisIllinoisIllinoisIllinoisIllinoisIllinoisIllinoisIllinois IndianaIndianaIndianaIndianaIndianaIndianaIndianaIndianaIndiana

MaineMaineMaineMaineMaineMaineMaineMaineMaine

New YorkNew YorkNew YorkNew YorkNew YorkNew YorkNew YorkNew YorkNew York

VirginiaVirginiaVirginiaVirginiaVirginiaVirginiaVirginiaVirginiaVirginia

Portion of County Quarantined

Entire County Quarantined

Figure 39.—Gypsy moth quarantine of USDA Animal and Plant Health Inspection Service, 2004.

Figure 40.—Gypsy moth larva (photo by John H. Gent, USDA Forest Service, www.forestryimages.org).

Page 48: Forest Service Northeastern Research Station the Allegheny

44

ThemostrecentmajoroutbreakofgypsymothontheANFoccurredfrom�984to�989.Asecond,lessintenseoutbreakoccurredfrom�99�to�993(Figs.4�-42).Figure4�showstheareaandfrequencyofdefoliationfrom�984to�993.Thisfrequencydistributionissimilartothegeographicdistributionsfornorthernred,white,andotheroaks(Fig.�6).ThesouthernportionoftheANF,justnorthofthesouthernboundary,showslittlerepeatedgypsymothdefoliationeventhoughthis

Figure 41.—Frequency of gypsy moth defoliation from 1984 to 1993 on the ANF.

year gypsy moth defoliation (thousands of acres) percent of area1984 0.54051561 01985 9.596427425 11986 78.68064932 111987 157.5753886 211988 1.234718616 01989 0.751407255 01990 0 01991 3.294975241 01992 48.86062955 71993 2.046853898 01994 0 01995 0 01996 0 01997 0 01998 0 0

0

20

40

60

80

100

120

140

160

180

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Def

olia

tion

(thou

sand

acr

es)

areahasasubstantialoakcomponent.GypsymothpopulationspeakedinthatregionlaterthanontherestoftheANF.AreasinthesouthernportionthatwerethreatenedwithrepeatedseveredefoliationweretreatedmoreaggressivelywithaerialapplicationsofthebiologicalinsecticideB.t.toavoidthehigherratesoftreemortality/declineobservedelsewhereontheANFwheretreatmentwaslessintense.TheamountofacreagedefoliatedbygypsymothisshowninFigure42.Theworstyearduring

Figure 42.—Acres defoliated by gypsy moth on the ANF.

Page 49: Forest Service Northeastern Research Station the Allegheny

45

thefirstepisodewas�987whennearly�60,000acresweredefoliated;nearly50,000acresweredefoliatedduringthesecondoutbreakin�992.

Thegypsymothdefoliatesprimarilyhardwoodtrees,especiallyoak,aspen,andbeech,thoughlargelarvaefeedonotherspecies,particularlyduringoutbreaks(Liebholdetal.�995).Smalllarvaefeedreadilyonbeechbutlargelarvaeavoidthisspeciesbecauseitsleavesaretough.OntheANF,plotswithahigherpercentageofoakweredefoliatedmoreoftenbygypsymoth(Table2�).Theaverageamountofbasalareaofstandingdeadoakappearedtoincreasewithfrequencyofdefoliationbutthisrelationshipwasnotsignificant(Table2�).

Beech Bark Disease ComplexBeechbarkdisease(BBD),aninsect-funguscomplexthatconsistsoftheEuropeanscaleinsect(Cryptococcus fagisuga)andtheexoticcankerfungusNectria coccineavar.faginataorthenativeNectria galligena(Houston�994),resultswhenaNectriafungusinfectsthebarkofAmericanbeechthroughthefeedingwoundscausedbybeechscaleinsects.ThebeechscalewasintroducedintoNovaScotiafromEuropearoundtheturnofthecentury.Ithassince

spreadsouthwestwardintoNewEngland,NewYork,Pennsylvania,andWestVirginia(Manion�99�).

BBDwasfirstdetectedinPennsylvaniain�958.Currently,thekillingfrontismovingfromthenortheastcornertowardthesouthwestcorneroftheANF(Fig.43).ThekillingfrontistheareainwhichtreesareinfestedwithboththeEuropeanscaleinsectandNectriafungus,

Table 21.—Mean stand characteristics averaged over FIA plots grouped, by years of defoliation by gypsy moth (1998-2001 FHM data); number of plots in parentheses (P values given for one-way analyses of variance)

Standcharacteristic Yearsofdefoliation

ofalloaks(%) 0 �or2 Pvalue

Basalarea 2.�8a(�29) 32.83b(35) 0.000�*

Mortality 2.85(6) 9.39(22) 0.��64*Significantata=0.05level.

Figure 43.—The 2001 beech bark disease killing front on the ANF from surveys conducted by the USDA Forest Service; NLCD data from Multi-Resolution Land Characteristics Consortium.

Page 50: Forest Service Northeastern Research Station the Allegheny

46

andmortalityisoccurring.BeechmortalityontheANFwasfirstreportedin�985.

Table22showspercentbasalareaofdeadAmericanbeechinsideandoutsideofthekillingfront.Percentstandingdeadbeechwasmorethantwiceasgreatinsidethanoutsidethekillingfront.Beechmortalitylikelywasevenhigherthanreportedheresincedeadbeechtreesoftendecayandsnapquickly,andthuswouldnothavebeenmeasuredasstandingdead.

AnestimatedsurfaceofpercentstandingdeadAmericanbeechwasgeneratedusingonlyFHMplotswherethisspeciesmadeupatleast�0percentofthetotalbasalarea(Fig.44).Beechmortalitywashigherwithinthekillingfrontthoughtherewassignificantmortalityfromothercauses(e.g.,blowdown)outsideofthekillingfront.EasternhemlockhasshownthegreatestincreaseinrelativedominancefollowingthelossofbeechtoBBD(Runkle�990;TweryandPatterson�984;LeGuerrieretal.2003).

Sugar Maple DeclineSugarmapledominatesthenorthernhardwoodforest,accountingforhalformoreofthebasalarea.ThelargestcontiguousareaofthisforesttypeextendsfromnorthernOhioandPennsylvaniathroughsouthernOntarioandQuebecandeastwardthroughnorthwesternMassachusettsintowesternMaine(Nyland�999).

Numerousreportsofsugarmapledeclineordiebackhavebeenrecordedoverthelast50years.Houston(�999)foundthatcrowndiebackanddeathresultwhenatleastonepredisposingstresseventreducesresistancetoinvasionbyopportunistic,secondaryorganismsthatkilltissues.Mapledieback/declinehasbeenassociatedwithinsectdefoliation,drought,unbalancednutrition(particularlyofCa,Mg,andK),standdensity,andmidwinterthaw/freezeevents(Longetal.�997;Houston�999;Horsleyetal.2000).

Table 22.—Percentage of basal area of standing dead American beech within and outside of killing front of beech bark disease (number of plots in parentheses)

200�front �989front

Surveydata Inside Outside Inside Outside

�989FIA �.7(50) 0.8(73) 2.9(�7) 0.9(�06)

�998-200�FHM �0.2(58) 4.�(64) 9.5(�9) 6.5(�03)

Figure 44.—Kriged surface of percent standing dead American beech basal area (1998-2001 FHM data; NLCD data from Multi-Resolution Land Characteristics Consortium).

Page 51: Forest Service Northeastern Research Station the Allegheny

47

Sugarmaplecanoccupyavarietyofsitesbutgrowsbestonmoderatelyfertileandwell-drainedsoils(Godman�957).Itisparticularlyabundantonlowerslopesorcovesenrichedbyleaflitter,colluvium,ornutrient-richwatermovingfromupslope(Leak�982;Pregitzeretal.�983;Smith�995).Intheearlytomid-�980s,forestersinnorthernPennsylvaniaobservedsugarmapledeclineintheformofdecreasedcrownvigor,crowndieback,andhighermortalityoflargetrees.Sugarmaplegrowingonthelowerslopesofunglaciatedsitesandineverypositiononglaciatedsitesseemedunaffectedoronlyslightlyaffected.Treesontheupperslopesofunglaciatedsiteswereaffectedthemost.Defoliatedstandsweremorelikelytobeunhealthy,thoughnotallsitesthatweredefoliatedhadunhealthysugarmaple.Itwasconcludedthatsomefactor(s)mustbeinvolvedinmakingsomesitesmoreresistanttodeclineafterdefoliation.Thisresistancewasattributedtofoliarchemistry(Horsleyetal.2000).UnhealthysugarmaplewerefoundonsiteswheretreeshadlowfoliarMgandCaandhighMn(Baileyetal.2004).Horsleyetal.(2000)suggestedthatsugarmapledeclineoccursonsiteswithanimbalanceofMgnutritionandexcessivedefoliationstress.

The�998,2000,and200�FHMdatawereusedtocomparethebasalareaofdeadsugarmaplewiththetopographicalpositionofthetreesandwhethertheyhadbeendefoliatedbyelmspanworm.The�999datawereexcludedfromtheanalysisbecausedataontopographicalpositionwasnotcollected.InFigure45,mostofthebasalareaofstandingdeadsugarmaplewasonupperandmiddleslopeswhetherornottheareasweredefoliated.Horsleyetal.(2000)reportedasimilarrelationshipbetweensugarmaplemortalityandslopeposition,thoughmortalitygenerallywasloweron

thelowermiddleslope.Inthedatapresentedhere,themiddle-slopecategorywasnotsplitbetweenupperandlower.Lessnutrient-richupperslopesarelesssuitableforsugarmaple.Mortalitywasgreaterindefoliatedthaninundefoliatedareasregardlessofslopeposition.

Surprisingly,averagecrowndiebackforsugarmaplefromplotsdefoliatedbyelmspanwormwassimilarforallslopepositions(Fig.46).Crowndiebackwashigheronalldefoliatedtreesregardlessofslopeposition.

SLOPE POSITION DEFOLIATED # OF PLOTS % DEAD BA SEBottom no 3 0 0Bottom yes 9 5.674919896 4.097482794Middle no 18 7.408384856 5.545027909Middle yes 30 25.65017802 5.782010719Ridge no 3 12.61843284 12.61843284Ridge yes 12 24.43553523 7.425542836

0

5

10

15

20

25

30

35

Bottom Middle Ridge

Slope PositionD

ead

Suga

r Map

le B

asal

Are

a (%

)

Not defoliatedDefoliated

N=3

N=18

N=9

N=30

N=3

N=12

Figure 45.—Mean standing dead sugar maple basal area per acre on FHM plots grouped by slope position (1998, 2000, and 2001 FHM data) and defoliation status.

SLOPE POSITION DEFOLIATED # OF TREES MEAN CROWN DIEBACK SEBottom no 19 0.789473684 0.429735043Bottom yes 32 9.423076923 2.859894068Middle no 86 3.881578947 0.96244701Middle yes 170 5.952 1.062489833Ridge no 12 3.125 1.315260702Ridge yes 91 9.051724138 1.483203481

0

2

4

6

8

10

12

14

Bottom Middle Ridge

Slope Position

Die

back

on

Suga

r Map

le T

rees

(%)

Not defoliatedDefoliated

N=19

N=32

N=12N=86

N=170

N=91

Figure 46.—Mean crown dieback of sugar maple trees grouped by slope position (1998, 2000, and 2001 FHM data) and defoliation status.

Page 52: Forest Service Northeastern Research Station the Allegheny

48

Additional Forest Health Monitoring IndicatorsLichen CommunitiesLichensarecomposite,symbioticorganismsfromasmanyasthreekingdoms.Thedominantpartnerisafungus.Becausefungicannotcatabolizetheirownnutritionalreserves,theyusuallyactasparasitesordecomposers.Lichenfungi(kingdomFungi)cultivatepartnersthatmanufacturecarbohydratesbyphotosynthesis.Partnerscanbealgae(kingdomProtista),cyanobacteria(kingdomMonera),formerlycalledblue-greenalgae.Somefungiexploitbothatthesametime(Brodoetal.200�).Dataonlichenswerecollectedfrom�999to200�onall�73ANFFHMplotstodeterminethepresenceandabundanceoflichenspeciesonwoodyplantsandtoobtainsamples.Althoughlichensoccurarefoundondifferentsubstrates,e.g.,rocks,samplingwasrestrictedtostandingtreesorbranches/twigsthatrecentlyfelltotheground.Thesamplesweresenttoexpertsonlichensforspeciesidentification.

Thereisacloserelationshipbetweenlichencommunitiesandairpollution,especiallysulfurdioxide(SO2)andacidifyingorfertilizingnitrogen-andsulfur-basedpollutants.Lichensareparticularlysensitivetoairqualitybecausetheymustrelyonatmosphericsourcesofnutrition.Bycontrast,treesmaybeindicatorsofchronicairpollutionbutallotherinfluencesontreegrowthmakeitdifficulttomeasureresponsestopollutants(McCune2000).Lichensalsoareimportantcomponentsofbiodiversityinforestecosystems.Sevenlichengeneraand52lichenspeciesweresampledinthe�999-200�FHMdata(AppendixI).AlistoflichenspeciessampledontheANFthatcouldbeassignedapollutiontolerancealsoisincludedinAppendixI.Thepollutiontolerancescaleisaprovisionalandqualitativeordinalscale

developedbyDr.SusanWill-Wolf(FIALichenIndicatorAdvisor)(Showman�990;�997;McCuneetal.�997;ShowmanandLong�992;McCune�988;Wetmore�983;Nash�975).

AkrigedsurfaceoflichenspeciesrichnessscoresisshowninFigure47.Theyarecalledscoresbecausethesamplesaretimed,thatis,thescoresarenotabsoluterichnesses.ShowmanandLong(�992)reportedthatmeanlichenspeciesrichnesswassignificantlylowerinareasofhighsulfatedeposition(6.3and5.4)thaninlowdepositionareas(��.5and�0.6)innorth-centralPennsylvania.ThemeanspeciesrichnessscoreoflichenswascalculatedbyEasternRegionforesttype(Table23)andstand-developmentstage(Table24).Theoak/hardwoodtransitionforesttypehadthehighestmeanspeciesrichnessscore(9.6species)followedcloselybynorthernhardwoodsandwhiteoak/redoak.Meanspeciesrichnesswasmuchloweronsitesinthestandinitiationphase,reflectingthelagtimeforlichenrecolonizationafterharvestordisturbance.Selva(�994)reportedthatlichenflorasbecomericherovertime.

Figure 47.—Kriged surface of lichen species richness on the ANF.

Page 53: Forest Service Northeastern Research Station the Allegheny

49

Themostcommonlichenspecies(presentonatleast�0percentofplots)areshowninFigure48.Theirrespectivepollutiontolerances(AppendixI)areinparentheses.Eachbarrepresents�00percentoftheplotsandbarsegmentsrepresentthepercentageofplotsonwhichaspecieswaspresentineachabundanceclass.Theper-plotabundanceclassesarenone,rare(fewerthan3individuals),uncommon(4to�0individuals),common(morethan�0individualsbutlessthanhalfofthebolesandbranchescontainthatspecies),andabundant(morethanhalfofbolesandbrancheshavethatspecies).Speciesclassifiedassensitivetopollutionwereuncommoninthe�999-200�lichensurveys.

ThefourmostcommonlichenspeciesontheANFareshowninFigures49-52.Parmelia sulcata(Fig.49),extremelywidespreadintheNorthernandWesternUnitedStates(Brodoetal.200�),hasbeendescribedasbeingresistanttoSO

2(Showmanand

Long�992),and,conversely,asanearlyidealindicatorofairpollution(DeWit�983).ThegrowthanddeathofthisspeciesismeasuredinTheNetherlands,anddyingoffhasbeenshowntoincreaseathigher

Table 23.—Species richness of lichen species, by Eastern Region forest type (1998-2001 FHM data)

ForesttypeMeanspecies

richnessNumberofplots

Oak/hardwoodtransition 9.6 7

Northernhardwoods 8.6 �5

Whiteoak/redoak 8.3 8

Mixeduplandhardwoods 6.8 45

Redmaple 6.4 28

Hemlock 6.0 9

Alleghenyhardwoods 5.7 37

Sugarmaple 3.0 7

Table 24.—Species richness of lichen species, by stand development stage (1998-2001 FHM data)

StanddevelopmentstageMeanspecies

richnessNumberofplots

Standinitiation(0-�4years) 3.7 �5

Stemexclusion(�5-49years) 7.� �4

Understoryreinitiation(50+years) 7.0 �42

Abundance ClassSpecies 0 1 2 3Cladonia parasitica 89.01734104 1.156069364 1.156069364 8.092485549Evernia mesomorpha (I) 88.43930636 6.358381503 5.202312139 0Parmelia squarrosa (I) 87.86127168 3.468208092 2.89017341 5.202312139Phaeophyscia pusilloides (T) 87.28323699 1.734104046 6.358381503 4.624277457Melanelia subaurifera (I) 80.34682081 5.202312139 9.248554913 5.202312139Punctelia rudecta (T) 79.76878613 1.156069364 9.248554913 9.248554913Cetraria oakesiana (T) 78.61271676 5.202312139 5.780346821 10.40462428Cladonia caespiticia 76.87861272 1.734104046 5.780346821 15.60693642Cladonia bacillaris (T) 72.83236994 0.578034682 6.358381503 19.65317919Hypogymnia physodes (T) 57.22543353 8.670520231 14.45086705 18.49710983Physcia millegrana (VT) 53.17919075 2.89017341 10.40462428 33.52601156Punctelia subrudecta (T) 53.17919075 7.514450867 15.60693642 23.69942197Phaeophyscia rubropulchra (VT) 43.35260116 2.89017341 16.76300578 35.26011561Cladonia coniocraea (T) 35.83815029 2.312138728 5.202312139 50.86705202Flavoparmelia caperata (T) 32.94797688 10.98265896 31.21387283 24.27745665Parmelia sulcata (VT) 15.02890173 2.89017341 10.40462428 68.20809249

0 20 40 60 80 100

Cladonia parasitica

Evernia mesomorpha (I)

Parmelia squarrosa (I)

Phaeophyscia pusilloides (T)

Melanelia subaurifera (I)

Punctelia rudecta (T)

Cetraria oakesiana (T)

Cladonia caespiticia

Cladonia bacillaris (T)

Hypogymnia physodes (T)

Physcia millegrana (VT)

Punctelia subrudecta (T)

Phaeophyscia rubropulchra (VT)

Cladonia coniocraea (T)

Flavoparmelia caperata (T)

Parmelia sulcata (VT)

Percent of Plots

AbundantCommonUncommonRareNot present

Figure 48.—Lichen distribution by abundance class for the 16 most common species in the ANF (tolerance classes: I = intolerant, T = tolerant, VT = very tolerant).

Page 54: Forest Service Northeastern Research Station the Allegheny

50

SO2concentrations(DeWit�983).Flavoparmelia

caperata(Fig.50),distributedwidelyintheEasternandSouthwesternUnitedStates,wassensitivetoSO

2neara

powerplantinOhio(Showman�975).F. caperatahasbeenusedtomonitortheinfluenceofairpollutionandcityclimateonthelichenfloraofLongIsland(Brodoetal.

200�).Cladonia coniocraea(Fig.5�),distributedwidelyintheEast,Northwest,andPacificCoast,isfoundmostoftenneartreebasesbutalsogrowsalongthesidesoftreeswhenmoistureisadequate.Phaeophyscia rubropulchra(Figure52)isdistributedwidelyintheEasternUnitedStates.

Figure 49.—Parmelia sulcata (photo courtesy of Yale University Press).

Figure 50.—Flavoparmelia caperata (photo courtesy of Yale University Press).

Figure 51.—Cladonia coniocraea (photo courtesy of Yale University Press).

Figure 52.—Phaeophyscia rubropulchra (photo courtesy of Yale University Press).

Page 55: Forest Service Northeastern Research Station the Allegheny

5�

Indicatorkrigedsurfacesoftheprobabilityofpresenceweregeneratedforthesefourlichenspecies(Fig.53).ThatthesespeciesdifferinspatialdistributionsacrosstheANFpossiblyreflectsdifferentecologicaland/orhabitatpreferences.

SulfatedepositionwasmostsevereinEasternRegioncomparedtootherForestServiceregions(Fig.54)(USDAFor.Serv.2002).ToassesstheresponseoflichenspeciestopollutantsacrosstheANF,apollutionsensitivityindexwasdeterminedforeachFHMplot.

Figure 53.—Kriged probability surfaces of the four most common species on the ANF; NLCD data from Multi-Resolution Land Characteristics Consortium.

Parmella sulcata Flavoparmelia caperata

Cladonia coniocraea Phaeophysicia rubropulchra

Page 56: Forest Service Northeastern Research Station the Allegheny

52

TheindexiscalculatedasthenumberofsensitiveandintermediatespeciesdividedbythetotalnumberofratedspeciesusingthesensitivityratingslistedinAppendixI.Akrigedsurfaceofthepollutionsensitivityindexwasgenerated(Fig.55)todisplaythespatialvariationacrosstheANFlandscape.TheproportionofsensitivelichenspecieswashighestonthewesternedgeandintwoareasinthecentralpartoftheANF.Theseverityofthepollutionresponseoflichensrequiresadditionalstudy.

Down Woody MaterialsDownwoodymaterials(DWM),definedasdeadmatteronthegroundinvariousstagesofdecay,areimportantcomponentsofforestecosystemsbecausetheyaffectorotherwiseinfluencethequalityandstructureofwildlifehabitats,structuraldiversity,fuelloadingandfirebehavior,carbonsequestration,andstorageandcyclingofwater.3

Figure 54.—Sulfate deposition in 1999 and the largest sulfur dioxide point sources; data from National Acid Deposition Program.

Figure 55.—Kriged surface of the lichen pollution sensitivity index; NLCD data from Multi-Resolution Land Characteristics Consortium.

Page 57: Forest Service Northeastern Research Station the Allegheny

53

ComponentsmeasuredbytheDWMindicatorincludecoarsewoodydebris(CWD),finewoodydebris(FWD),duff,litter,herbs/shrubsheight,andfuelbeddepth.CWDisdeadwood3inchesorlargerindiameter(�,000-hrfuels);FWDisdeadwood0.�to2.9inchesindiameter(�-,�0-,and�00-hrfuels).Litteristhelooseplantmaterialontopoftheforestfloorwherelittledecompositionhasoccurred.Duffisthelayerjustbelowthelitterconsistingofdecomposingleavesandotherorganicmaterial.

CWDandFWDaresampledusingline-intersectsamplingmethodologies.DWMsampletransectsbeginateachsubplotcenterextending24feettothesubplotborder.CWDandFWDaresampledalongtransectsoccurringinaccessibleforestland.ThreeCWDtransectsareestablishedatazimuthsof30,�50,and270degrees.OneFWDtransectisestablishedatanazimuthof�50degrees.Thedepthoftheduffand

litterlayersareimportantcomponentsoffiremodelsusedtoestimatethebehavior,spread,andeffectsoffire,andsmokeproduction.Litterandduffweremeasuredonmicroplotsin�999and2000andatthe24-footlocationoneachtransectin200�.3Analternativetoreportingmeanherb/shrubheightandcoverageisincorporatingthemintoasinglemeasureofheightknownasintegratedfueldepth(WoodallandWilliams2005).

In�999and2000,theDWMindicatorwasapilotsampledesigntestedbytheFHMprogram.TheANFwasoneofafewselectedareaswheresamplingwasconductedin�999and2000.In200�,theFIAprogramadoptedFHM’spilotsampledesignandstartedtheDWMindicator.TheDWMplotdesignfor200�isshowninFigure56;plotdesignsfrom�999and2000areshowninAppendixI.Designsweresufficientlysimilartocombinetheyearsforanalysis.

N

4150°

270°

3

2

1

FWD < 0.25 inchand 0.26-0.99 inch

FWD 1.00 -2.99 inches

CWD3.00 inches

10 ft s.d.

20 ft s.d.

58.9 ft h.d.

s.d.= slope dist., h.d.=horizontal dist.

Subplot

MicroplotCWD Tran.FWD Tran.

Annular plot

30°

150°

150°

270°

30°

150°

Dist. between subplots(2, 3, and 4) and subplot center (1): 120 ft at angles (deg.) 0, 120, and 240, respectively; dist. between subplot center and microplot center: 12 ft; shrubs/herbs sampled on microplot. Duff/litter sampled at 14- and 24-foot slope dist. on each CWD transect.

Figure 56.—2001 DWM plot layout for sampling CWD, FWD, and fuels.

Page 58: Forest Service Northeastern Research Station the Allegheny

54

Estimates and Summaries of DWM Fuel LoadingsTheextensivewildfiresthathaveoccurredacrossthenationinrecentyearshasfocusedattentiononDWManditspotentialtosustainlargewildfires.DatafromtheDWMindicatorwereusedtoestimatefuelloadings(mass)ofCWD,FWD,andtotalDWM.FortheANF,estimatesofDWMvarybyfuelclass(duff,litter,and�-,�0-,�00-,and�,000-hrfuels).Thesefuelclassesareabasedontheapproximatetimeittakesforthefuelclasstoexperiencemoisturefluctuations(Deemingetal.�977).Forinstance,finefuelsinthe0to0.25-inchtransectdiameterfuelclassdryoutquicklyandthusarecalled�-hrfuels.Bycontrast,a�0-inchlogmighttakemorethan�,000hourstochangeinmoisturecontent.ThemajorityofthetonnageperacreofDWMontheAlleghenyNationalForest(64percent)consistedofduff(Fig.57).

AcomparisonofDWMbetweenplotswithintheANFandtherestofPennsylvaniarevealsobviousdifferencesinDWMestimates(Fig.58).Meantonnageperacreofduffand�00-hrfuelswashigheronplotsoutsideoftheANF.However,themeantonnageperacreof�,000-hrfuelswashigheronANFplots.Meantonnageperacreoflitter,�-hrfuels,and�0-hrfuelswassimilaronplotsinsideandoutsideoftheANF.

DWMloadingsintonsperacrewerebrokendownbyEasternRegionforesttype(Table25).Duffreflectedthehighestrange(�3.7tonsperacre)inmeanvaluesofallthefuelclassesandhadthegreatesttonnageperacre.Meantonsperacreofduffwashighestinthenorthernhardwoodsforesttypeandlowestinthesugarmapleforesttype.Levelsoflitterandfinewoodydebrisweresimilaramongforesttypesexceptthatthemeanvalueforlitterinoaktypeswassubstantially

10 hr (FWD) 0.969857368100 hr (FWD) 1.5647649321,000 hr (CWD) 5.560928633

Duff64%

Litter6%

1 hr (FWD)1%

10 hr (FWD)3%

100 hr (FWD)6%

1,000 hr (CWD)20%

DuffLitter1 hr (FWD)10 hr (FWD)100 hr (FWD)1,000 hr (CWD)

Figure 57.—Total DWM (percent of weight) on the ANF by debris category.

dwm ANF MEAN ANF SE PA MEAN PA SEDuff 17.75687283 1.114957966 23.7474026 1.642882466Litter 1.737776445 0.07467089 1.625324675 0.1871229251 hr (FWD) 0.235846233 0.013307425 0.165324675 0.0214746710 hr (FWD) 0.969857368 0.059532457 0.575194805 0.085680025100 hr (FWD) 1.564764932 0.073853975 3.306363636 0.8947813291,000 hr (CWD) 5.560928633 0.35252053 2.811558442 0.408587336

0

5

10

15

20

25

30

Duff Litter 1 hr (FWD) 10 hr(FWD)

100 hr(FWD)

1,000 hr(CWD)

Down Woody Material

Tons

/Acr

e (n

o.)

ANF plotsNon-ANF PA plots

Figure 58.—Mean values of DWM variables on the ANF versus the rest of Pennsylvania.

Table 25.—Mean values of DWM variables (tons/acre), by Eastern Region forest type (1999-2001 FHM data)

Foresttype N Duff SE Litter SE FWD SE CWD SE

Mixeduplandhardwoods 45 �5.9 2.2 �.7 0.� 2.6 0.2 5.6 0.7

Alleghenyhardwoods 37 �7.4 �.5 �.6 0.� 3.0 0.3 5.2 0.7

Redmaple 28 20.� 2.9 2.0 0.2 2.7 0.3 5.4 0.8

Northernhardwoods �5 24.6 7.2 �.5 0.2 2.9 0.4 6.2 �.�

Allconifers �� 2�.6 3.9 �.6 0.2 3.2 0.5 4.7 �.3

Hemlock 9 20.� 4.4 �.5 0.3 3.3 0.6 5.2 �.5

Whiteoak/redoak 8 20.3 3.9 2.6 0.3 2.5 0.2 4.� 0.8

Oak/hardwoodtransition 7 �6.8 5.3 2.4 0.4 2.6 0.4 5.3 2.�

Sugarmaple 7 �0.9 3.2 �.3 0.2 2.7 0.5 6.5 �.7

Page 59: Forest Service Northeastern Research Station the Allegheny

55

higherthanthatforlitterintheotherforesttypes.Levelsofcoarsewoodydebrisweresimilaramongforesttypesandlowestinthewhiteoak/redoakforesttype.

DWMfuelcomponentsvarybytreedensity(basalareaperacre)andstandage(Figs.59-60)ontheANF.Dufftendedtoincreasewithstandageandwithbasalareatosomeextent.Asstandsprogressthroughthelatterstagesofdevelopmentandexperiencehigherlevelsofdensity/competition,itfollowsthatyearsofcumulativeleaffallwouldcreatedeepduffconditions.Also,thedenseroverstoriesmayshadetheduff,therebyreducingdecayrates.CWDseemstodecreasewithincreasingstandbasalareaandstandage(uptoage80),possiblyduetoCWDrecruitmentfromlargestanddisturbances(standreplacingevent).CWDbeginstorecoverthroughindividualtreemortalityasastandages.LitterandFWDlevelsweresimilaramongageanddensityclasses.

AsshowninFigure6�,integratedfueldepth(herb/shrubheightandcoverage)tendedtodecreasewithbasalareaperacreandstandage.Amoredevelopedherbandshrublayerwouldbeexpectedinyounger,lessdensestandsduetoanincreaseinavailablelight(lessshade).Thisalsomightreflectthelong-termeffectsofdeerherbivoryonunderstoryvegetationinolderstands.

Ecology of CWD on the ANFCWDmightbemostimportantecologicalattributeoftheDWMindicatorontheANF.Itrepresentspotentialfirehazardsandalsoisanimportantstructuralattributeofforestecosystems(Harmonetal.�986).CWDcreates

numerousecologicalnichesandservesashabitatforplants,animals,protists,bacteria,andfungi(Harmonetal.�986).ThevolumesandweightsofCWDontheANFarewellwithintherangeofCWDhabitatcitedinpastregionalCWDresearch(MullerandLiu�99�).AlthoughduffaccountsforthemajorityofDWMweightontheANF(Fig.57),CWDweight(�,000-hr)isthesecondheaviestDWMcomponent.TheamountofCWDfortheaverageFIAplotontheANFisnearlytwicethatfortherestofPennsylvania(Fig.58).

Basal Area n Duff stderr Litter stderr FWD stderr CWD stderr Shrub/Herbs stderr0.0-75.0 28 12.93 1.72 1.53 0.18 2.98 0.35 7.72 1.34 5.71 2.1575.1-150.0 98 19.01 1.57 1.73 0.1 2.84 0.15 5.39 0.42 4.61 0.65150.1+ 47 18.01 2.21 1.87 0.14 2.49 0.14 4.64 0.45 3.32 0.89

0

5

10

15

20

25

0.0-75.0 75.1-150.0 150.1+

Basal Area (ft2/acre)

Tons

/Acr

e (n

o.)

DuffLitterFWDCWD

Figure 59.—Mean values of DWM variables on the ANF in basal area/acre classes.

Stand Age n Duff stderr Litter stderr FWD stderr CWD stderr Shrub/Herbs stderr0-40 27 13.09 2.09 1.51 0.18 2.97 0.36 7.84 1.25 6.14 2.3341-80 78 17.75 1.63 1.97 0.13 2.46 0.16 4.21 0.42 5.46 0.8381+ 68 19.62 1.93 1.56 0.09 3.04 0.18 6.2 0.52 2.6 0.48

0

5

10

15

20

25

0-40 41-80 81+

Stand Age (years)

Tons

/Acr

e (n

o.) Duff

LitterFWDCWD

Figure 60.—Mean values of DWM variables on the ANF in stand age classes.

Page 60: Forest Service Northeastern Research Station the Allegheny

56

Therefore,datafromtheDWMinventoryindicatethatCWDhabitatontheANFmaybesufficient.However,asfutureDWMdataareacquired,additionalestimatesofCWDdiameters,decayclasses,andspeciescompositionmightelucidatetheattributesofCWDontheANF.4

TherelationshipbetweenCWDandestimatesofstandattributes/disturbancehistorymayallowareinterpretationofCWDdynamics.TherelationshipbetweenCWDandstandingvegetationoftenisgivenlittleattention,butitcouldbeadrivingforceinCWDaccumulationineasternforests(MullerandLiu�99�;RubinoandMcCarthy2003).OntheANF,CWDseemstodeclinewithincreasingstandbasalarea(Fig.59).McCarthyandBailey(�994)andMullerandLiu(�99�)reportedsimilarfindingsandattributedthe

4Woodall,C.W.;Leutscher,B.ExtendingandintensifyingtheFIAinventoryofdownforestfuels:BoundaryWaterCanoeArea(MN)andthePicturedRocksNationalLakeshore(MI).Inpreparation.

Basal Area Shrub/Herbs stderr0.0-75.0 5.71 2.1575.1-150.0 4.61 0.65150.1+ 3.32 0.89

Stand Age Shrub/Herbs stderr0-40 6.14 2.3341-80 5.46 0.8381+ 2.6 0.48

0

1

2

3

4

5

6

7

8

9

0.0-75.0 75.1-150.0 150.1+

Basal Area (ft2/acre)

Inte

grat

ed F

uel D

epth

(ft)

a

0

1

2

3

4

5

6

7

8

9

0-40 41-80 81+

Stand Age (years)

Inte

grat

ed F

uel D

epth

(ft)

b

Figure 61.—Mean values of integrated fuel depth on the ANF in (a) basal area/acre classes and (b) stand age classes.

Page 61: Forest Service Northeastern Research Station the Allegheny

57

presenceofadditionalCWDinstandswithlowerbasalarearelativetologgingactivityorotherdisturbance,e.g.,insectdefoliation.IfmostoftheCWDvolumesresideinrecentlytreatedstands,thissmall-diameterloggingslashmaydecomposequicklyandmaynotbeasecologicallydesirableaslargerdiameterpieces(McCarthyandBailey,�994).ThisresultisaffirmedbytherelationshipbetweenstandageandCWDdensities(Fig.60;Table26).CWDdensitiesgenerallyfollowaUshapeovertime(HaganandGrove�999).TheyoungeststandshavethemostCWDontheANF(Fig.60;Table26).PreliminaryinvestigationsofCWDlevelsontheANFrevealedlowvolumesofCWDinsecond-growthstandscomparedtotheamountfoundintheoldgrowthTionestaScenicandResearchNaturalAreas.ThevolumeofCWDinold-growthstandsrangedfrom866to�,659ft3/acre(R.White,D.deCalestaandC.Nowak�998,pers.commun.).Bycontrast,CWDvolumesweremuchlowerinallbuttheyoungeststandsontheANF(Table26).TherelationshipbetweenCWDamountsandforesttype

alsomighthelpidentifytrends.ResearchhassuggestedthatoakforestscontainmoreCWDthanmapleforests(McCarthyetal.200�)possiblybecauseoaklogsmaydecaymoreslowlythanmaplelogs(MacMillan�988).Unfortunately,thestandarderrorsoftheDWMinventoryprecludeconclusionsexceptthatmostCWDmasses(Table25)andvolumes(Fig.62)seemfairlyconstantacrossallforesttypesontheANF.

Summary of DWMInitialresultsfromtheDWMinventoryindicatethatfuelloadingsdonotdiffersubstantiallyfromthoseofforestecosystemsintherestofPennsylvania.CWDweights(�,000hr)ontheANFmaybetwicethatfortherestoftheState,thoughthisdoesnotpresentasignificantfirehazardandmaybenefitforestdiversityandhabitataccumulation.Theweightsofthefinewoodyfuels(flashfuels)areassociatedwithaconsiderableproportionoffirebehavior.TherelationshipbetweenCWDandstandattributessuggeststhatlessdenseyoungerstandsthat

Table 26.—Mean values of CWD volumes (ft3/acre), by stand development stage (1999-2001 FHM data)

Standdevelopmentstage N CWDvolume SE

Standinitiation(0-�4years) �4 �294.3 248.92

Stemexclusion(�5-49years) �4 504.2 �24.92

Understoryreinitiation(50+years) �40 542.6 39.48

R9 TYPE N VOLUME SEWhite oak/red oak 8 492.86 112.6591498Allegheny hardwoods 36 504.0455556 68.44133681Red maple 28 539.5157143 79.67864219Oak/hardwood transition 7 561.7342857 216.3208392Northern hardwoods 14 567.1435714 134.4330518Mixed upland hardwoods 44 595.7577273 79.21809753Sugar maple 7 745.6571429 259.7460275Eastern hemlock 9 794.8344444 259.2023224

0 200 400 600 800 1000 1200

White oak/red oak

Allegheny hardwoods

Red maple

Oak/hardwood transition

Northern hardwoods

Mixed upland hardwoods

Sugar maple

Eastern hemlock

R9

Fore

st T

ype

CWD Volume (ft3/acre)

Figure 62.—Mean values of CWD volumes by Eastern Region forest types.

Page 62: Forest Service Northeastern Research Station the Allegheny

58

mayhaveexperiencedrecentdisturbancescontainthemostCWD.CWDrecruitmentbyloggingactivitiesoverlongperiodsmaynotestablishasufficientdiversityofCWDsizesanddecayclasses.DatafromfutureDWMinventoriesshouldallowmoresophisticatedhypothesistestingwithrespecttoCWDrecruitmentandattributes.Krigedsurfacesweregeneratedtodepictthespatialarrangementoffuelsanddebris(Fig.63).TheareainthesouthwesternsectionoftheANFhadbothhighFWD

andCWDloadingsandahighpercentageofstandingdeadbasalarea(Fig.2�).

SoilsThevitality,speciescomposition,andhydrologyofforestecosystemsarepotentiallyinfluencedbyanyenvironmentalstressorthatchangesthenaturalfunctionofthesoil.3Soilsamplesarecollectedfromtheforestfloor(atsubplots2,3,and4)andtheunderlyingmineral

Figure 63.—Kriged surfaces of DWM on the ANF; NLCD data from Multi-Resolution Land Characteristics Consortium.

Page 63: Forest Service Northeastern Research Station the Allegheny

59

soillayers(atsubplot2).Oncetheforestfloorhasbeenremoved,mineralsoilsaresampledfrom0to�0and�0to20cm.Thetextureofeachlayerisassignedinthefieldasorganic,loamy,clayey,sandy,orcoarsesandy.Thephysicalandchemicalpropertiesofthesoillayersaredeterminedinaregionallaboratory.3TheprotocolfordatacollectionhasbeenchangedfrequentlysincethefirstyearthatdatawereobtainedontheANF.Therefore,ininstanceswhereallyearsofdatawerenotavailable,missingyearsarelistedintablesand/orfigures.

ThephysicalpropertiesofsoilsfromFHMplotsontheANFareshowninTable27.Moisturecontentwassubstantiallyhigherintheforest-floorlayerthaninthemineral-soillayers.Soil-watercontentisexpressedasapercentageofthedryweightofthesoil(ThompsonandTroeh�973).Consequently,itisnotunusualforthevaluesforsoil-moisturecontenttoexceed�00percent,especiallyinsamplesofhighorganicmatter,e.g.,theforestfloor.Duetothehighsorptioncapacitiesofsoilshighinorganicmatter,theforest-floorlayerprobablycanabsorbmanytimesitsownweightinwater.Onthebasisoftheforesttypessampled,thefollowingobservationscanbemadewithrespecttomoisturecontent(Table27):

• Thewhiteoaktypehadthelowestaveragevaluesforallthreesoillayers.Onereasonforthismaybethatitalsohadthelowestmeanforest-floorthicknessoftheforesttypessampled.Whiteoakgrowsbetteronsomewhatdroughtysitesthanmanyotherspecies.

• Theeasternhemlock,northernhardwoods,andwhiteoak/redoaktypeshadthehighestaveragevaluesfortheforest-floorlayer.

• Theeasternhemlock,northernhardwoods,redmaple,andblackbirch/hickorytypeshadthehighestaveragevaluesfortheminerallayers.

ChemicalpropertiesfromFHMplotsontheANFareshowninTables28and29.Sugarmapledeclinetendstobemoreprevalentonsiteswithpoornutritionofcalcium(Ca)andmagnesium(Mg)(Baileyetal.2004).

Bycontrast,blackcherry,redmaple,andnorthernredoakdonotseemtohaveahighrequirementforCaandMg.Ourdataappeartoconfirmthis,i.e.,MgandCaarehigherinthenorthernhardwoodsandsugarmapletypesthanintheAlleghenyhardwoods,redmaple,andoaktypes)(Table28).Iron(Fe)levelsarenearlytwiceashighintheminerallayer(0to�0cm)fortheeasternhemlocktypethanforothertypes(Table29).Fortheminerallayer(�0to20cm),Feishighestforboththehemlockandsugarmapleforesttypes.

Onthebasisoftheforesttypessampled,thefollowingobservationscanbemadeconcerningpH,extractablephosphorous,totalnitrogen,andexchangeablecations(Table28):

• ThepHofthemineral(0to�0cm)layerrangesfrom3.9to4.3.

• ThepHofthemineral(�0to20cm)layerrangesfrom4.�to4.4.

• Thewhiteoak/redoaktypehadthehighestaveragevaluesforextractablephosphorous.

• Totalmeannitrogenhadthehighestaveragevalues(�.4percent)intheforest-floorlayer.

• Totalmeannitrogengenerallywashigher(0.2percent)inthe�0-to20-cmlayerthanthe0-to�0-cmlayer(0.�percent).

• Thenorthernhardwoodstypegenerallyhadmuchhighermeanvaluesforexchangeablecationsthantheothertypes.

Additionalresearchisneededtodeterminetheimportanceoftheseobservations,howourresultscomparewiththosefortherestofPennsylvania,andwhetherthereareadditionalrelationshipsamongsoilcharacteristics,vegetation,ecologicalland-typegroups,andforesthealth.Analysismightbelimitedbytheshallowdepthofthesoilsampling.FortheAlleghenyPlateauinNewYorkandPennsylvania,Baileyetal.(2004)demonstratedthevalueofsamplingtheupperandlowerportionsoftheBhorizon,whichextendswellbelow20cm.RelationshipswerebettercorrelatedwhentheentireBhorizonwasconsidered.

Page 64: Forest Service Northeastern Research Station the Allegheny

60

Table 27.—Mean values for physical soil properties from FHM plots on the ANF, by forest type (1998-2001 FHM data; NA = not applicable)

MoistureNumber of content (%) Coarse Forest floor

samples (oven-dry basis)a fragments (%)b thickness---cm---

Eastern hemlock 24 NA 193.5 NA 6.4White oak 6 NA 40.1 NA 4.9Hardwood/oak transition 16 NA 135.7 NA 7.1White oak/red oak 11 NA 181.1 NA 7.1Red maple 56 NA 166.2 NA 8.1Northern hardwoods 18 NA 187.3 NA 6.2Allegheny hardwoods 64 NA 158.1 NA 6.4Sugar maple 11 NA 105.6 NA 6.2Mixed upland hardwoods 77 NA 159.6 NA 7.7Average for all types 283 NA 147.5 NA 6.7

Eastern hemlock 40 organic, loamy, clayey 33.0 12.5 NAWhite spruce/Norway spruce 24 loamy, sandy No data 2.9 NAWhite oak 8 loamy 9.7 23.5 NANorthern red oak 28 loamy, clayey 14.9 17.2 NAHardwood/oak transition 32 loamy, sandy 22.2 10.8 NAWhite oak/red oak 64 loamy, clayey, sandy 22.9 17.2 NARed maple 168 loamy, clayey, sandy 31.8 13.2 NANorthern hardwoods 72 loamy, clayey 35.8 13.5 NAAllegheny hardwoods 232 loamy, clayey, sandy 26.7 11.7 NASugar maple 36 loamy, sandy 18.4 16.4 NABeech 12 loamy, clayey No data 2.6 NABlack birch/hickory 16 loamy, sandy 38.7 21.6 NAMixed upland hardwoods 280 loamy, clayey, sandy 29.3 12.3 NAAverage for all types 1012 NA 25.8 NA NA

Eastern hemlock 40 loamy, clayey 28.0 10.8 NAWhite spruce/Norway spruce 24 loamy, clayey No data 4.2 NAWhite oak 8 clayey 7.4 6.1 NANorthern red oak 28 loamy, clayey 11.5 14.9 NAHardwood/oak transition 32 loamy, clayey, sandy 22.4 6.4 NAWhite oak/red oak 64 loamy, clayey, sandy 20.2 16.0 NARed maple 168 loamy, clayey, sandy 33.0 12.1 NANorthern hardwoods 72 loamy, clayey, sandy 27.9 12.5 NAAllegheny hardwoods 232 loamy, clayey, sandy 25.5 11.9 NASugar maple 36 loamy 22.8 15.4 NABeech 12 loamy, clayey No data 2.6 NABlack birch/hickory 16 loamy, coarse sandy 31.4 14.7 NAMixed upland hardwoods 280 loamy, clayey, sandy 26.9 10.4 NAAverage for all types 1012 NA 23.4 NA NAa1999 and 2001 only.b2000 and 2001 only.

Mineral layer (0-10 cm)

Mineral layer (10-20 cm)

Forest type TextureForest floor

Page 65: Forest Service Northeastern Research Station the Allegheny

6�

Tabl

e 28

.—M

ean

valu

es f

or c

hem

ical

pro

pert

ies

(inc

ludi

ng e

xcha

ngea

ble

cati

ons

and

extr

acta

ble

sulf

ur)

from

FH

M p

lots

on

the

AN

F, b

y fo

rest

typ

e (1

998-

2001

FH

M d

ata)

Num

ber

ofEx

tract

able

Num

ber

of

sam

ples

H2O

CaC

l 2ca

rbon

nitro

gen

phos

phor

usN

aK

Mg

Ca

Alb

ECEC

absu

lfurb

sam

ples

b

---p

erce

nt---

---p

erce

nt--

----

mg/

kg--

---

-mg/

kg--

-

East

ern

hem

lock

25N

AN

A39

.41.

6N

AN

AN

AN

AN

AN

AN

AN

AN

AW

hite

oak

6N

AN

A42

.71.

6N

AN

AN

AN

AN

AN

AN

AN

AN

AN

orth

ern

red

oak

6N

AN

A28

.11.

2N

AN

AN

AN

AN

AN

AN

AN

AN

AO

ak/h

ardw

ood

trans

ition

17N

AN

A30

.71.

3N

AN

AN

AN

AN

AN

AN

AN

AN

AW

hite

oak

/red

oak

14N

AN

A30

.41.

2N

AN

AN

AN

AN

AN

AN

AN

AN

AR

ed m

aple

69N

AN

A39

.31.

7N

AN

AN

AN

AN

AN

AN

AN

AN

AN

orth

ern

hard

woo

ds25

NA

NA

35.1

1.6

NA

NA

NA

NA

NA

NA

NA

NA

NA

Alle

ghen

y ha

rdw

oods

76N

AN

A36

.51.

7N

AN

AN

AN

AN

AN

AN

AN

AN

ASu

gar m

aple

12N

AN

A31

.01.

4N

AN

AN

AN

AN

AN

AN

AN

AN

ABl

ack

birc

h/hi

ckor

y6

NA

NA

23.0

1.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

Mix

ed u

plan

d ha

rdw

oods

91N

AN

A34

.61.

5N

AN

AN

AN

AN

AN

AN

AN

AN

AA

vera

ge fo

r all

type

s34

7N

AN

A33

.71.

4N

AN

AN

AN

AN

AN

AN

AN

AN

A

East

ern

hem

lock

104.

13.

84.

40.

23.

94.

728

.327

.013

7.2

488.

070

7.1

27.2

9O

ak/h

ardw

ood

trans

ition

64.

33.

82.

30.

15.

17.

264

.010

.126

.127

6.7

384.

128

.96

Whi

te o

ak/re

d oa

k9

4.1

3.7

2.7

0.1

22.8

6.6

31.8

7.2

34.2

270.

336

0.1

25.8

8R

ed m

aple

303.

93.

63.

30.

213

.37.

140

.312

.531

.144

2.4

536.

531

.929

Nor

ther

n ha

rdw

oods

124.

13.

83.

70.

23.

714

.654

.682

.547

1.6

430.

211

10.1

29.2

11A

llegh

eny

hard

woo

ds41

4.0

3.7

3.1

0.2

3.3

7.1

37.1

11.6

41.7

491.

761

6.4

36.6

32Su

gar m

aple

63.

93.

62.

70.

22.

66.

544

.513

.167

.538

6.3

517.

727

.06

Mix

ed u

plan

d ha

rdw

oods

434.

13.

83.

10.

22.

66.

736

.822

.010

6.0

422.

062

6.7

30.5

36A

vera

ge fo

r all

type

s15

74.

13.

73.

10.

27.

27.

642

.223

.211

4.4

400.

960

7.3

29.6

17.1

East

ern

hem

lock

104.

44.

12.

20.

11.

74.

936

.220

.673

.854

2.7

693.

429

.09

Oak

/har

dwoo

d tra

nsiti

on6

4.4

4.0

1.1

0.1

8.9

5.5

30.3

6.8

25.1

284.

235

1.9

27.8

6W

hite

oak

/red

oak

94.

33.

91.

50.

117

.410

.329

.37.

223

.421

9.5

299.

733

.98

Red

map

le30

4.3

4.0

2.0

0.1

7.2

7.0

32.1

8.2

22.6

401.

747

4.1

31.1

29N

orth

ern

hard

woo

ds12

4.4

4.0

1.9

0.1

3.8

12.9

45.2

89.2

453.

628

1.7

928.

824

.411

Alle

ghen

y ha

rdw

oods

414.

24.

02.

30.

22.

46.

229

.05.

819

.642

0.6

499.

735

.332

Suga

r map

le6

4.1

3.7

2.5

0.1

2.0

9.1

42.3

10.0

54.5

501.

461

7.3

26.1

6M

ixed

upl

and

hard

woo

ds43

4.3

4.0

2.8

0.2

9.4

7.1

31.2

16.0

73.0

370.

252

1.5

30.5

36A

vera

ge fo

r all

type

s15

74.

34.

02.

00.

16.

67.

934

.520

.593

.237

7.7

548.

329

.817

.1a EC

EC=e

ffec

tive

catio

n ex

chan

ge c

apac

ityb 20

00 a

nd 2

001

only

Fore

st fl

oor

Min

eral

laye

r (0-

10 c

m)

Min

eral

laye

r (10

-20

cm)

Extra

ctab

leEx

chan

geab

le c

atio

ns

---cm

ol/k

g---

Fore

st ty

pe

pHO

rgan

icTo

tal

Page 66: Forest Service Northeastern Research Station the Allegheny

62

Vegetation DiversityTheobjectivesoftheFHMvegetationindicatoraretoassessforestecosystemhealthwithrespecttothediversity,abundance,andrateofchangeofnativeandnonnativevascularplantspecies,aswellastheverticallayeringofvegetationwithinaforest3(Stapanianetal.�998).Chronicstressorssuchasdiscretesitedegradation,climatechange,andpollutioncanchangespeciescompositionandleadtothedeclineorlocalextinctionofsensitivespeciesandtoanincreaseinopportunisticspecies,i.e.,invasiveandnonnativeplants.3Theabundanceandlayeringofvegetationisagoodpredictorofwildlifehabitatandtheseverityofdamagethatmightdevelopwhenfireoccurs.Individualspeciesalsoare

importantindicatorsofasite’spotentialproductivity,economicvalue,andwildlifeforageandshelter.3

Avegetationsurveyrequiresmultiscalesamplingbecausedifferentplantcommunitieshavedifferentspatialpatternsofspeciesrichness,soasingleplotsizeisanarbitrarysampleofspeciesdiversity.Figure64showstheplotdesignfortheFHMvegetationindicator.Thefollowingprotocolsfordatacollectionapplytodatacollectedin2000and200�.Speciesandcoverdataforvascularplantsarecollectedontwoplotsizesateachsubplotpoint:three3.28-ft2(�-m2)quadrats,andthe24-foot-radiussubplot.Onthequadrats,speciesandcoverdataarecollectedforthe0-to6-footlayer.Oneachsubplot,atime-constrainedsearchofallspeciesinall

Table 29.—Mean values for extractable micronutrients and trace metals from FHM plots on the ANF, by forest type (2000-2001 FHM data only)

ForesttypeNumberof

samples Mn Fe Ni Cu Zn Cd Pb

---mg/kg---

Mineral Layer (0-10 cm)

Easternhemlock 9 49.6 �20.3 0.5 0.� 3.� 0.� 3.�

Oak/hardwoodtransition 6 �03.8 �0.2 0.2 0.� 2.5 0.� 2.�

Whiteoak/redoak 8 85.9 �5.3 0.3 0.� 2.8 0.� 2.�

Redmaple 29 70.� 68.8 0.5 0.� 2.5 0.� 4.�

Northernhardwoods �� �06.5 26.6 �.5 0.2 5.2 0.� 4.3

Alleghenyhardwoods 32 �20.2 4�.� 0.6 0.3 2.9 0.� 3.4

Sugarmaple 6 92.� 40.2 0.4 0.� 2.� 0.0 2.2

Mixeduplandhardwoods 36 80.� 6�.6 �.0 0.� 3.2 0.� 3.4

Averageforalltypes �37 88.5 48.0 0.6 0.� 3.0 0.� 3.�

Mineral Layer (10-20 cm)

Easternhemlock 9 23.2 58.6 0.6 0.� 3.8 0.� 2.2

Oak/hardwoodtransition 6 20.0 8.4 �.6 0.� �.8 0.6 �.3

Whiteoak/redoak 7 52.3 4.0 �.� 0.� 2.0 0.0 �.�

Redmaple 28 27.9 37.3 �.4 0.� 2.2 0.0 �.8

Northernhardwoods �3 73.3 �7.9 3.� 0.� 2.8 0.� �.4

Alleghenyhardwoods 29 52.4 �8.9 �.7 0.� 2.� 0.0 2.0

Sugarmaple 6 35.9 60.9 �.7 0.� 2.0 0.0 �.5

Mixeduplandhardwoods 36 37.� 33.4 �.9 0.� 2.4 0.0 �.6

Averageforalltypes �34 40.3 29.9 �.6 0.� 2.4 0.� �.6

Page 67: Forest Service Northeastern Research Station the Allegheny

63

heightstrataisconductedandcoverisestimated.Totalcoverofallvegetationinfourheightlayers(0to2,2to6,6to�6,and�6+feet)isestimatedoneachsubplot.2(USDAFor.Serv.2002).Duetoprotocolupdating,onlydataonspeciespresenceonsubplotswerecollectedinallyears.

Averagepercentcoveronquadratsofdung,stream,lichens,litter/duff,moss,road,rock,root/bole,soil,trampling,trash/junk,water,anddeadwoodbyEasternRegionforesttypeandstand-developmentclassareshowninTables30-3�.ThedefinitionsofthequadratgroundcovervariablesarelistedinAppendixI.3Litter/duffcoveragewasthehighestoverallcomponent(6�percent).Dungwassurprisinglyhigh(2�percent),particularlyinthepincherry(84percent)andwhitespruce/Norwayspruce(53percent)foresttypes.Baresoilwaslowonaverageonallquadrats.Streamcoveragewashighestintheredpineforesttype,possiblyafunctionofwhereredpinewasplantedduringthe�930s,i.e.,areasthatfailedtoregeneratenaturallyaftertheturnofthecenturyharvests.

AllofthespeciesofvegetationsampledontheANF(397nativeand48nonnativetotheANF)andthepercentageofplotsonwhichtheywerefoundarelistedinAppendixII.Anadditional�84specimensremainunidentifiedorpartiallyidentifiedbecausetheywerecollectedwhenidentificationcharacteristics,e.g.,flowersandseeds,wereabsent.Someofthesemaybeadditionalspecies.

Meanspeciesrichnessofsampledvegetationbyforesttypes(Table32)rangedfrom44speciesintheoak/hardwoodtransitionforesttypeto8�.4speciesinthewhiteoak/redoaktype.Speciesrichnessrangedfrom57to69inallotherforesttypes,exceptforthesugarmapletype.Meanspeciesrichnessofvegetationbystand-developmentphase(Table33)rangedfrom6�.3speciesinthestandinitiationphaseto75.7speciesinthestemexclusionstage.

AllnonnativevegetationspeciessampledontheANF(48)andthepercentageofplotsonwhichtheywerefoundalsoarelistedinAppendixII.FivespeciesfromtheANFlistofinvasiveplantspeciesofconcernwere

Figure 64.—Layout of FHM subplot showing location of vegetation quadrants.

Page 68: Forest Service Northeastern Research Station the Allegheny

64

Tabl

e 30

.—Pe

rcen

tage

of

quad

rats

wit

h gr

ound

-cov

er v

aria

bles

, by

Eas

tern

Reg

ion

fore

st t

ype

Fore

st ty

peN

o. o

f qua

dsD

ung

Lich

enLi

tter/d

uff

Mos

sR

oad

Roc

kR

oot/b

ole

Soil

Stre

am/la

keTr

ampl

ing

Tras

hW

ater

Woo

dR

ed p

ine

100.

00.

181

.94.

70.

00.

01.

80.

010

.01.

00.

00.

01.

5H

emlo

ck11

38.

52.

970

.111

.91.

81.

20.

62.

61.

20.

60.

94.

01.

2W

hite

spru

ce/N

orw

ay sp

ruce

1553

.345

.52.

10.

60.

20.

00.

00.

00.

00.

00.

00.

00.

0C

hest

nut o

ak12

0.0

0.2

92.1

5.8

0.0

0.5

0.2

0.0

0.0

1.0

0.0

0.0

1.2

Whi

te o

ak24

0.0

0.6

93.0

3.0

0.0

0.0

0.6

0.3

0.0

1.1

0.0

0.0

2.5

Red

oak

3628

.74.

263

.21.

90.

40.

00.

70.

10.

00.

80.

00.

02.

8O

ak/h

ardw

ood

trans

ition

818.

36.

773

.41.

80.

62.

31.

10.

20.

60.

30.

06.

41.

0W

hite

oak

/red

oak

9326

.212

.157

.62.

40.

70.

90.

60.

80.

20.

50.

00.

70.

9R

ed m

aple

298

21.7

5.7

65.5

3.1

1.3

1.3

0.7

0.8

0.4

0.5

0.0

2.6

1.8

Nor

ther

n ha

rdw

oods

181

21.9

10.0

59.2

4.0

1.1

2.5

1.0

1.1

0.1

0.6

0.0

1.1

0.7

Pin

cher

ry7

84.4

13.6

0.7

1.7

0.1

0.7

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Alle

ghen

y ha

rdw

oods

397

20.3

6.9

67.4

3.0

0.7

0.7

1.2

0.5

0.2

0.7

0.1

2.0

1.2

Suga

r map

le69

24.7

6.2

63.9

3.4

0.2

0.4

1.0

0.0

0.3

0.5

0.0

3.0

3.5

Bee

ch19

19.8

45.4

28.7

1.2

5.6

2.2

0.4

0.1

0.6

0.1

0.1

3.3

0.0

Bla

ck b

irch/

hick

ory

360.

10.

085

.87.

30.

00.

92.

20.

10.

01.

00.

10.

03.

4M

ixed

upl

and

hard

woo

ds50

119

.43.

870

.02.

01.

31.

31.

00.

60.

30.

60.

02.

90.

7To

tal

1892

21.1

10.2

60.9

3.6

0.9

0.9

0.8

0.5

0.9

0.6

0.1

1.6

1.4

Tabl

e 31

.—Pe

rcen

tage

of

quad

rats

wit

h gr

ound

-cov

er v

aria

bles

pre

sent

, by

stan

d de

velo

pmen

t st

age

Stan

d de

velo

pmen

t sta

geN

o. o

f qua

dsD

ung

Lich

enLi

tter/D

uff

Mos

sR

oad

Roc

kR

oot/b

ole

Soil

Stre

amTr

ampl

ing

Tras

hW

ater

Woo

dSt

and

initi

atio

n (0

-14

year

s)15

04.

07.

174

.90.

71.

41.

11.

20.

40.

50.

70.

09.

44.

1St

em e

xclu

sion

(15-

29 y

ears

)16

624

.57.

458

.63.

62.

01.

01.

00.

40.

30.

50.

12.

02.

0U

nder

stor

y re

initi

atio

n (5

0+ y

ears

)15

9520

.46.

466

.53.

61.

01.

20.

90.

80.

40.

60.

11.

90.

9

Page 69: Forest Service Northeastern Research Station the Allegheny

65

sampledinthevegetationsurveys.Glossybuckthorn(Frangula alnus)wassampledon25subplotsfollowedbymultiflorarose(Rosa multiflora)(7),Japanesebarberry(Berberis thunbergii)(3),canaryreedgrass(Phalaris arundinacea)(2),andcrownvetch(Coronilla varia)(�).AkrigedsurfaceofintroducedspeciesrichnessisshowninFigure65.ItwasestimatedthattheareasneartheANFboundaryhavemorenonnativeplantspecies.

Ozone Bioindicator PlantsOzone(O

3)isabyproductofindustrialdevelopment

andisfoundintheloweratmosphere.Itformswhennitrogenoxidesandvolatileorganiccompoundsreactinthepresenceofsunlight(Krupaetal.200�).Ground-levelO

3hasadetrimentaleffectonforestecosystems

andcertainplantspeciesshowvisible,easilydiagnosedfoliarsymptoms.O

3stressinaforestenvironment

canbedetectedandmonitoredusingtheseplantsasbioindicators.TheFHMprogramusesO

3bioindicator

plantstomonitorchangesinairqualityacrossaregionandtoevaluatetherelationshipbetweenO

3airquality

andtheindicatorsofforestcondition.3Blackcherry

Table 32.—Mean species richness of vegetation on the ANF, by Eastern Region forest type (1998-2001 FHM data)

ForesttypeNumberofplots

Speciesrichness SE

Whiteoak/redoak 8 8�.4 �4.5

Sugarmaple 7 75.0 �4.2

Northernhardwoods �3 69.5 6.9

Mixeduplandhardwoods 45 67.8 6.6

Alleghenyhardwoods 35 66.7 5.0

Easternhemlock 9 66.� ��.�

Redmaple 29 57.4 5.6

Oak/hardwoodtransition 7 44.� 8.3

Table 33.—Mean species richness of vegetation on the ANF, by stand development stage (1998-2001 FHM data)

StanddevelopmentstageNumberofplots

Speciesrichness SE

Standinitiation(0-�4years) �5 6�.3 7.9

Stemexclusion(�5-49years) �5 75.7 ��.7

Understoryreinitation(50+years) �43 66.2 2.9

Figure 65.—Kriged surface of exotic vegetation species richness; NLCD data from Multi-Resolution Land Characteristics Consortium.

Page 70: Forest Service Northeastern Research Station the Allegheny

66

andblackberryaretwoabundantspeciesontheANFthataresensitivetoO

3.Thisreportprovidesresults

fromtheexpandedO3biomonitoringprojectconducted

attherecommendationoftheAlleghenyAirQualityAssessment(USDAFor.Serv.2002).

O3plotdatafrom�998-200�aresummarizedin

Table34.Thedatashowedahighdegreeoftemporalheterogeneity.Nearlyhalfofthesampledplants(44.6percent)showedsomesymptomsofO

3injuryin�998,

thoughmostoftheinjurywasonlessthan25percentoftheirfoliage.Bycontrast,lessthan25percentofthesampledplantsshowedsymptomsin2000,andlessthan8percentshowedinjurysymptomsin�999and200�.Smithetal.(2003)reportedthatevenwhenambientO3exposuresarehigh,thepercentageofinjuredplantscanbereducedsharplyindryyears,e.g.,�999and200�ontheANF.DifferencesintheamountofO

3injury

betweenyearsprobablyareduetoprecipitationlevelsratherthanambientO

3exposurelevels.

ThenumberofplantssampledbyspecieswithpercentinjuredinparenthesesisshowninTable35.ThescientificnamesofthebioindicatorspeciesarelistedinAppendixII.BlackberryhadthehighestoccurrencesofO

3damagewith40to60percentofthesampledplants

showingsymptomsofdamagein�998-2000versusonly�9percentin200�.Nearly60percentoftheblackcherryplantssampledshowedinjurysymptomsin�998,butlessthan�6percentshowedsymptomsbetween�999and200�.Damagewasminimaltootherspeciessampledexceptin2000whenone-thirdofthepincherryplantssampledshowedinjurysymptoms.EvenforspecieswithhighoccurrencesofO

3injury,theseverity

waslow(Table35).

Table 34.—Percentage of sampled plants showing ozone injury (1998-2001 FHM data)

No.ofplots No.ofplants Percentofleaveswithinjuryevaluated sampled Noinjury �-6 7-25 26-50 5�-75 >75

�998 6 244 55 �3 �7 7 5 2

�999 �0 648 93 � 4 2 � 0

2000 7 4�7 75 6 7 5 4 3

200� 9 97� 92 2 2 3 � 0Note:Rowsmaynotaddto�00duetorounding.

Table 35.—Number of plants evaluated for ozone injury on the ANF (1998-2001 FHM data; percent injured in parentheses)

Species �998 �999 2000 200�

Blackberry ��8(59) �06(4�) ��8(54) �96(�9)

Blackcherry 90(6�) 283(2) �67(�6) 257(�0)

Milkweed 3�(6) 90(0) 29(0) �3�(6)

Pincherry 36(�4) 3�(0) 30(33) 75(�)

Sassafras -- -- 26(8) 60(0)

Spreadingdogbane 37(0) 84(0) -- �65(0)

Whiteash -- 30(0) �6(0) 73(4)

Yellow-poplar -- 24(0) ��(0) --

Page 71: Forest Service Northeastern Research Station the Allegheny

67

Coulstonetal.(2003)createdanestimatedsurfaceofbiositeindexusingblockkrigingprocedurestodeterminewhichtreespeciesintheNortheasternUnitedStatesaresensitivetoO

3(Fig.66).Biositeindexwasthe

averagescore(amounttimesseverity)foreachspeciesaveragedacrossallspeciesonanFHMozoneplotmultipliedby�,000toallowriskcategoriestobedefinedbyintegers.ThecentralportionoftheANFisinthemoderate-riskcategory.

AtypicalsummerO3exposurepatternforEastern

RegionisshowninFigure67(USDAFor.Serv.2002).ThetermSUM06isdefinedasthesumofallvalidhourlyO

3concentrationsthatequalorexceed0.06

ppm.ControlledstudieshavefoundthathighO3levels

(showninorangeandred)canleadtomeasurablegrowthsuppressioninsensitivetreespecies(ChappelkaandSamuelson�998).

Figure 66.—Estimated surface of ozone biosite index in the Northeastern United States (from Coulston et al. 2003).

Page 72: Forest Service Northeastern Research Station the Allegheny

68

AcknowledgmentsThankstotheANFfieldcrewmembersforthecollectionoftheForestHealthMonitoring(P3)data:RobertPurfieldandToddRoffe(�998);RenaeEssenmacher,EricMosbacher,andAaronWells(�999);andAnnZurbriggen,DonaldLepley,JohnRohm,ThomasGabriel,ThomasHebda,andAvaTurnquist(2000and200�).ThankstootherANFstaffmemberswhoparticipatedinthisprocess,andtoFIAfieldcrewmembersforcollectingtheP2portionoftheplotdata:ToddRenninger,MitchPennabaker,RichardStarr,andJasonGould.ThankstotheFIAstaffmemberswhoassistedintrainingtheANFcrews:MikeWhitehill,MikeEffinger,andBrianLaPoint,WillMcWilliamsandJimSteinmanforreviewingthisreport,BarbaraO’Connellforprovidingdataandanalyticalsupport,SusanWill-Wolfforreviewingthelichensportionofthereport,GretchenSmithforreviewingtheozonedamageportion,TedHuffmanforreviewingthesoilsandozonedamageportion,andAprilMooreforreviewingthevegetationportion.

Literature CitedAlerich,CarolL.�993.Forest statistics for

Pennsylvania—1978 and 1989.Resour.Bull.NE-�26.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.244p.

Bailey,S.W.;Horsley,S.B.;Long,R.P.;Hallett,R.A.2004.Influence of edaphic factors on sugar maple nutrition and health on the Allegheny Plateau.SoilScienceSocietyofAmericaJournal.68:243-252.

Barnes,B.V.;Pregitzer,K.S.;Spies,T.A.;Spooner,V.H.�982.Ecological forest site classification.JournalofForestry.80:493-498.

Bernard,J.M.;Seischab,F.K.�995.Pitch pine (Pinus rigida Mill.) communities in northeastern New York State.AmericanMidlandNaturalist.�34:294-306.

Figure 67.—Typical ozone exposure rates in the Eastern Region; data from Ozone Biomonitoring Project.

Page 73: Forest Service Northeastern Research Station the Allegheny

69

Bierzychudek,P.�982.Life histories and demography of shade-tolerant temperate forest herbs: a review.NewPhytologist.90:757-776.

Bonstedt,S.M.�985.A twenty-year history of forest insect and disease management on the Allegheny National Forest, Pennsylvania, 1965-1985.Morgantown,WV:U.S.DepartmentofAgriculture,ForestService,NortheasternArea,StateandPrivateForestry.59p.

Brodo,IrwinM.;Sharnoff,SylviaD.;Sharnoff,Stephen.200�.Lichens of North America.NewHaven,CT:YaleUniversityPress.795p.

Brooks,RobertT.;Dickson,DavidR.;Burkman,WilliamG.;Millers,Imants;Miller-Weeks,Margaret;Cooter,Ellen;Smith,Luther.�992.Forest health monitoring in New England: 1990 annual report.Resour.Bull.NE-�25.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.���p.

Chappelka,ArthurH.;SamuelsonLisaJ.�998.Ambient ozone effects on forest trees of the eastern United States: a review.NewPhytologist.�39:9�-�08.

Copenheaver,C.A.;White,A.S.;Patterson,W.J.,III.2000.Vegetation development in a southern Maine pitch pine-scrub oak barren.JournaloftheTorreyBotanicalSociety.�27:�9-32.

Coulston,JohnW.;Smith,GretchenC.;Smith,WilliamD.2003.Regional assessment of ozone sensitive tree species using bioindicator plants.EnvironmentalMonitoringandAssessment.83:��3-�27.

Craighead,F.C.�950.Insect enemies of eastern forests.Misc.Publ.657.WashingtonDC:U.S.DepartmentofAgriculture,BureauofEntomologyandPlantQuarantine.679p.

Deutsch,ClaytonV.;Journel,AndréG.�998.GSLIB: Geostatistical Software Library and user’s guide.2nded.NewYork:OxfordUniversityPress.369p.

DeWit,T.�983.Lichens as indicators of air quality.EnvironmentalMonitoringandAssessment.3:273-282.

deCalesta,DavidS.�994.Effect of white-tailed deer on songbirds within managed forests in Pennsylvania.JournalofWildlifeManagement.58(4):7��-7�8.

Deeming,JohnE.;Burgan,RobertE.;Cohen,JackD.�977.The National Fire Danger Rating System—1978.Gen.Tech.Rep.INT-39.Ogden,UT:U.S.DepartmentofAgriculture,ForestService,IntermountainForestandRangeExperimentStation.63p.

Erdmann,G.G.�990.Betula alleghaniensis Britton. Yellow birch.In:Burns,R.M.;Honkala,B.H.,tech.coords.SilvicsofNorthAmerica.Vol.2,hardwoods.Agric.Handb.654.Washington,DC:U.S.DepartmentofAgriculture:��3-�47.

Gilliam,FrankS.;Roberts,M.R.2003.The herbaceous layer in forests of eastern North America.NewYork:OxfordUniversityPress.408p.

Godman,R.M.�957.Silvical characteristics of sugar maple (Acer saccharum Marsh).Stn.Pap.50.St.Paul,MN:U.S.DepartmentofAgriculture,ForestService,LakeStatesForestExperimentStation.24p.

Gottschalk,KurtW.;MacFarlane,W.R.�993.Photographic guide to crown condition of oaks: use of gypsy moth silvicultural treatments.Gen.Tech.Rep.NE-�68.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.8p.

Greif,G.E.;Archibold,O.W.2000.Standing-dead component of the boreal forest in central Saskatchewan.ForestEcologyandManagement.�3�:37-46.

Grime,J.P.200�.Plant strategies, vegetation processes, and ecosystem properties.2nded.NewYork:JohnWileyandSons.4�7p.

Page 74: Forest Service Northeastern Research Station the Allegheny

70

Grisez,T.J.;Peace,M.R.�973.Requirements for advance reproduction in Allegheny hardwoods—an interim guide.Res.NoteNE-�80.UpperDarby,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.5p.

Haack,RobertA.;Byler,JamesW.�993.Insects and pathogens regulators of forest ecosystems.JournalofForestry.9�(9):32-37.

Hagan,JohnM.;Grove,StacieL.�999.Coarse woody debris.JournalofForestry.97(�):6-��.

Halpern,CharlesB.�989.Early successional patterns of forest species: interactions of life history traits and disturbance.Ecology.70:704-730.

Halpern,CharlesB.;Spies,ThomasA.�995.Plant species diversity in natural and managed forests of the Pacific Northwest.EcologicalApplications.5:9�3-934.

Hansen,MarkH.;Frieswyk,Thomas;Glover,JosephF.;Kelly,JohnF.�992.The eastwide forest inventory data base: data base description and user’s manual.Gen.Tech.Rep.NC-�5�.St.Paul,MN:U.S.DepartmentofAgriculture,ForestService,NorthCentralForestExperimentStation.53p.

Harmon,M.E.;Franklin,J.F.;Swanson,F.J.;Sollins,P.;Gregory,S.V.;Lattin,J.D.;Anderson,N.H.;Cline,S.P.;Aumen,N.G.;Sedell,J.R.;Lienkaemper,G.W.;Cromack,K.,Jr.;Cummins,K.W.�986.Ecology of coarse woody debris in temperate ecosystems.AdvancesinEcologicalResearch.�5:�33-302.

Healy,WilliamM.�97�.Forage preferences of tame deer in a northwest Pennsylvania clear-cutting.JournalofWildlifeManagement.35(4):7�7-723.

Horsley,S.B.�99�.Using Roundup and Oust to control interfering understories in Allegheny hardwood stands.In:McCormick,L.H.;Gottschalk,K.W.,eds.Proceedings,centralhardwoodforestconference;�99�March4-6;UniversityPark,PA.Gen.Tech.Rep.NE-�48.Radnor,PA:

U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation:28�-290.

Horsley,S.B.;Auchmoody,L.R.;Walters,R.S.�994.Regeneration principles and practices.In:Marquis,D.A.,ed.QuantitativesilvicultureforhardwoodforestsoftheAlleghenies.Gen.Tech.Rep.NE-�83.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation:205-246.

Horsley,S.B.;Marquis,D.A.�983.Interference by weeds and deer with Allegheny hardwood reproduction.CanadianJournalofForestResearch.�3(�):6�-69.

Horsley,StephenB.;Bjorkbom,JohnC.�983.Herbicide treatment of striped maple and beech in Allegheny hardwood stands.ForestScience.29(�):�03-��2.

Horsley,StephenB.;Long,RobertP.;Bailey,ScottW.;Hallett,RichardA.;Hall,ThomasJ.2000.Factors associated with the decline disease of sugar maple on the Allegheny Plateau.CanadianJournalofForestResearch.30:�-�4.

Horsley,StephenB.;Long,RobertP.;Bailey,ScottW.;Hallett,RichardA.;Wargo,PhilipM.2002.Health of eastern North American sugar maple forests and factors affecting decline.NorthernJournalofAppliedForestry.�9(�):34-44.

Horsley,StephenB.;Stout,SusanL.;deCalesta,DavidS.2003.White-tailed deer impact on the vegetation dynamics of a northern hardwood forest.EcologicalApplications.�3:98-��8.

Horst,M.;Smith,E.L.�969.Logging in the Pennsylvania north woods.Lebanon,PA:AppliedArtsPublishers.42p.

Hough,A.F.;Forbes,R.D.�943.The ecology and silvics of forests in the high plateaus of Pennsylvania.EcologicalMonographs.�3:299-320.

Page 75: Forest Service Northeastern Research Station the Allegheny

7�

Houston,D.R.�999.History of sugar maple decline.In:Horsley,S.B.;Long,R.P.,eds.Sugarmapleecologyandhealth:proceedingsofaninternationalsymposium;�998June2-4;Warren,PA.Gen.Tech.Rep.NE-26�.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternResearchStation:�9-26.

Houston,DavidR.�994.Major new tree disease epidemics: beech bark disease.AnnualReviewofPhytopathology.32:75-87.

Isaaks,EdwardH.;Srivastava,R.M.�989.An introduction to applied geostatistics.NewYork:OxfordUniversityPress.56�p.

Johnson,PaulS.;Shifley,StephenR.;Rogers,Robert.2002.The ecology and silviculture of oaks.NewYork:CABIPublishing.503p.

Krupa,Sagar;McGrath,MargaretT.;Andersen,ChristianP.;Booker,FitzgeraldL.;Burkey,KentO.;Chappelka,ArthurH.;Chevone,BorisI.;Pell,EvaJ.;Zilinskas,BarbaraA.200�.Ambient ozone and plant health.PlantDisease.85(�):4-�2.

Kussart,S.�938.The Allegheny River.Pittsburgh,PA:BurgumPrintingCompany.342p.

Leak,WilliamB.�982.Habitat mapping and interpretation in New England.Res.Pap.NE-496.Broomall,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.28p.

LeGuerrier,Catherine;Marceau,DanielleJ.;Bouchard,André;Brisson,Jacques.2003.A modelling approach to assess the long-term impact of beech bark disease in northern hardwood forest.CanadianJournalofForestResearch.33:24�6-2425.

Liebhold,AndrewM.;Gottschalk,KurtW.;Muzika,Rose-Marie;Montgomery,MichaelE.;Young,Regis;O’Day,Kathleen;Kelley,Brooks.�995.Suitability of North American tree species to the gypsy moth: a summary of field and laboratory tests.Gen.Tech.Rep.NE-2��.Radnor,PA:U.S.Department

ofAgriculture,ForestService,NortheasternForestExperimentStation.34p.

Liebhold,AndrewM.;Halverson,JoelA.;Elmes,GregoryA.�992.Gypsy moth invasion in North America: a quantitative analysis.JournalofBiogeography.�9(5):5�3-520.

Long,RobertP.;Horsley,StephenB.;Lilja,PaulR.�997.Impact of forest liming on growth and crown vigor of sugar maple and associated hardwoods.CanadianJournalofForestResearch.27:�560-�573.

Lutz,H.J.�930.Originial forest composition in northwestern Pennsylvania as indicated by early land survey notes.JournalofForestry.28:�098-��03.

MacMillan,P.C.�988.Decomposition of coarse woody debris in an old-growth Indiana forest.CanadianJournalofForestResearch.�8:�353-�362.

Magurran,AnneE.�988.Ecological diversity and its measurement.Princeton,NJ:PrincetonUniversityPress.�79p.

Manion,PaulD.�99�.Tree disease concepts.2nded.UpperSaddleRiver,NJ:PrenticeHall.4�6p.

Marçais,B.;Wargo,P.M.2000.Impact of liming on the abundance and vigor of Armillaria rhizomorphs in Allegheny hardwoods stands.CanadianJournalofForestResearch.30(�2):�847-�857.

Marquis,D.A.�978.The effect of environmental factors on the natural regeneration of cherry-ash-maple forests on the Allegheny plateau of the eastern United States.In:Symposiumonestablishmentandtreatmentofhigh-qualityhardwoodforestsinthetemperateclimaticregion;Nancy,France.[Placeofpublicationunknown]:InternationalUnionofForestryResearchOrganizations:90-99.

Marquis,D.A.�992.Stand development patterns in Allegheny hardwood forests, and their influence on silviculture and management practices.In:Kelty,M.J.;Larson,B.C.;andOliver,C.D.,eds.Theecology

Page 76: Forest Service Northeastern Research Station the Allegheny

72

andsilvicultureofmixed-speciesforests.Boston:KluwerAcademicPublishers:�65-�8�.

Marquis,DavidA.�975.The Allegheny hardwood forests of Pennsylvania.Gen.Tech.Rep.NE-�5.Broomall,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.32p.

Marquis,DavidA.;Brenneman,Ronnie.�98�.The impact of deer on forest vegetation in Pennsylvania.Gen.Tech.Rep.NE-65.Broomall,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.7p.

Marquis,DavidA.;Ernst,RichardL.;Stout,SusanL.�992.Prescribing silvicultural treatments in hardwood stands of the Alleghenies (revised).Gen.Tech.Rep.NE-96.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.�0�p.

Mason,R.R.�987.Nonoutbreak species of forest Lepidoptera.In:Barbosa,P.;Schultz,J.C.,eds.Insectoutbreaks.SanDiego,CA:AcademicPress:3�-58.

Matteoni,J.A.;Sinclair,W.A.�985.Role of the mycoplasma disease, ash yellows, in decline of white ash in New York State.Phytopathology.75:355-360.

McCarthy,BrianC.;Bailey,RonaldR.�994.Distribution and abundance of coarse woody debris in a managed forest landscape of the central Appalachians.CanadianJournalofForestResearch.24:�3�7-�329.

McCarthy,BrianC.;Small,ChristineJ.;Rubino,DarrinL.200�.Composition, structure, and dynamics of Dysart Woods, an old-growth mixed mesophytic forest of southeastern Ohio.ForestEcologyandManagement.�40:�93-2�3.

McConnell,T.J.;Johnson,E.W.;Burns,B.2000.A guide to conducting aerial sketchmapping surveys.FHTET00-0�.FortCollins,CO:U.S.Department

ofAgriculture,ForestService,ForestHealthTechnologyEnterpriseTeam.88p.

McCune,Bruce.�988.Lichen communities along O3

and SO2 gradients in Indianapolis.Bryologist.9�:

223-228.

McCune,Bruce.2000.Lichen communities as indicators of forest health.Bryologist.�03(2):353-356.

McCune,Bruce;Dey,Jonathan;Peck,Jeri;Heinman,Karin;Will-Wolf,Susan.�997.Regional gradients in lichen communities of the Southeast United States.Bryologist.�00:�45-�58.

McWilliams,WilliamH.;Alerich,CarolA.;Devlin,DanielA.;Lister,AndrewJ.;Lister,TonyaW.;Sterner,StephenL.;Westfall,JamesA.2004.Annual inventory report for Pennsylvania’s forests: results from the first three years.Res.Bull.NE-�59.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternResearchStation.99p.

McWilliams,WilliamH.;Arner,StanfordL.;White,Robert.�999.Update on characteristics of declining forest stands on the Allegheny National Forest.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.�0p.

McWilliams,WilliamH.;White,Robert;Arner,StanfordL.;Nowak,ChristopherA.;Stout,SusanL.�996.Characteristics of declining stands on the Allegheny National Forest.Res.NoteNE-360.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation.9p.

Menzel,MichaelA.;Owen,SheldonF.;Ford,W.M.;Edwards,JohnW.;Wood,PetraB.;Chapman,BrianR.;Miller,KarlV.200�.Root tree selection by northern long-eared bat (Myotis septentrionalis) maternity colonies in an industrial forest of the central Appalachian mountains.ForestEcologyandManagement.�55:�07-��4.

Page 77: Forest Service Northeastern Research Station the Allegheny

73

Morin,RandallS.;Liebhold,AndrewM.;Gottschalk,KurtW.;Twardus,DanielB.;Acciavatti,RobertE.;White,RobertL.;Horsley,StephenB.;Smith,WilliamD.;Luzader,EugeneR.200�.Forest health conditions on the Allegheny National Forest (1989-1999): analysis of forest health monitoring surveys.Tech.Pap.04-0�.NewtownSquare,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternArea,StateandPrivateForestry.68p.

Morin,RandallS.,Jr.;Liebhold,AndrewM.;Gottschalk,KurtW.2004.Area-wide analysis of hardwood defoliator effects on tree conditions in the Allegheny Plateau.NorthernJournalofAppliedForestry.2�:3�-39.

Muller,R.N.;Liu,Y.�99�.Coarse woody debris in an old-growth deciduous forest in the Cumberland Plateau, southeastern Kentucky.CanadianJournalofForestResearch.2�:�567-�572.

Nash,ThomasH.�975.Influence of effluents from a zinc factory on lichens.EcologicalMonographs.45:�83-�98.

Nyland,R.D.�999.Sugar maple: its characteristics and potentials.In:Horsley,S.B.;Long,R.P.,eds.Sugarmapleecologyandhealth:proceedingsofaninternationalsymposium;�998June2-4;Warren,PA.Gen.Tech.Rep.NE-26�.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternResearchStation:�-�3.

Odum,EugeneP.�969.The strategy of ecosystem development.Science.�64:262-270.

Oliver,ChadwickD.;Larson,BruceC.�996.Forest stand dynamics.Updateed.NewYork:JohnWileyandSon.520p.

Pregitzer,KurtS.;Barnes,BurtonV.;Lemme,GaryD.�983.Relationship of topography to soils and vegetation in an Upper Michigan ecosystem.SoilScienceSocietyofAmericaJournal.47:��7-�23.

Redding,J.�995.History of deer population trends and forest cutting on the Allegheny National Forest.In:Gottschalk,K.W.;Fosbroke,S.L.C.,eds.Proceedings,�0thcentralhardwoodforestconference;�995March5-8;Morgantown,WV.Gen.Tech.Rep.NE-�97.Radnor,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternForestExperimentStation:2�4-224.

Ristau,T.E.;Horsley,S.B.�999.Pin cherry effects on Allegheny hardwood stand development.CanadianJournalofForestResearch.29:73-84.

Romme,R.C.;Tyrell,K.;Brack,V.,Jr.�995.Literature summary and habitat suitability index model: components of summer habitat for the Indiana bat, Myotis sodalis.Bloomington,IN:IndianaDepartmentofNaturalResources.�90p.

Rubino,DarrinL.;McCarthy,BrianC.2003.Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest.ForestEcologyandManagement.�83:22�-238.

Runkle,JamesR.�990.Eight years change in an old Tsuga canadensis woods affected by beech bark disease.BulletinoftheTorreyBotanicalClub.�77:409-4�9.

Schlesinger,RichardC.�990.Fraxinus americana L. White ash.InBurns,R.M.;Honkala,B.H.,tech.coords.SilvicsofNorthAmerica.Vol.2,hardwoods.Agric.Handb.654.WashingtonDC:U.S.DepartmentofAgriculture:333-338.

Selva,Steven.B.�994.Lichen diversity and stand continuity in the northern hardwoods and spruce-fir forests of northern New England and western New Brunswick.Bryologist.97:424-429.

Seischab,F.K.;J.M.Bernard,J.M.�99�.Pitch pine (Pinus rigida Mill.) communities in central and western New York.BulletinoftheTorreyBotanicalClub.��8:4�2-423.

Page 78: Forest Service Northeastern Research Station the Allegheny

74

Seischab,F.K.;J.M.Bernard,J.M.�996.Pitch pine (Pinus rigida Mill.) communities in the Hudson Valley region of New York.AmericanMidlandNaturalist.�36:42-56.

Showman,R.E.�975.Lichens as indicators of air quality around a coal-fired power generating plant.Bryologist.78:�-6.

Showman,R.E.�990.Lichen recolonization in the Upper Ohio River Valley.Bryologist.93(4):427-428.

Showman,R.E.�997.Continuing lichen recolonization in the Upper Ohio River Valley.Bryologist.�00(4):478-48�.

Showman,R.E.;Long,R.P.�992.Lichen studies along a wet sulfate deposition gradient in Pennsylvania.Bryologist.95(2):�66-�70.

Shultz,DavidE.;Allen,DouglasC.�975.Biology and descriptions of the cherry scallopshell moth, Hydria prunivorata (Lepidoptera: Geometridae), in New York. CanadianEntomologist.�07:99-�06.

Sinclair,W.A.;Griffiths,H.M.;Davis,R.E.�996.Ash yellows and lilac witches’ broom: phytoplasmal diseases of concern in forestry and horticulture.PlantDisease.80:468-475.

Sinclair,W.A.;Iuli,R.J.;Dyer,A.T.;Marshall,P.T.;Matteoni,J.A.;Hibben,C.R.;Stanosz,G.R.;Burns,B.S.�988.Ash yellows: geographic range and association with decline of white ash.Phytopathology.78:�554.

Smith,Marie-Louise.�995.Community and edaphic analysis of upland northern hardwood communities, central Vermont, USA.ForestEcologyandManagement.72:235-249.

Smith,Gretchen;Coulston,John;Jepsen,Edward;Pritchard,Teague.2003.A national ozone biomonitoring program—results from field surveys of ozone sensitive plants in northeastern

forests (1994-2000).EnvironmentalMonitoringandAssessment.87:27�-29�.

Stapanian,MartinA.;Sundberg,ScottD.;Baumgardner,GregA.;Liston,Aaron.�998.Alien plant species composition and associations with anthropogenic disturbance in North American forests.PlantEcology.�39(�):49-62.

Steinman,Jim.2000.Tracking the health of trees over time on forest health monitoring plots.In:Hansen,M.;Burk,T.,eds.Integratedtoolsfornaturalresourcesinventoriesinthe2�stcentury:proceedingsoftheIUFROconference;�998August�6-20;Boise,ID.Gen.Tech.Rep.NC-2�2.St.Paul,MN:U.S.DepartmentofAgriculture,ForestService,NorthCentralResearchStation:334-339.

Stout,SusanL.;Nyland,RalphD.�986.Role of species composition in relative density measurment in Allegheny hardwoods.CanadianJournalofForestResearch.�6:574-579.

Stout,SusanL.;Nowak,ChristopherA.;Redding,JamesA.;White,Robert;McWilliams,William.�995.Allegheny National Forest health.In:Eskew,L.G.,ed.Foresthealththroughsilviculture:proceedingsofthe�995nationalsilvicultureworkshop;�995May8-��;Mescalero,NM.Gen.Tech.Rep.RM-GTR-267.FortCollins,CO:U.S.DepartmentofAgriculture,ForestService,RockyMountainForestandRangeExperimentStation:79-86.

Taber,T.T.,III.�974.The logging railroad era of lumbering in Pennsylvania.Williamsport,PA:LycomingPrintingCo.�470p.

Thompson,L.M.;Troeh,F.R.�973.Soils and soil fertility.3rded.NewYork:McGraw-HillBookCo.495p.

Tilghman,NancyG.�989.Impacts of white-tailed deer on forest regeneration in northwestern Pennsylvania.JournalofWildlifeManagement.53(3):524-532.

Page 79: Forest Service Northeastern Research Station the Allegheny

75

Twery,MarkJ.;Patterson,WilliamA.�984.Variations in beech bark disease and its effects on species composition and structure of northern hardwood stands in central New England.CanadianJournalofForestResearch.�4:565–574.

U.S.DepartmentofAgriculture,ForestService.�979.A guide to common insects and diseases of forest trees in the Northeastern United States.Broomall,PA:U.S.DepartmentofAgriculture,ForestService,NortheasternArea,StateandPrivateForestry.�27p.

U.S.DepartmentofAgriculture,ForestService.�995.Analysis of timber harvest program capability: 1995 through 2005.Warren,PA:U.S.DepartmentofAgriculture,ForestService,AlleghenyNationalForest.

U.S.DepartmentofAgriculture,ForestService.�998.Forest health monitoring: field methods guide.ResearchTrianglePark,NC:U.S.DepartmentofAgriculture,ForestService,NationalForestHealthMonitoringProgram.473p.

U.S.DepartmentofAgriculture,ForestService.2000.Allegheny National Forest fiscal year 1998 monitoring and evalutation report.Warren,PA:U.S.DepartmentofAgriculture,ForestService,AlleghenyNationalForest.�02p.

U.S.DepartmentofAgriculture,ForestService.200�.Allegheny National Forest fiscal year 1999 monitoring and evalutation report.Warren,PA:U.S.DepartmentofAgriculture,ForestService,AlleghenyNationalForest.��0p.

U.S.DepartmentofAgriculture,ForestService.2002.Allegheny air quality assessment package.Milwaukee,WI:U.S.DepartmentofAgriculture,ForestService,EasternRegion.44p.

Wetmore,C.M.�983.Lichens of the air quality class I national parks.FinalRep.Denver,CO:U.S.DepartmentoftheInterior,NationalParkService.�58p.

Whitney,G.G.�986.Relation of Michigan’s presettlement pine forests to substrate and disturbance history.Ecology.67:�548-�559.

Woodall,Christopher;Williams,MichaelS.2005.Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program.Gen.Tech.Rep.NC-256.StPaul,MN:U.S.DepartmentofAgriculture,ForestService,NorthCentralResearchStation.47p.

Page 80: Forest Service Northeastern Research Station the Allegheny
Page 81: Forest Service Northeastern Research Station the Allegheny

77

New 5-point fixed- and variable-radius cluster

Appendix I1989 FIA Survey Plot Designs

7

8 6

1

2

3

4

59

10Azimuth between points:

1-2 02-3 03-4 1204-5 1805-6 1806-7 2407-8 3008-9 09-10 0

The distance between any pointto any adjacent point is 70 ft

Remeasured 10-point cluster (37.5 BAF)

Page 82: Forest Service Northeastern Research Station the Allegheny

78

AmericanbasswoodAmericanbeechAmericanchestnutAmericanelmAmericanhornbeamapplespeciesashspeciesbigtoothaspenbirchspeciesblackcherryblackgumbluesprucechestnutoakchokecherrycucumbertreeeasternhemlockeasternhophornbeameasternredbudeasternwhitepinehawthornspeciesmountainmaplenorthernredoakoakspeciespignuthickorypincherryquakingaspenredmapleredpinesassafrasscarletoakserviceberryslipperyelmsilvermaplestripedmaplesugarmaplesweetbirchwhiteashwhiteoakwhitespruceyellowbirchyellow-poplar

Tilia americanaFagus grandifoliaCastanea dentataUlmus americanaCarpinus carolinianaMalus spp.Fraxinus spp.Populus grandidentataBetula spp.Prunus serotinaNyssa sylvaticaPicea pungensQuercus prinusPrunus virginianaMagnolia acuminataTsuga canadensisOstrya virginianaCercis canadensisPinus strobusCrataegus spp.Acer spicatumQuercus rubraQuercus spp.Carya glabraPrunus pensylvanicaPopulus tremuloidesAcer rubrumPinus resinosaSassafras albidumQuercus coccineaAmelanchier spp.Ulmus rubraAcer saccharinumAcer pensylvanicum Acer saccharumBetula lentaFraxinus americanaQuercus albaPicea glaucaBetula alleghaniensisLiriodendron tulipifera

Common and Scientific Names of Tree Species Found on ANF

Page 83: Forest Service Northeastern Research Station the Allegheny

79

Region 9 Forest Cover Types

ØRedpine:50percentormoreofthebasalareacomposedofredpine.

ØWhitepine:50percentormoreofthebasalareacomposedofwhitepine.

ØHemlock:50percentormoreofthebasalareacomposedofeasternhemlock.

ØWhitespruce/Norwayspruce:50percentormoreofthebasalareacomposedofwhiteandNorwayspruce.

ØChestnutoak:50percentormoreofthebasalareacomposedofchestnutoak.

ØWhiteoak:50percentormoreofthebasalareacomposedofwhiteoak.

ØRedoak:50percentormoreofthebasalareacomposedofnorthernredoak.

ØOak/hardwoodtransition:50percentormoreofthebasalareacomposedofthecombinationofoaks,redmaple,andblackcherry(oakscompriseatleast25percentofthebasalarea).

ØWhiteoak/redoak:50percentormoreofthebasalareacomposedofwhiteandnorthernredoak.

ØRedmaple:50percentormoreofthebasalareacomposedofredmaple.

ØMixedlowlandhardwoods:50percentormoreofthebasalareacomposedofredmaple,ashspecies,sycamore,silvermaple,andoakspecies.

ØNorthernhardwoods:50percentormoreofthebasalareacomposedofsugarmaple,beech,yellowbirch,orhemlock.

ØAlleghenyhardwoods:50percentormoreofthebasalareacomposedofblackcherry,yellow-poplar,andwhiteash.

ØPincherry:50percentormoreofthebasalareacomposedofpincherry.

ØSugarmaple:50percentormoreofthebasalareacomposedofsugarmaple.

ØAmericanbeech:50percentormoreofthebasalareacomposedofAmericanbeech.

ØBlackbirch/hickory:50percentormoreofthebasalareacomposedofblackbirchandhickory.

ØMixeduplandhardwoods:50percentormoreofthebasalareacomposedofredmaple,blackcherry,yellow-poplar,whiteash,basswood,cucumbertree,andblackbirch.

ØAspen:50percentormoreofthebasalareacomposedofbigtoothandquakingaspen.

Page 84: Forest Service Northeastern Research Station the Allegheny

80

�998-200�FHMData �989FIAData

Foresttype/group Percentofplots Percentofplots

Maple/beech/birch 72.8 73.2

Redmaple/uplandhardwoods 34.3 �9.6

Blackcherry 29.8 38.6

Sugarmaple/beech/yellowbirch 6.9 �5

Cherry/ash/yellow-poplar �.2 0

Hardmaple/basswood 0.6 0

Oak/hickory �5 �8.5

Mixeduplandhardwoods 8 �5.�

Whiteoak/redoak/hickory 4.2 2

Whiteoak � 0.8

Northernredoak �.2 0

Redmaple/oak 0.6 0

Chestnutoak 0 0.6

White/red/jackpine 8.3 �

Easternhemlock 7.9 0.9

Redpine 0.4 0

Whitepine 0 0.�

Nonforest 3.7 0

Nonstocked 0.5 5.�

ExoticSoftwoods 0.6 0

Otherexoticsoftwoods 0.6 0

Intermediate 0.6 0

Aspen/birch 0.4 0.4

Aspen 0.4 0.4

Spruce/fir 0 �.�

Whitespruce 0 �.�

Oak/pine 0 0.7

Whitepine/redoak 0 0.7

Distribution of FHM and FIA Forest Type Groups and Forest TypesThemajorityoftheFHMplotsontheANFwereinthemaple/beech/birchforest-typegroup.Theforesttypeswithinthisgroupincluderedmapleuplandhardwoods,blackcherry,sugarmaple/beech/yellowbirch,cherry/ash/yellow-poplar,andhardmaple/basswood.Theredmaple/uplandhardwoodsandblackcherryforesttypeswerethemostcommonontheANF,coveringabout35and30percent,respectively.Nootherforesttypeaccountedformorethan�0percentoftheplotssurveyed.

Page 85: Forest Service Northeastern Research Station the Allegheny

8�

Variogram Parameters for Kriged Maps

Figure�5—blackcherry:exponentialmodel,nugget=300,sill=350,range=4,500;redmaple:exponentialmodel,nugget=350,sill=�20,range=5,000;Americanbeech:exponentialmodel,nugget=0,sill=�40,range=4,000;easternhemlock:exponentialmodel,nugget=50,sill=2�0,range=5,000;sugarmaple:exponentialmodel,nugget=0,sill=220,range=3,000.

Figure�6—northernredoak:sphericalmodel,nugget=50,sill=200,range=60,000;sweetbirch:sphericalmodel,nugget=90,sill=40,range=�5,000;yellowbirch:sphericalmodel,nugget=20,sill=6,range=20,000;whiteoak:sphericalmodel,nugget=20,sill=65,range=50,000;whiteash:exponentialmodel,nugget=0,sill=�3,range=5,000.

Figure20—exponentialmodel,nugget=7,sill=�5,range=5,000.

Figure2�—blackcherry:exponentialmodel,nugget=�0,sill=�60,range=�2,000;redmaple:sphericalmodel,nugget=0,sill=30,range=�3,000;Americanbeech:exponentialmodel,nugget=30,sill=20,range=8,000;easternhemlock:exponentialmodel,nugget=0,sill=37,range=�5,000;sugarmaple:purenuggetmodel,nugget=�75;whiteash:purenuggetmodel,nugget=�75.

Figure22—exponentialmodel,nugget=0,sill=��0,range=�,500.

Figure23—<9inchesd.b.h.:sphericalmodel,nugget=�60,sill=35,range=�0,000;>9inchesd.b.h.:purenuggetmodel,nugget=��0;>�2inchesd.b.h.:purenuggetmodel,nugget=35;>20inchesd.b.h.:exponentialmodel,nugget=0.3,sill=�.5,range=6,000.

Figure44—exponentialmodel,nugget=0,sill=290,range=5,000.

Figure47—purenuggetmodel,nugget=�6.

Figure53—Parmelia sulcata:purenuggetmodel,nugget=0.�5;Flavoparmelia caperata:purenuggetmodel,nugget=0.23;Cladonia coniocraea:exponentialmodel,nugget=0.�9,sill=0.05,range=�5,000;Phaeophyscia rubropulchra:exponentialmodel,nugget=0.22,sill=0.04,range=30,000.

Figure55—sphericalmodel,nugget=0.009,sill=0.005,range=20,000.

Figure63—FWD:purenuggetmodel,nugget=2.5;CWD:exponentialmodel,nugget=8,sill=�6,range=�0,000;integrateddepth:exponentialmodel,nugget=25,sill=40,range=8000;totalDWM:exponentialmodel,nugget=�00,sill=�50,range=5,000.

Figure65—exponentialmodel,nugget=2,sill=0.75,range=20,000.

Page 86: Forest Service Northeastern Research Station the Allegheny

82

Genus SpeciesPercentof

plotssampled

Anaptychia palmulata 0.6

Candelaria concolor 0.6

Canoparmelia texana 2.3

Cetraria aurescens 0.6

Cetraria oakesiana 0.6

Cladonia 8.�

Cladonia bacillaris 2�.4

Cladonia caespiticia 0.6

Cladonia chlorophaea 0.6

Cladonia coniocraea �.7

Cladonia cristatella 27.2

Cladonia cylindrica 23.�

Cladonia floerkeana 3.5

Cladonia grayi 64.2

Cladonia macilenta 4.0

Cladonia ochrochlora 5.8

Cladonia parasitica �.2

Cladonia pyxidata 0.6

Cladonia ramulosa �.7

Cladonia squamosa �.2

Cladonia squamosa 2.9

Cladonia peziziformis 0.6

Cladonia furcata 4.0

Cladonia rei 8.�

Cladonia incrassata ��.0

Cladonia decorticata 0.6

Cladonia farinacea 0.6

Evernia mesomorpha �.7

Flavoparmelia caperata �.7

Heterodermia speciosa �.2

Lichen Species Sampled on the ANF

Genus SpeciesPercentof

plotssampled

Hypogymnia physodes ��.6

Imshaugia aleurites 67.�

Melanelia subaurifera 0.6

Myelochroa aurulenta 0.6

Parmelia 42.8

Parmelia squarrosa 0.6

Parmelia sulcata 0.6

Parmeliopsis 2.9

Parmeliopsis hyperopta �9.7

Parmeliopsis capitata 7.5

Parmotrema 2.9

Parmotrema margaritatum �2.�

Phaeophyscia pusilloides 85.0

Phaeophyscia rubropulchra 0.6

Physcia adscendens 0.6

Physcia aipolia 0.6

Physcia millegrana �.2

Physcia stellaris 0.6

Physciella melanchra �.2

Physconia 0.6

Physconia detersa 0.6

Punctelia �2.7

Punctelia missouriensis 56.6

Punctelia rudecta �.2

Punctelia subrudecta �.7

Pyxine sorediata 46.8

Usnea 4.0

Usnea hirta 0.6

Usnea strigosa 0.6

Page 87: Forest Service Northeastern Research Station the Allegheny

83

Lichen Species Pollution Tolerances

Genus Species Pollutiontolerancea

Anaptychia palmulata S

Candelaria concolor T

Canoparmelia texana S

Cetraria oakesiana T

Cladonia bacillaris T

Cladonia coniocraea T

Cladonia pyxidata I

Evernia mesomorpha I

Flavoparmelia caperata T

Heterodermia speciosa S

Hypogymnia physodes T

Imshaugia aleurites I

Melanelia subaurifera I

Myelochroa aurulenta T

Parmelia squarrosa I

Parmelia sulcata VT

Parmotrema margaritatum S

Phaeophyscia pusilloides T

Phaeophyscia rubropulchra VT

Physcia adscendens I

Physcia millegrana VT

Physcia stellaris T

Physconia detersa I

Punctelia rudecta T

Punctelia subrudecta T

Pyxine sorediata I

Usnea hirta S

Usnea spp. SaS=sensitive,I=intermediate,T=tolerant,VT=verytolerant.

Page 88: Forest Service Northeastern Research Station the Allegheny

84

DWM Plot Designs (1999 and 2000)

1999

N

4

30°

150°

270°

3

2

1

FWD < 0.25 inchand 0.26 -0.99 inch

FWD 1.00 -2.99 inches

CWD 3.00 inches

7 ft s.d.

14 ft s.d.

55 ft h.d.

s.d.= slope dist., h.d.=horizontal dist.

Subplot

MicroplotCWD Tran.FWD Tran.

Dist. between subplots- (2, 3, and 4) and subplot -center (1): 120 ft at angles (deg.) 0, 120, and 240, respectively; dist. between subplot center and microplot center: 12 ft; depth/coverage of shrubs/herbs/duff/litter estimated on microplot.

Annular plot

30°

150°

270°

30°

150°

270°

30°

150°

270°

2000

N

4

30°

150°

270°

3

2

1

FWD < 0.25 inch& 0.26-0.99 inch

FWD 1.00-2.99 inches

CWD 3.00 inches

7 ft s.d.

14 ft s.d.

55 ft h.d.

s.d.= slope dist., h.d.=horizontal dist.

Subplot

MicroplotCWD Tran.FWD Tran.

Annular plot

30°

150°

270°

30°

150°

270°

30°

150°

270°

Dist. between subplots (2, 3, and 4) and subplot center (1): 120 ft at angles (deg.) 0, 120, and 240, respectively; dist. between subplot center and microplot center: 12 ft.; depth/coverage of shrubs/herbs/duff/litter estimated on microplot.

Page 89: Forest Service Northeastern Research Station the Allegheny

85

Quadrat Ground-Cover Variables

ØDung

ØLichen

ØLitter/duff–acontinuouslayerofaccumulatedorganicmatteroverforestmineralsoil

ØMoss

ØRoad–anyconstructedportionofamaintainedroad,andotherareascompactedandunvegetatedfromregularusebymotorizedvehicles

ØRock–rocks,boulders,oraccumulationsofgravelorpebbles

ØRoot/bole–livingrootsatthebaseoftreesorexposedatthegroundsurface,andcross-sectionalareaoflivetreebolesatthegroundline

ØSoil–physicallyweatheredsoilparentmaterialthatmayormaynotalsobechemicallyorbiologicallyaltered

ØStream/lake–bodyofwatercontainedwithinbanks

ØTrampling

ØTrash

ØWater–pondingorflowingwaterthatisnotcontainedwithinbanks

ØWood–logsandslash,stumps,branches,andlimbs

Page 90: Forest Service Northeastern Research Station the Allegheny
Page 91: Forest Service Northeastern Research Station the Allegheny

87

Appendix IIVegetation Species and Percentage of Subplots Sampled

Scientific name Commonname Percentofsubplotspresent

Acer 0.72

Acer pensylvanicum stripedmaple 33.05

Acer rubrum redmaple 74.43

Acer saccharum sugarmaple 43.97

Acer spicatum mountainmaple 0.�4

Achillea millefolium commonyarrow 0.57

Actaea 0.57

Actaea pachypoda whitebaneberry 0.43

Adiantum pedatum northernmaidenhair 0.43

Agrimonia rostellata beakedagrimony 0.�4

Agrostis �.0�

Agrostis canina velvetbentgrass 0.�4

Agrostis capillaris colonialbentgrass 0.�4

Agrostis gigantea redtop 0.72

Agrostis hyemalis winterbentgrass 0.43

Agrostis perennans uplandbentgrass 9.9�

Agrostis scabra roughbentgrass 3.�6

Agrostis stolonifera creepingbentgrass 0.43

Allium tricoccum wildleek �.29

Ambrosia artemisiifolia annualragweed 0.�4

Amelanchier 37.93

Amelanchier arborea commonserviceberry 9.63

Amelanchier bartramiana oblongfruitserviceberry 0.29

Amelanchier laevis Alleghenyserviceberry �.72

Amelanchier X intermedia intermediateserviceberry 0.�4

Amphicarpaea bracteata Americanhogpeanut 0.86

Anaphalis 0.43

Anaphalis margaritacea westernpearlyeverlasting 0.57

Anemone quinquefolia nightcaps 2.59

Antennaria 0.�4

Antennaria neglecta fieldpussytoes 0.�4

Anthoxanthum odoratum sweetvernalgrass 2.44

Apocynum 0.29

Apocynum cannabinum Indianhemp 0.�4

Arabis hirsuta hairyrockcress 0.�4

Aralia nudicaulis wildsarsaparilla 2.87

Aralia spinosa devil’swalkingstick 3.3

Arctium minus lesserburrdock 0.29

Page 92: Forest Service Northeastern Research Station the Allegheny

88

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Arisaema triphyllum Jackinthepulpit �6.67

Arisaema triphyllum ssp. triphyllum Jackinthepulpit 0.29

Asarum 0.�4

Asplenium platyneuron ebonyspleenwort 0.�4

Aster 2.0�

Athyrium 0.�4

Athyrium filix-femina commonladyfern �.29

Atriplex cristata crestedsaltbush 0.�4

Berberis 0.29

Berberis thunbergii Japanesebarberry 0.57

Betula 9.63

Betula alleghaniensis yellowbirch 29.02

Betula lenta 4�.67

Bidens 0.29

Bidens connata purplestembeggarticks 0.29

Bidens frondosa devil’sbeggartick 0.72

Bidens tripartita threelobebeggarticks 0.�4

Boehmeria 0.43

Boehmeria cylindrica smallspikefalsenettle 0.43

Botrychium 0.43

Botrychium dissectum cutleafgrapefern 0.�4

Botrychium multifidum leatherygrapefern 0.29

Botrychium oneidense bluntlobegrapefern 0.�4

Botrychium virginianum rattlesnakefern 0.�4

Brachyelytrum erectum beardedshorthusk 6�.35

Bromus pubescens hairywoodlandbrome 0.�4

Bulbostylis capillaris densetufthairsedge 0.29

Calamagrostis canadensis bluejoint 0.29

Calamagrostis coarctata arcticreedgrass 0.�4

Calamovilfa longifolia prairiesandreed 0.�4

Caltha palustris yellowmarshmarigold 0.57

Cardamine �.0�

Cardamine diphylla crinkleroot �.44

Cardamine impatiens narrowleafbittercress 0.�4

Cardamine pensylvanica Pennsylvaniabittercress �.�5

Cardamine rotundifolia Americanbittercress 0.�4

Carex 47.7

Carex aestivalis summersedge 7.47

Carex albicans whitetingesedge 0.43

Carex annectens yellowfruitsedge 0.�4

Page 93: Forest Service Northeastern Research Station the Allegheny

89

Scientific name Commonname Percentofsubplotspresent

Carex appalachica Appalachiansedge �.44

Carex arctata droopingwoodlandsedge 2.�6

Carex baileyi Bailey’ssedge 2.0�

Carex blanda easternwoodlandsedge 2.44

Carex bromoides bromelikesedge 0.72

Carex brunnescens brownishsedge �.44

Carex communis fibrousrootsedge �3.22

Carex crinita fringedsedge �.0�

Carex debilis whiteedgesedge 5�.44

Carex debilis var. pubera whiteedgesedge 0.�4

Carex debilis var. rudgei whiteedgesedge �.29

Carex deweyana Deweysedge �.87

Carex digitalis slenderwoodlandsedge 2.44

Carex disperma softleafsedge �.0�

Carex folliculata northernlongsedge 0.�4

Carex gracillima gracefulsedge 2.0�

Carex gynandra noddingsedge �.58

Carex hirtifolia pubescentsedge 0.29

Carex hitchcockiana Hitchcock’ssedge 0.29

Carex hystericina bottlebrushsedge 0.43

Carex intumescens greaterbladdersedge ��.64

Carex laxiculmis spreadingsedge 6.32

Carex laxiculmis var. laxiculmis spreadingsedge 0.�4

Carex laxiflora broadlooseflowersedge 6.6�

Carex leptalea bristlystalkedsedge 0.29

Carex lucorum BlueRidgesedge 0.43

Carex lurida shallowsedge �.�5

Carex normalis greaterstrawsedge 0.�4

Carex novae-angliae NewEnglandsedge 0.86

Carex ormostachya necklacespikesedge 0.�4

Carex pallescens palesedge 0.29

Carex pensylvanica Pennsylvaniasedge 8.9�

Carex plantaginea plantainleafsedge 4.3�

Carex prasina droopingsedge �.44

Carex projecta necklacesedge �.72

Carex radiata easternstarsedge �.58

Carex scabrata easternroughsedge 2.0�

Carex scoparia broomsedge 2.73

Carex seorsa weakstellatesedge 0.�4

Carex stipata owlfruitsedge 0.57

Appendix II continued

Page 94: Forest Service Northeastern Research Station the Allegheny

90

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Carex striatula linedsedge 0.43

Carex swanii Swan’ssedge 8.9�

Carex tenera quillsedge 0.�4

Carex torta twistedsedge 0.�4

Carex trisperma threeseededsedge �.44

Carex vulpinoidea foxsedge 0.86

Carpinus caroliniana Americanhornbeam 7.04

Carya 0.�4

Carya alba mockernuthickory 0.�4

Carya cordiformis bitternuthickory �.0�

Carya glabra pignuthickory 0.86

Carya ovalis redhickory 0.43

Carya ovata shagbarkhickory �.0�

Castanea dentata Americanchestnut 0.86

Caulophyllum thalictroides bluecohosh �.�5

Centaurium pulchellum branchedcentaury 0.�4

Cerastium fontanum ssp. vulgare bigchickweed 0.�4

Chelone glabra whiteturtlehead 0.�4

Chrysosplenium americanum Americangoldensaxifrage �.�5

Cinna �.72

Cinna arundinacea sweetwoodreed 0.86

Cinna latifolia droopingwoodreed �4.5�

Circaea �.29

Circaea alpina smallenchanter’snightshade 5.75

Circaea alpina ssp. alpina smallenchanter’snightshade 0.�4

Circaea lutetiana broadleafenchanter’snightshade 0.�4

Circaea lutetiana ssp. Canadensis broadleafenchanter’snightshade 0.�4

Cirsium 0.�4

Claytonia 0.�4

Clematis virginiana devil’sdarningneedles 0.72

Clinopodium vulgare wildbasil 0.57

Clintonia borealis bluebead 0.�4

Conopholis 0.43

Conopholis americana Americancancer-root 0.�4

Coptis trifolia threeleafgoldthread 8.48

Cornus 0.72

Cornus alternifolia alternateleafdogwood �.44

Cornus florida floweringdogwood 0.�4

Coronilla varia purplecrownvetch 0.�4

Corylus 0.�4

Page 95: Forest Service Northeastern Research Station the Allegheny

9�

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Corylus americana Americanhazelnut 0.57

Corylus cornuta beakedhazelnut 0.57

Crataegus 5.�7

Crataegus intricata Copenhagenhawthorn 0.�4

Crataegus pruinosa waxyfruithawthorn �.�5

Crataegus punctata dottedhawthorn 0.�4

Cypripedium 0.29

Cypripedium acaule moccasinflower �.72

Cystopteris fragilis brittlebladderfern 0.29

Dactylis glomerata orchardgrass �.�5

Dalibarda repens robinrunaway 8.33

Danthonia 7.9

Danthonia compressa flattenedoatgrass 29.89

Danthonia spicata povertyoatgrass 2.87

Dennstaedtia 0.57

Dennstaedtia punctilobula easternhayscentedfern 64.94

Deparia acrostichoides silverfalsespleenwort 2.0�

Deschampsia caespitosa tuftedhairgrass 0.�4

Diarrhena obovata 0.�4

Dichanthelium acuminatum taperedrosettegrass �.72

Dichanthelium acuminatum var. fasciculatum westernpanicgrass 0.43

Dichanthelium clandestinum deertongue �2.64

Dichanthelium dichotomum cypresspanicgrass 0.43

Dichanthelium latifolium broadleafrosettegrass 0.�4

Diervilla lonicera northernbushhoneysuckle �.0�

Digitaria ischaemum smoothcrabgrass 0.�4

Dioscorea �.0�

Dioscorea villosa wildyam 0.43

Disporum lanuginosum yellowfairybells �.29

Doellingeria 0.�4

Doellingeria umbellata parasolwhitetop 7.76

Doellingeria umbellata var. umbellata parasolwhitetop 0.�4

Drosera rotundifolia roundleafsundew 0.�4

Dryopteris �5.23

Dryopteris campyloptera mountainwoodfern �.72

Dryopteris carthusiana spinulosewoodfern 2.�6

Dryopteris intermedia intermediatewoodfern 56.75

Dryopteris marginalis marginalwoodfern �.44

Dryopteris X triploidea triploidwoodfern 0.29

Echinochloa muricata var. microstachya roughbarnyardgrass 0.�4

Page 96: Forest Service Northeastern Research Station the Allegheny

92

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Elymus hystrix easternbottlebrushgrass �.29

Elymus riparius riverbankwildrye 0.29

Elymus virginicus Virginiawildrye 0.�4

Epifagus virginiana beechdrops 7.�8

Epigaea repens trailingarbutus �.0�

Epilobium leptophyllum bogwillowherb 0.�4

Equisetum 0.57

Equisetum arvense fieldhorsetail 0.�4

Equisetum sylvaticum woodlandhorsetail 0.�4

Erechtites hieraciifolia Americanburnweed 3.�6

Eurybia divaricata whitewoodaster �6.24

Eurybia macrophylla bigleafaster �.29

Euthamia graminifolia flat-topgoldentop �.0�

Fagus grandifolia Americanbeech 72.4�

Festuca subverticillata noddingfescue �.87

Festuca trachyphylla hardfescue 0.�4

Fragaria 0.29

Fragaria virginiana Virginiastrawberry 0.�4

Frangula alnus glossybuckthorn 3.59

Fraxinus 0.29

Fraxinus americana whiteash �8.97

Galeopsis bifida splitliphempnettle 0.�4

Galium �.0�

Galium aparine stickywilly 0.57

Galium asprellum roughbedstraw 0.57

Galium circaezans licoricebedstraw 0.57

Galium obtusum bluntleafbedstraw 0.29

Galium odoratum sweetscentedbedstraw 0.29

Galium palustre commonmarshbedstraw 0.�4

Galium tinctorium stiffmarshbedstraw 0.72

Galium triflorum fragrantbedstraw 6.6�

Gaultheria procumbens easternteaberry �0.49

Gaylussacia baccata blackhuckleberry �.87

Geranium 0.�4

Geranium maculatum spottedgeranium 0.�4

Geum 0.43

Geum canadense whiteavens �.29

Glyceria 0.86

Glyceria melicaria mannagrass 8.05

Glyceria striata fowlmannagrass 2.3

Page 97: Forest Service Northeastern Research Station the Allegheny

93

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Goodyera tesselata checkeredrattlesnakeplantain 0.�4

Gratiola neglecta clammyhedgehyssop 0.�4

Gymnocarpium 0.72

Hackelia virginiana beggarslice 0.�4

Hamamelis virginiana Americanwitchhazel �6.67

Hepatica nobilis hepatica �.58

Hepatica nobilis var. acuta sharplobehepatica 0.86

Hepatica nobilis var. obtusa roundlobehepatica 0.29

Hieracium 0.57

Hieracium lachenalii commonhawkweed 0.�4

Hieracium paniculatum Alleghenyhawkweed 0.�4

Hieracium scabrum roughhawkweed 0.�4

Hieracium venosum rattlesnakeweed 0.�4

Hieracium X marianum hawkweed 0.�4

Holcus lanatus commonvelvetgrass �.44

Houstonia caerulea azurebluet 0.57

Huperzia 0.57

Huperzia lucidula shiningclubmoss 9.63

Hydrocotyle americana Americanmarshpennywort 0.86

Hydrophyllum canadense bluntleafwaterleaf 0.29

Hydrophyllum virginianum Shawneesalad 0.29

Hypericum �.44

Hypericum ellipticum paleSt.Johnswort 0.29

Hypericum mutilum dwarfSt.Johnswort 0.43

Hypericum perforatum commonSt.Johnswort 0.43

Hypericum punctatum spottedSt.Johnswort 0.29

Ilex montana mountainholly 23.7�

Ilex verticillata commonwinterberry 0.29

Impatiens 5.75

Impatiens capensis jewelweed �.87

Juncus bufonius toadrush 0.29

Juncus effusus commonrush 4.89

Juncus effusus var. decipiens lamprush 0.�4

Juncus tenuis povertyrush �.58

Kalmia latifolia mountainlaurel 4.�7

Laportea canadensis Canadianwoodnettle �.�5

Leersia 0.�4

Leersia oryzoides ricecutgrass 0.43

Leersia virginica whitegrass 3.�6

Leucanthemum vulgare oxeyedaisy 0.72

Page 98: Forest Service Northeastern Research Station the Allegheny

94

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Lilium philadelphicum woodlily 0.�4

Linaria vulgaris butterandeggs 0.�4

Lindera benzoin northernspicebush �.�5

Liriodendron tulipifera tuliptree 9.77

Lobelia inflata Indian-tobacco �.29

Lobelia spicata palespikelobelia 0.�4

Lolium arundinaceum tallfescue 0.�4

Lolium perenne perennialryegrass 0.�4

Lolium pratense meadowryegrass 0.29

Lonicera canadensis Americanflyhoneysuckle 0.�4

Lotus corniculatus birdfootdeervetch �.0�

Luzula 0.43

Luzula acuminata hairywoodrush 0.43

Luzula multiflora commonwoodrush 0.72

Lycopodiella 0.�4

Lycopodium 6.75

Lycopodium annotinum stiffclubmoss 5.03

Lycopodium clavatum runningclubmoss 8.9�

Lycopodium dendroideum treegroundpine 4.�7

Lycopodium digitatum fanclubmoss 4.02

Lycopodium obscurum rareclubmoss 23.99

Lycopodium tristachyum deeprootclubmoss 0.�4

Lycopus 2.�6

Lycopus uniflorus northernbugleweed 3.88

Lycopus virginicus Virginiawaterhorehound 0.72

Lysimachia ciliata fringedloosestrife 0.�4

Lysimachia quadrifolia whorledyellowloosestrife 4.02

Magnolia acuminata cucumber-tree 26.0�

Maianthemum canadense Canadamayflower 48.85

Maianthemum racemosum featheryfalselilyofthevally �.44

Malus 0.72

Medeola virginiana Indiancucumber 40.23

Melampyrum lineare narrowleafcowwheat 0.�4

Mentha arvensis wildmint 0.�4

Milium effusum Americanmilletgrass �.58

Mitchella repens partridgeberry 50.86

Mitella diphylla twoleafmiterwort 0.�4

Monotropa uniflora Indianpipe ��.49

Muhlenbergia sylvatica woodlandmuhly 0.29

Myosotis arvensis fieldforget-me-not 0.�4

Page 99: Forest Service Northeastern Research Station the Allegheny

95

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Myosotis scorpioides trueforget-me-not 0.�4

Nyssa sylvatica blackgum 4.45

Oclemena acuminata whorledwoodaster 5.75

Onoclea sensibilis sensitivefern 5.46

Oryzopsis 0.�4

Oryzopsis asperifolia roughleafricegrass �.0�

Osmorhiza claytonii Clayton’ssweetroot 0.43

Osmunda 4.02

Osmunda cinnamomea cinnamonfern �2.79

Osmunda claytoniana interruptedfern 3.74

Ostrya virginiana hophornbeam �0.06

Oxalis 0.72

Oxalis corniculata creepingwoodsorrel 0.�4

Oxalis grandis greatyellowwoodsorrel 0.29

Oxalis montana mountainwoodsorrel 36.35

Oxalis stricta commonyellowoxalis 4.3�

Packera aurea goldenragwort 0.29

Panax quinquefolius Americanginseng 0.�4

Panicum 0.43

Panicum dichotomiflorum fallpanicgrass 0.�4

Parthenocissus quinquefolia Virginiacreeper 0.43

Phalaris arundinacea reedcanarygrass 0.29

Phleum pratense timothy 0.86

Phytolacca americana Americanpokeweed 0.72

Picea abies Norwayspruce 0.57

Picea glauca whitespruce 0.29

Pilea pumila Canadianclearweed 5.�7

Pinus resinosa redpine 0.43

Pinus strobus easternwhitepine 3.45

Plantago 0.29

Plantago rugelii blackseedplantain 0.�4

Plantago virginica Virginiaplantain 0.�4

Platanthera 0.43

Platanthera clavellata smallgreenwoodorchid 0.29

Platanthera hookeri Hooker’sorchid 0.�4

Platanthera macrophylla greaterroundleavedorchid 0.�4

Platanthera orbiculata lesserroundleavedorchid 0.86

Platanus occidentalis Americansycamore 0.�4

Poa 0.72

Poa alsodes grovebluegrass 4.45

Page 100: Forest Service Northeastern Research Station the Allegheny

96

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Poa compressa Canadabluegrass 0.29

Poa nemoralis woodbluegrass �.�5

Poa pratensis Kentuckybluegrass 0.72

Poa saltuensis oldpasturebluegrass �.0�

Poa sylvestris woodlandbluegrass 0.�4

Poa trivialis roughbluegrass 0.86

Podophyllum peltatum mayapple 2.59

Polygala paucifolia gaywings 0.72

Polygonatum �.44

Polygonatum biflorum smoothSolomon’sseal 0.86

Polygonatum pubescens hairySolomon’sseal 4.45

Polygonum 0.43

Polygonum amphibium waterknotweed 0.29

Polygonum caespitosum orientalladysthumb 0.43

Polygonum cilinode fringedblackbindweed 4.74

Polygonum hydropiperoides swampsmartweed 0.43

Polygonum persicaria spottedladysthumb 0.29

Polygonum punctatum dottedsmartweed 0.43

Polygonum sagittatum arrowleaftearthumb 2.87

Polygonum virginianum jumpseed 0.�4

Polypodium 0.�4

Polypodium virginianum rockpolypody 0.57

Polystichum acrostichoides Christmasfern �5.95

Populus 0.29

Populus grandidentata bigtoothaspen 2.87

Populus tremuloides quakingaspen 3.88

Potentilla 0.43

Potentilla norvegica Norwegiancinquefoil 0.�4

Potentilla simplex commoncinquefoil 6.6�

Prenanthes 3.�6

Prenanthes alba whiterattlesnakeroot 0.29

Prenanthes altissima tallrattlesnakeroot 0.43

Prenanthes trifoliolata galloftheearth 0.29

Prunella vulgaris commonselfheal 2.�6

Prunus 0.29

Prunus americana Americanplum 0.�4

Prunus pensylvanica pincherry �0.34

Prunus serotina blackcherry 68.97

Prunus virginiana chokecherry 0.57

Pteridium �.0�

Page 101: Forest Service Northeastern Research Station the Allegheny

97

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Pteridium aquilinum westernbrackenfern 8.48

Pycnanthemum 0.�4

Pyrola 0.57

Quercus 0.72

Quercus alba whiteoak 9.63

Quercus coccinea scarletoak �.44

Quercus prinus chestnutoak 2.0�

Quercus rubra northernredoak 20.��

Quercus velutina blackoak 5.03

Ranunculus 2.3

Ranunculus hispidus bristlybuttercup 0.29

Ranunculus hispidus var. caricetorum bristlybuttercup 0.�4

Ranunculus recurvatus blisterwort 0.29

Ranunculus repens creepingbuttercup 0.57

Rhododendron 0.57

Rhododendron prinophyllum earlyazalea 0.�4

Rhus hirta staghornsumac 0.�4

Ribes �.�5

Ribes cynosbati easternpricklygooseberry 0.29

Ribes glandulosum skunkcurrant 0.43

Ribes hirtellum hairystemgooseberry 0.�4

Ribes lacustre pricklycurrant 0.�4

Ribes rotundifolium Appalachiangooseberry �.72

Rosa 0.72

Rosa carolina Carolinarose 0.29

Rosa multiflora multiflorarose �.44

Rubus �9.4

Rubus allegheniensis Alleghenyblackberry 35.34

Rubus flagellaris northerndewberry 2.73

Rubus hispidus bristlydewberry ��.2�

Rubus idaeus Americanredraspberry 5.46

Rubus occidentalis blackraspberry 0.86

Rubus pubescens dwarfredblackberry 0.29

Rumex 0.�4

Rumex acetosella commonsheepsorrel �.�5

Rumex crispus curlydock 0.29

Rumex obtusifolius bitterdock 0.29

Salix 0.43

Salix sericea silkywillow 0.29

Sambucus 2.3

Page 102: Forest Service Northeastern Research Station the Allegheny

98

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Sambucus nigra ssp. canadensis commonelderberry 0.72

Sambucus racemosa redelderberry 0.43

Sassafras albidum sassafras 5.03

Schizachne purpurascens falsemelic 0.29

Schizachyrium scoparium littlebluestem 0.�4

Scirpus 0.43

Scirpus atrovirens greenbulrush �.58

Scirpus cyperinus woolgrass �.29

Scirpus georgianus Georgiabulrush 0.29

Scirpus polyphyllus leafybulrush 0.43

Scutellaria 0.�4

Scutellaria lateriflora blueskullcap �.0�

Sisyrinchium 0.�4

Sisyrinchium angustifolium narrowleafblue-eyedgrass 0.�4

Smilax 2.73

Smilax glauca catgreenbrier �.0�

Smilax herbacea smoothcarrionflower �.0�

Smilax rotundifolia roundleafgreenbrier 3.�6

Smilax tamnoides bristlygreenbrier 0.86

Solanum dulcamara climbingnightshade 0.29

Solidago �.58

Solidago caesia wreathgoldenrod 0.43

Solidago caesia var. curtisii mountaindecumbentgoldenrod 0.�4

Solidago canadensis Canadagoldenrod 0.�4

Solidago canadensis var. scabra Canadagoldenrod 0.57

Solidago flexicaulis zigzaggoldenrod 0.57

Solidago rugosa wrinkleleafgoldenrod �6.24

Solidago rugosa ssp. aspera wrinkleleafgoldenrod 0.43

Solidago rugosa ssp. rugosa var. villosa wrinkleleafgoldenrod 0.�4

Sorbus 0.29

Sorbus aucuparia Europeanmountainash �.0�

Spiraea tomentosa steeplebush 0.86

Stellaria 0.�4

Stellaria borealis borealstarwort 0.29

Stellaria graminea grasslikestarwort 0.�4

Stellaria longifolia longleafstarwort 0.29

Streptopus lanceolatus var. roseus twistedstalk 2.44

Symphyotrichum lanceolatum whitepanicleaster 0.29

Symphyotrichum lateriflorum calicoaster 0.57

Symphyotrichum lateriflorum var. lateriflorum calicoaster 0.�4

Page 103: Forest Service Northeastern Research Station the Allegheny

99

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Symphyotrichum novae-angliae NewEnglandaster 0.�4

Symphyotrichum novi-belgii NewYorkaster 0.�4

Symphyotrichum pilosum hairywhiteoldfieldaster 0.43

Symphyotrichum prenanthoides crookedstemaster �.87

Symphyotrichum racemosum smoothwhiteoldfieldaster 0.57

Symplocarpus foetidus skunkcabbage 0.72

Taraxacum officinale commondandelion �.58

Thalictrum dioicum earlymeadow-rue 0.�4

Thelypteris noveboracensis NewYorkfern 57.33

Tiarella cordifolia heartleaffoamflower �0.92

Tilia americana Americanbasswood 4.�7

Toxicodendron radicans easternpoisonivy 0.43

Trientalis borealis starflower 26.58

Trifolium 0.29

Trifolium pratense redclover 0.�4

Trifolium repens whiteclover 0.�4

Trillium �5.23

Trillium erectum redtrillium �.87

Trillium undulatum paintedtrillium 8.48

Tsuga canadensis easternhemlock 3�.9

Tussilago farfara coltsfoot 0.�4

Typha angustifolia narrowleafcattail 0.�4

Ulmus americana Americanelm 0.�4

Ulmus rubra slipperyelm 0.29

Urtica dioica stingingnettle 0.29

Uvularia perfoliata perfoliatebellwort 0.29

Uvularia sessilifolia sessileleafbellwort 25.72

Vaccinium 0.72

Vaccinium angustifolium lowbushblueberry 7.76

Vaccinium myrtilloides velvetleafhuckleberry 0.�4

Vaccinium pallidum BlueRidgeblueberry 4.3�

Vaccinium stamineum deerberry �.58

Veratrum viride greenfalsehellebore 0.72

Veronica 0.�4

Veronica officinalis commongypsyweed 3.02

Viburnum 0.72

Viburnum acerifolium mapleleafviburnum 5.03

Viburnum dentatum southernarrowwood 0.57

Viburnum dentatum var. lucidum southernarrowwood 0.29

Viburnum lantanoides hobblebush 0.86

Page 104: Forest Service Northeastern Research Station the Allegheny

�00

Appendix II continued

Scientific name Commonname Percentofsubplotspresent

Viburnum nudum var. cassinoides withe-rod 0.57

Vicia 0.�4

Vicia sativa gardenvetch 0.�4

Viola 54.74

Viola blanda sweetwhiteviolet 8.�9

Viola blanda var. palustriformis sweetwhiteviolet �.72

Viola hastata halberdleafyellowviolet 0.57

Viola hirsutula southernwoodlandviolet 0.29

Viola macloskeyi smallwhiteviolet 0.43

Viola macloskeyi ssp. pallens smoothwhiteviolet 0.29

Viola pubescens downyyellowviolet 0.72

Viola rostrata longspurviolet 0.29

Viola rotundifolia roundleafyellowviolet 0.57

Viola sagittata arrowleafviolet 0.29

Viola sororia commonblueviolet 0.72

Viola tricolor johnnyjumpup 0.�4

Vitis 3.3

Vitis aestivalis summergrape 0.�4

Waldsteinia fragarioides Appalachianbarrenstrawberry 0.72

Page 105: Forest Service Northeastern Research Station the Allegheny

�0�

Introduced Vegetation Species and Percent of Subplots Sampled

Scientificname Commonname Percentofsubplotspresent

Achillea millefolium commonyarrow 0.57

Agrostis capillaris colonialbentgrass 0.�4

Agrostis gigantea redtop 0.72

Anthoxanthum odoratum sweetvernalgrass 2.44

Arctium minus lesserburrdock 0.29

Berberis thunbergii Japanesebarberry 0.57

Cardamine impatiens narrowleafbittercress 0.�4

Centaurium pulchellum branchedcentaury 0.�4

Cerastium fontanum ssp. vulgare bigchickweed 0.�4

Coronilla varia purplecrownvetch 0.�4

Dactylis glomerata orchardgrass �.�5

Digitaria ischaemum smoothcrabgrass 0.�4

Festuca trachyphylla hardfescue 0.�4

Frangula alnus glossybuckthorn 3.59

Galeopsis bifida splitliphempnettle 0.�4

Galium odoratum sweetscentedbedstraw 0.29

Hieracium lachenalii commonhawkweed 0.�4

Holcus lanatus commonvelvetgrass �.44

Hypericum perforatum commonSt.Johnswort 0.43

Leucanthemum vulgare oxeyedaisy 0.72

Linaria vulgaris butterandeggs 0.�4

Lolium arundinaceum tallfescue 0.�4

Lolium perenne perennialryegrass 0.�4

Lolium pratense meadowryegrass 0.29

Lotus corniculatus birdfootdeervetch �.0�

Myosotis arvensis fieldforget-me-not 0.�4

Myosotis scorpioides trueforget-me-not 0.�4

Phleum pratense timothy 0.86

Picea abies Norwayspruce 0.57

Poa compressa Canadabluegrass 0.29

Poa pratensis Kentuckybluegrass 0.72

Poa trivialis roughbluegrass 0.86

Polygonum caespitosum orientalladysthumb 0.43

Polygonum persicaria spottedladysthumb 0.29

Ranunculus repens creepingbuttercup 0.57

Rosa multiflora multiflorarose �.44

Rumex acetosella commonsheepsorrel �.�5

Rumex crispus curlydock 0.29

Rumex obtusifolius bitterdock 0.29

Page 106: Forest Service Northeastern Research Station the Allegheny

�02

Scientificname Commonname Percentofsubplotspresent

Solanum dulcamara climbingnightshade 0.29

Sorbus aucuparia Europeanmountainash �.0�

Stellaria graminea grasslikestarwort 0.�4

Taraxacum officinale commondandelion �.58

Trifolium pratense redclover 0.�4

Trifolium repens whiteclover 0.�4

Tussilago farfara coltsfoot 0.�4

Typha angustifolia narrowleafcattail 0.�4

Viola tricolor johnnyjumpup 0.�4

Introduced Vegetation Species and Percent of Subplots Sampled continued.

Page 107: Forest Service Northeastern Research Station the Allegheny

Printed on Recycled Paper

Morin, Randall S.; Liebhold, Andrew M.; Gottschalk, K.W.; Woodall, Chris, W.; Twardus, Daniel B.; White, Robert L.; Horsley, Stephen B.; Ristau, Todd E. 2006. Analysis of forest health monitoring surveys on the Allegheny National Forest (1998-2001). Gen. Tech. Rep. NE-339. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 102 p.

Describes forest vegetation and health conditions on the Allegheny National Forest (ANF). During the past 20 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical aerial surveys (1984-98), Forest Inventory and Analysis plot data collected in 1989, and FHM plot data collected 1998-2001 were analyzed to compare disturbed and undisturbed areas. Tree mortality and crown dieback levels were compared between undefoliated areas and areas defoliated by cherry scallopshell moth, elm spanworm, and gypsy moth. American beech mortality was compared inside and outside the beech bark disease killing front. This study illustrates the value of an intensified grid of P3 plots and demonstrates the integration of aerial survey and plot data.

Keywords: forest health, crown condition, cherry scallopshell moth, elm spanworm, gypsy moth, beech bark disease

Page 108: Forest Service Northeastern Research Station the Allegheny

Headquarters of the Northeastern Research Station is in Newtown Square, Pennsylvania. Field laboratories are maintained at:

Amherst, Massachusetts, in cooperation with the University of Massachusetts

Burlington, Vermont, in cooperation with the University of Vermont

Delaware, Ohio

Durham, New Hampshire, in cooperation with the University of New Hampshire

Hamden, Connecticut, in cooperation with Yale University

Morgantown, West Virginia, in cooperation with West Virginia University

Parsons, West Virginia

Princeton, West Virginia

Syracuse, New York, in cooperation with the State University of New York, College of Environmental Sciences and Forestry at Syracuse University

Warren, Pennsylvania

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, DC 20250-9410, or call (800)795-3272 (voice) or (202)720-6382 (TDD). USDA is an equal opportunity provider and employer.

“Caring for the Land and Serving People Through Research”