for special issue of synthese on modeling, idealization...

25
For special issue of Synthese on Modeling, Idealization and Representation Explaining Features of Fine-Grained Phenomena Using Abstract Analyses of Phenomena and Mechanisms: Two Examples from Chronobiology William Bechtel Department of Philosophy and Center for Circadian Biology University of California, San Diego Abstract Explanations of biological phenomena such as cell division, protein synthesis or circadian rhythms commonly take the form of models of the responsible mechanisms. Recently philosophers of science have attempted to analyze this practice, presenting mechanisms as organized collections of parts performing operations that together produce the phenomenon. But in some cases what researchers seek to explain is not a general phenomenon, but a specific feature of a more fine-grained phenomenon. In some of these cases, it is not the model of the mechanism that performs the explanatory work. I consider a case in which the investigator offered an abstract representation of a fine-grained phenomenon to show why in had the feature in question. I consider a second case in which a researcher abstracted from the mechanism to identify a design principle that explains why the functioning mechanism exhibits a specific feature. I. Introduction A common philosophical account of explanation in biology is that biologists advance models of mechanisms to explain general biological phenomena such as cell division, protein synthesis, or circadian rhythms. On this account, mechanisms are construed as organized collections of parts performing operations that together produce the phenomenon (Bechtel & Richardson, 1993/2010; Bechtel & Abrahamsen, 2005; Machamer, Darden, & Craver, 2000; Craver & Darden, 2013). This picture fits textbook presentations of biology and many review papers, which seek to explain general phenomena. But often, especially in research studies, the focus is on a specific feature of a more fine-grained phenomena, not the general phenomenon itself. What scientists offer as explanations of these features of more narrowly construed phenomena also differs from the explanations for general phenomena. Unlike in the case of general phenomena, models of mechanisms often fail to provide the sought after explanation. In what follows I will first introduce in section 2 the claim that often the target of explanations is a specific feature of a fine-grained phenomena. In subsequent sections I describe two examples, both drawn from research on the general phenomenon of circadian rhythms, in which researchers focused on particular features of fine-grained phenomena. Rather than offering a detailed mechanistic account of the responsible mechanism, the researchers adopted different strategies. In the first example, discussed in section 3, Winfree, working before even a modestly articulated mechanism for circadian rhythms had been proposed, appealed to a mathematical truth (Lange, 2012) both to predict an

Upload: others

Post on 14-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ForspecialissueofSyntheseonModeling,IdealizationandRepresentation

ExplainingFeaturesofFine-GrainedPhenomenaUsingAbstractAnalysesofPhenomenaandMechanisms:TwoExamplesfromChronobiology

WilliamBechtel

DepartmentofPhilosophyandCenterforCircadianBiologyUniversityofCalifornia,SanDiego

Abstract

Explanationsofbiologicalphenomenasuchascelldivision,proteinsynthesisorcircadianrhythmscommonlytaketheformofmodelsoftheresponsiblemechanisms.Recentlyphilosophersofsciencehaveattemptedtoanalyzethispractice,presentingmechanismsasorganizedcollectionsofpartsperformingoperationsthattogetherproducethephenomenon.Butinsomecaseswhatresearchersseektoexplainisnotageneralphenomenon,butaspecificfeatureofamorefine-grainedphenomenon.Insomeofthesecases,itisnotthemodelofthemechanismthatperformstheexplanatorywork.Iconsideracaseinwhichtheinvestigatorofferedanabstractrepresentationofafine-grainedphenomenontoshowwhyinhadthefeatureinquestion.Iconsiderasecondcaseinwhicharesearcherabstractedfromthemechanismtoidentifyadesignprinciplethatexplainswhythefunctioningmechanismexhibitsaspecificfeature.

I.IntroductionAcommonphilosophicalaccountofexplanationinbiologyisthatbiologistsadvancemodelsofmechanismstoexplaingeneralbiologicalphenomenasuchascelldivision,proteinsynthesis,orcircadianrhythms.Onthisaccount,mechanismsareconstruedasorganizedcollectionsofpartsperformingoperationsthattogetherproducethephenomenon(Bechtel&Richardson,1993/2010;Bechtel&Abrahamsen,2005;Machamer,Darden,&Craver,2000;Craver&Darden,2013).Thispicturefitstextbookpresentationsofbiologyandmanyreviewpapers,whichseektoexplaingeneralphenomena.Butoften,especiallyinresearchstudies,thefocusisonaspecificfeatureofamorefine-grainedphenomena,notthegeneralphenomenonitself.Whatscientistsofferasexplanationsofthesefeaturesofmorenarrowlyconstruedphenomenaalsodiffersfromtheexplanationsforgeneralphenomena.Unlikeinthecaseofgeneralphenomena,modelsofmechanismsoftenfailtoprovidethesoughtafterexplanation.InwhatfollowsIwillfirstintroduceinsection2theclaimthatoftenthetargetofexplanationsisaspecificfeatureofafine-grainedphenomena.InsubsequentsectionsIdescribetwoexamples,bothdrawnfromresearchonthegeneralphenomenonofcircadianrhythms,inwhichresearchersfocusedonparticularfeaturesoffine-grainedphenomena.Ratherthanofferingadetailedmechanisticaccountoftheresponsiblemechanism,theresearchersadopteddifferentstrategies.Inthefirstexample,discussedinsection3,Winfree,workingbeforeevenamodestlyarticulatedmechanismforcircadianrhythmshadbeenproposed,appealedtoamathematicaltruth(Lange,2012)bothtopredictan

Page 2: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.2

importantandsurprisingfeatureofthespecificfine-grainedphenomenonofentrainmentofcircadianrhythms.Fromthemathematicaltruthandtheempiricaldetailsofentrainment,heofferedanexplanationofwhythephenomenonhadtohavethatfeature.Thesecondexample,discussedinsection4,involvesresearchafterarelativelycomplicatedmechanismhadbeenproposed.Whileacceptingthattheproposedmechanismcouldgeneratecircadianrhythms,manyresearcherswerepuzzledaboutwhyitproducedsustainedoscillations.Toaddressthisissue,Uedaabstractedfromthedetailsofthemechanismtocharacterizetwodesignprinciples(Green,2015)1whoseabilitytogeneratesustainedoscillationswasalreadywellunderstood.Inbothofthesecases,whileanaccountofamechanismremainsrelevanttounderstandingthegeneralphenomenon,itisnotwhatexplainsthefeaturesofthefine-grainedphenomenononwhichtheresearcherswerefocused.Toprovidebackgroundforthespecificcasesthatfollow,Iofferhereabriefsketchofthehistoryofresearchoncircadianrhythms.ObservationsofdailyrhythmsinbehaviororphysiologicalactivitiesdatebacktoancientGreece,withthedailyfoldingandunfoldingofplantleavesprovidingoneofthemostcommonlycitedexamples.Byplacingmimosaplantsinadarkclosetandobservingthattheycontinuedtofoldandunfoldtheirleaves,DeMairan(1729)providesomeofthefirstevidencethattheserhythmsweregeneratedendogenously.Suspicionsremainedthatsomeexternalcuewasresponsibleforsuchbehavioruntilcrucialevidencewasprovidedthatwhenkeptisolatedfromknownenvironmentaltimecues(Zeitgebers)rhythmscontinued,butwithaperiodslightlydifferentthan24hours(aconditionreferredtoasfree-running).Toemphasizethattheperiodisonlyapproximately24hours,Halberg(1959)introducedthenamecircadian(fromcircaanddies).Researchersatthetimeofthe1960SymposiumonBiologicalClocksatColdSpringHarbor,thefirstlargeconferenceofcircadianresearchers,largelyacceptedthehypothesisthattheserhythmswereendogenouslygenerated.Theuseofthetermclock2inthetitlealludestoagrowinginterestinidentifyingthemechanismresponsiblefortheserhythms.Althoughmanyspeculativeproposalwereadvanced(Edmunds,1988),progressinprocuringrelevantempiricalevidencewasslow.Throughaforwardscreenofmutantfruitflieswithalteredrhythms,KonopkaandBenzer(1971)identifiedagenewhich,whenmutated,resultedinsloworfastrhythmsorarrhythmicbehavior,whichtheynamedperiodorper.Studiesoftheoperationsinwhichperparticipatedhadtoawaittheadventofcloninginthe1980s.Usingcloning,Hardin,Hall,andRosbash(1990)discoveredthatthemRNAandproteinPERintowhichperwastranscribedandtranslatedbothalsooscillatedwithaboutafour-hourphasedelaybetweenthem,andhypothesizedatranscription-translationfeedbackloop(TTFL)inwhichtheproteinPERfeedsbacktoinhibitthetranscriptionofitsowngene(Figure1).MentalanimationofsuchafeedbackloopprovidesanintuitiveaccountofhowaTTFLcouldgeneratecircadianoscillation:1LevyandBechtel(2013)explorehowabstractingfromdetailsofamechanismcanrevealtheorganizationofthemechanismthatisresponsibleforcertainphenomena.InthispaperIextendthefocusonabstractionasatoolfordevelopingexplanationsfurther.2AlthoughtheclockmetaphorwasactuallyintroducedbyBrown,whowasoneofthelastholdoutsfortheviewthatcircadianrhythmsdependedonenvironmentalcues,Pittendrighsoonadoptedittocharacterizetheendogenousmechanismhetooktoberesponsible.

Page 3: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.3

whenPERconcentrationsarelow,transcriptionwilloccur,resultinginasteadyincreaseintheconcentrationofPER.AstheconcentrationofPERrises,however,itexertsaninhibitoryeffectontranscription.ConcentrationswillthendropasPERgraduallydegradesandisnotreplaced.AstheconcentrationofPERdrops,though,PERceasestoinhibittranscriptionandconcentrationsofPERwillraiseagain.ResearchoverthecourseofthenexttwodecadesfilledinthisinitialproposalresultinginthecomplicatedmechanismshowninFigure8below.

Figure1.ThedelayednegativefeedbackmechanismforgeneratingcircadianrhythmsproposedbyHardinetal.(1990).

Thearticulationofthismechanismforthegeneralphenomenonofcircadianrhythmsisrightlyregardedasamajorachievement.Whileitprovidesabackdrop,itdoesnotitselfexplainthefeaturesofthemorefine-grainedcircadianphenomenaonwhichIwillfocusinsections3and4.2.ExplainingSpecificFeaturesofFine-GrainedPhenomenaInpresentingphenomenaasthetargetsofexplanation,mechanistshaveappealedtoBogenandWoodward’s(1988)contentionthatscientifictheoriesdonotexplainobservationsordatabutphenomena.Phenomenaofthesortthatareexplainedinsciencearenotindividualoccurrencesfromwhichdatamightbeprocured,butrepeatableones.BogenandWoodwardofferasexamplesofphenomena“weakneutralcurrents,thedecayoftheproton,andchunkingandrecencyeffectsinhumanmemory.”WhenmechanistsadoptBogenandWoodward’sdistinction,theytookupbiologicalexamplessuchasproteinsynthesis,thegenerationofactionpotentials,oxidativephosphorylation,andcircadianrhythms.AsinBogenandWoodward’sexamples,researchershadtocarryoutagreatdealofresearchandthenextractfromtheconflictingandnoisydatatheygeneratedaproposalastothegeneralphenomenonthatwasoccurring.Statisticalanddatareductiontechniquesfiguredsignificantlyinthisprocessalongwithdesigningexperimentstoruleoutpossibleconfounds.Thisresearchwasnotitselfdirectedatexplanation,butataccuratelycharacterizingphenomena.Oftenintheearlystagesofinquiry,phenomenaarecharacterizedverygenerally.Phenomenasuchasproteinsynthesisandcircadianrhythmicityoccurwidelyamongstlivingorganismsandthewaytheyarecharacterizedabstractsfromparticulardetailssoastocaptureimportantcommonfeatures.Forexample,circadianrhythmsarecharacterized

Page 4: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.4

asendogenouslygeneratedoscillationsofapproximately24-hoursthataremanifestinmanyphysiologicalandbehavioractivities,areentrainableinresponsetodifferentenvironmentalstimuli,andaretemperaturecompensated.Thesefeaturescharacterizecircadianrhythmsinorganismsfromcyanobacteriatohumanseventhoughtherearemanyimportantdifferencesthatcanbeidentified.Oncecharacterized,manyresearcherspursuetheprojectoftryingtoexplainthembyidentifyinganddescribingtheresponsiblemechanism.Foreachofthebiologicalphenomenanotedabovetherearenowgenerallyacceptedmechanisticaccountsthatdescribethetypesofentitiesinvolved,theactivitiesoroperationstheyperform,andhowthecomponentsareorganizedinspaceandtimesoastoproducethephenomenon.Accountsofthesephenomenaarepresentedintextbooksandsometimesinreviewarticles.Thesegeneralphenomenaarenottheexplanatorytargetsofindividualresearchprojects.Rather,individualresearchprojectsaredirectedatspecificfeaturesattributedtophenomenathatthemselvesaredescribedinamuchmorefine-grainedmanner.Ifonehopestounderstandexplanationasitispursuedinbiologyandrelatedfields,oneneedstofocusonspecificfeaturesofmorefine-grainedaccountsofphenomena.Toappreciateonereasonresearchersfocusonfeaturesofmorefine-grainedphenomena,itwillbeusefultoconsiderhowdatacontributestocharacterizingphenomena.Thedataresearcherscollectinthecourseofdelineatingphenomenaareoftendetailedandquantitative.Asaresult,onecandescribephenomenainamuchmoredetailedway,quantifyingthephenomenon,notjustdescribingitqualitatively.Forexample,circadianrhythmsnotonlyinvolveapproximately24-houroscillationsinphysiologyandbehavior,buteachoftheseactivitiesexhibitsadifferent24-hourpattern(e.g.,peakingatdifferenttimesofday).And,aswewillseeinthenextsection,circadianoscillationsarenotjustentrainabletoenvironmentalstimuli,butshowaparticularquantitativepatternofadvancementordelayinresponsetospecifictypesandamountsofstimuli.Thesespecificpatternsarethenthetargetofexplanatoryresearch.Tocharacterizethesefeatures,researchersoftenfinditcriticaltoidentifythephenomenathemselvesinamorefine-grainedwayby,forexample,focusingonlyonthephenomenonasexhibitedinagivengroupoforganisms.Whilerecognizingthattherewillbedifferencesbetweenmodelorganisms(suchasmice)andtheorganismsofinterest(e.g.,humans),researchersmayascertainquantitativedetailaboutthephenomenoninthemodelorganismandtrytoexplainthese.Suchpursuitoffinergraincontinuesevenwithinspecies;forexample,differentresearchersfocus,onthequantifieddetailsofcircadianrhythmsofyoungpeopleortheaged,oronthosewithdepression.Therearemanyotherwaysresearchersrestrictthegrainofphenomena.Forexample,theymayfocusonaspecificcomponentactivityintheoverallactivity.Asdescribedabove,circadianrhythmsaregenerallycharacterizedasendogenousgeneratedoscillationsthatareentrainabletolocalconditionsandaretemperaturecompensated.Somecircadianresearchersfocusontheseaspectsofcircadianrhythmicity.Likewise,inmemoryresearch,investigatorsnotonlyspecializeonspecifictypesofmemory(e.g.,episodic)butonencodingvs.storageorretrieval.

Page 5: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.5

Onceonefocusesonmorefine-grainedphenomena,itbecomesapparentthattheyhaveahostofdifferentfeatures.Forexample,endogenousrhythmsinaparticularactivityexhibitaspecificperiod,amplitude,andphaseportrait.Explanatoryresearchmaybetargetedatonesuchfeature,orhowmultiplefeaturesinteract.Whatisimportanttonoteisthatwhatisputforwardasanexplanationforaspecificfeaturemaynotbeamechanism.Intheexamplediscussedinsection3,researchershadnotevenadvancedanempiricallysupportedproposalaboutthemechanismwhenWinfreeidentifiedandproposedanexplanationforafeatureofthephenomenon.Whenamechanismisknown,itmaycontributetotheexplanationoffeaturesoffine-grainedphenomena,butevenwhenthatisthecase,whatisrequiredforanexplanationisnotjusttheaccountofthemechanismbutademonstrationofrelationsbetweenvariables(someorallofwhichmaycharacterizefeaturesofcomponentsofamechanism,suchastheirconcentrations).Inarticulatingtheroleofdatagraphsinsuchinquiries,Burnston(2016;seealsoBurnston,Sheredos,Abrahamsen,&Bechtel,2014)referstotheserelationsbetweenvariablesasexplanatoryrelations.Individualresearchpaperstypicallyofferasexplanationsoneormoreempiricallysupportedrelationsbetweenvariables.Giventheimportantofarticulatingthefeaturesofaphenomenonforwhichexplanationsaresought,onemightassumethatthesearedelineatedinadvanceofresearchonmechanisms.But,asBechtelandRichardson(1993/2010)discussed,researchonmechanismssometimesleadstowhattheyrefertoasreconstitutingthephenomenon—seriousrevisionsinwhatthephenomenonistakentobe.Thereisanotherway,however,thatworkonmechanismsmayprovidefeaturesoffine-grainedphenomenathatbecomethetargetsofexplanation.Inthecaseofcomplexmechanisms,accountssuchasthosepresentedbyMachamer,Darden,andCraver(2000),Craver(2007),CraverandDarden(2013),oftenfailtoshowhowamechanismisabletoproducethephenomena.BechtelandAbrahamsen(2010),Brigandt(2013),and(Baetu,2015)havearguedthatinthecaseofmechanismswithnon-sequentialorganizationandnon-linearoperations,computationalmodelsarerequiredtoshowhowthemechanismgeneratesthetargetphenomenon.3Some3Therehasbeensubstantialdisagreementoverwhethercomputationalmodelsexplain.FocusingonthemathematicalmodeloftheactionpotentialadvancedbyHodgkinandHuxley(1952),Weber(2008)defendeditasexplanatorywhileCraver(2008)arguedthatitdidnotexplainsinceitdidnotdescribethemechanism.Subsequently,Levy(2013)arguedthatHodgkinandHuxleyofferedadeliberatelyabstractaccountbutonethatdoesexplaintheactionpotentialintermsofcomponentcurrents.ThecomputationalaccountsdiscussedbyBechtelandAbrahamsen,Brigandt,andBaetu,incontrast,aretightlylinkedtomechanisticaccounts—thedifferentialequationsinthesemodelsaredrawnfromtheoperationsthoughttoconstitutethemechanism.Althoughinvokingmathematicalderivations,thesemodelsareintheserviceofshowinghowmechanismsworkandarguablyinmanycasesonecannotshowthatthemechanismcanproducethephenomenonexceptbyusingsuchmodels.Atleastinthesecases,computationalmodelsseemtobecriticaltomechanisticexplanation.Othermathematicalmodels,suchasthosediscussedbyChemeroandSilberstein(2008),aremodelsofphenomena,notmechanisms.TheexamplefromWinfreediscussedbelowsuggestarelativelyclearwayinwhichthesemodelsareexplanatoryaslongasoneisclearaboutwhatisbeingexplained.

Page 6: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.6

researchersfindsuchmodelsexplanatory,butotherscontendfromthecomputationalmodelonlyshowsthatthemechanismcangeneratethephenomenon,butcannotexplainhowitdoesso.Theseresearchersthentreattheabilityoftheproposedmechanismtoproducethetargetphenomenonasafurtherphenomenonrequiringexplanation.InthefollowingtwosectionsIconsidertwocasesinwhichresearchaddressedaspecificfeatureofafine-grainedphenomenon,andconsiderhowtheexplanationsresearchersadvanceddifferfromaccountsofmechanisms.2.AbstractlyRepresentingaPhenomenontoExplainItIturninthissectiontoafeatureofthefine-grainedphenomenonofcircadianentrainmentthatwasbothpredictedandshowntobeanecessaryfeatureofthephenomenonasaresultofadoptinganabstractrepresentationofthephenomenon.Inthiscase,theresearcherbothdemonstratedandexplainedwhythefine-grainedphenomenonhadaspecificfeaturewithoutrelianceonanaccountoftheresponsiblemechanism.ArthurWinfree,amathematicallyinclinedexperimentalbiologist,performedthisresearchduringtheperiodaftertheendogenousnatureofcircadianrhythmshadbeenestablishedbutbeforethemechanismresponsibleforthegeneralphenomenonhadbeenproposed.Duringthisperiodmanycircadianresearchersfocusedtheirresearchoncharacterizingthemorefine-grainedphenomenonofcircadianentrainmenttolight.Thestandardprotocolforinvestigatingcircadianentrainmentwasto(a)establishthephaseofendogenousoscillationsbyobservingbehaviorwhileorganismswerekeptindarkness,(b)exposetheorganismstolightpulsesofvaryingdurationsandintensitiespresentedatdifferentphasesofthecircadiancycle,and(c)determinehowmuchthephasewasadvancedordelayedineachinstance.Whatresearcherssoughtwasnotjustthequalitativecharacterizationofcircadianoscillationsbeingdelayedoradvanceddependingonlightexposure,butadetailedquantitativeaccountofhowrhythmswerealtered.Toprocuresuchanaccountofthephenomenonofentrainment,researchersneededtobeabletoidentifyapatternindatatheycollected.Thedevelopmentofthephaseresponsecurverevealedsuchapattern.Figure2showsaphaseresponsecurvefromoneofthefirstempiricalstudiesofentrainment(DeCoursey,1960).Thetimeduringthe24-hourperiodinwhichthelightpulseisdeliveredisindicatedonthex-axiswith0indicatingthetimeofactivityonsetforthetwoflyingsquirrels(Glaucomysvolans)thatwerestudied.They-axisrecordstheminutesbywhichthephasewasadvancedordelayed.Thisspeciesisnocturnalsothe12hoursaftertheonsetcorrespondtotheperiodofexpecteddarkness.Whatisclearisthatlightpulsesduringexpectedperiodsoflighthavenoeffectwhereasthoseearlyintheexpecteddarkperioddelaythephaseoftherhythmsandthoselateintheexpecteddarkperiodadvanceit.(Thismakessensesincelightpulsesearlyinthedarkperiodwouldcorrespondtolightintheenvironmentpersistinglongerthanexpectedwhereasthoselateinthedarkperiodcorrespondtothelightperiodstartingearlier.)

Page 7: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.7

Figure2.PhaseresponsecurvefortwonocturnalflyingsquirrelsfromDeCoursey(1960).Althoughphaseresponsecurvesarewidelyemployedtorepresentthephenomenonofcircadianentrainmenttolight,theyconcealanimportantdistinctionthatisrevealedusingadifferentformat,phasetransitioncurves.AsshowninFigure3,thesecurvesplottheoldphaseonthex-axisandthenewphaseonthey-axis.Thedottedlinesrepresentthecasewherethenewphaseexactlycorrespondstotheoldphase(e.g.,atthelimitofalightpulseof0duration)andthedarkwavylineshowshowthenewphasemightvaryfromthat.Figure3AroughlycorrespondstothepatternexhibitedinFigure2.Whenthelightisgiveninthefirstpartoftheperiod(conventionally,phase0correspondstothebeginningoftheexpectedlightperiod)thephaseisadvanced.Lightpresentedlaterintheperiod,ontheotherhand,delaysthephase.(Thisgraphisoverlyidealized.Infactduringthelightphasethesolidlinewouldcloselymatchthedottedlightandonlyshowadvanceordelayduringthedarkphase.)Sincetheslopeofthedottedline,whichtheactualcurveapproximates,is1,thistypeofentrainmentisreferredtoasType1.Essentially,thisreflectsthefactthatduringeachperiodof24hours,circadianrhythmsadvanceoneperiodandthelightperturbationsdonotchangethat.

Figure3.Twotypesofentrainmentshownusingaphasetransitioncurve.A.Type1B.Type0.FigurefromLakin-Thomas,Coté,andBrody(1990),Figure2.

Page 8: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.8

However,inothercasesthephasetransitioncurvemorecloselyfitsthecurveinFigure2B,asHastingsandSweeney(1958)foundintheirstudiesofGonyaulaxpolyedra,asingle-celledfree-swimmingplantthatemitsafaintbluelightatnightundercircadiancontrol.Intheirstudy,theorganismshiftedtoanewphasebasedonthetimeofthepulse,regardlessofthephaseatwhichalightstimuluswaspresented.Sometimestheactualnewphasewasslightlydelayed,sometimesadvanced,withrespecttothephaseofstimulation,butoverallitapproximatedalinewith0slope.Accordingly,thisisknownasType0entrainment.Initiallyitappearedthatthetwotypesofentrainment,Type1andType0,occurredindifferentspecies.However,Winfree(1970)determinedthatbothcanoccurinthesamespeciesinresponsetoshorter(orweaker)versuslonger(orstronger)entrainmentstimuli;shorterstimuliyieldType1entrainmentwhereaslongerstimuliyieldedType0entrainment.Winfreeperformedhisstudiesusingwhatwasatthetimeoneofthebest-studiedexemplarsofcircadianbehavior,eclosionfromthepupaintothematureflyinthefruitflyDrosophilapseudoobscura.InthewildeclosionoccursintheearlymorninghoursandPittendrighhadestablishedthatevenwhenlight,temperature,andotherZeitgebersareremoved,eclosiontimeremainshighlyconstrained,albeitadvancingslightlyeachdaysincethefree-runningperiodoffliesissomewhatshorterthan24hours.MoststudiesofentrainmentinD.pseudoobscurafoundType1entrainment,butWinfreefoundthatwithextendedlightpulses,Type0entrainmentoccurred.Peterson(1980)subsequentlydiscoveredthatbothtypesofentrainmentalsooccurinmosquitos.SincethesameorganismshiftsbetweenType1andType0entrainmentwithlonger(ormoreintense)lightpulses,onemightexpectthetransitionbetweenthemwouldbesmooth.Winfreedemonstratedthroughageometricargumentthatthiswasnotpossible.OnecanalreadyseetheprobleminthephasetransitioncurvesshowninFigure2.InType1entrainmentthephasetransitioncurveendsupafter24hoursstillalignedwiththelinewithslope1.Withsomewhatlongerstimuli,thecurvewoulddepartfurtherfromthatlineatintermediatephases,butnomatterhowmuchitdoesso,itwillreturntothesamerelationtotheline24hourslater.ItwillneverbetransformedintothelineforType0,whichonceitdepartsfromthelinewithslope1neverrejoinsit.Winfreedevelopedaperspicuouswayofrepresentingthelackofasmoothtransitionusingatorus.TheCartesianrepresentationsinFigure3canbetransformedintoatorusbyrollingthebottomedgebackwardsuntilitjoinsthetopandtherightedgebackwarduntilitjoinstheleftedge.AsillustratedinFigure4,Type1entrainmentinvolvesatrajectorythatpassesoncethroughtheholeofthetorus(providinganotherreasontocallitType1),whileType0entrainmentinvolvesatrajectorythatgoesaroundthetorusbutneverthroughthehole.Itshouldbeimmediatelyclearthatthereisnowaytotransformalinegoingthroughtheholeintoonegoingaroundtheoutsidewithoutbreakingandrejoiningtheline.Thiselegantgeometricalrepresentationrevealsamathematicaltruth:therecanbenosmoothtransitionfromType1toType0entrainment.Rather,WinfreecontendedtherewillbeanabrupttransitionfromType1toType0entrainmentatasingularity,apointwhichconformstoneitherType1notType0entrainment.A B

Page 9: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.9

Figure4.A.Representedonatorus,Type1resettingcorrespondstoalinethroughthehole.B.Type0resettinginvolvesanorbitaroundthetorusbutnotthroughthehole.

WinfreealsoemployedanotherrepresentationalformattodemonstratetheabsenceofasmoothtransitionbetweenType1andType0entrainment,onethatalsosuggestswhatwillhappenatthesingularity.InsteadofaCartesiancoordinatesystem,aradialphaseplotusespolarcoordinates:differentphasesareplottedaroundtheoriginandthedistancesfromtheoriginrepresentthevaluesofavariable(e.g.,amplitude)atthosephases.Inaradialphaseplotthetrajectoryofanoscillatoryprocessesappearsasaclosedfigureknownasthelimitcycle.InFigure5Atheprojectingspokesrepresentthephasesofa24-hourperiodandthecirclerepresentsthepaththroughphasespaceofthesystemduringeachoscillation(ittraverseseachphase).Thespokesneednotbestraightlinesasshownhere,buttheymaynotcross.Thespokesarereferredtoasisochronssinceallthepointsalongthemrepresentthesamephase.Theradiusofthecirclerepresentstheamplitudeoftheoscillation(concentriccirclesaroundtheoriginwouldrepresentoscillationsofdifferentamplitude).Notethatattheorigintheamplitudeoftheoscillationisreducedto0;withnovariation,nophaseisdefined.

Figure5.A.Representationofalimitcycleinaradialphaseplotwiththedifferentphasesrepresentedbylinesemanatingfromthecenterandindicatedbyanhour.B.Type1entrainmentshowninphasespacewithvectorlinesindicatinghoweachpointonthelimitcycleisperturbed.C.Type0entrainment.PanelsBandCfrom(Johnson,1999).

TheoriginintheradialphaseplotcorrespondstowhatWinfreecharacterizedasthesingularitywhereneitherType1notType0entrainmentisapplies.Toseethis,consider

Page 10: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.10

howthephaseshiftscorrespondingtoentrainmentcanberepresentedintheseradialphaseplots.ThearrowsinpanelsBandCrepresenthoweachpointonthelimitcycleisperturbed.Theyeitherspeeduptheoscillationorslowitdown.ThisisreflectedinthefactthatsomeofthearrowsinpanelBprojecttoalaterisochron,otherstoanearlierone.Afteratransientperiodtheoscillationwillreturntoalimitcycle,butwiththenewphase(thisisnotshown).PanelBrepresentsType1entrainment.Whatisimportanttonoteisthattheoriginremainsinsidetheclosedfigurerepresentedbythedashedline.InType1entrainmenttheclockcanbeperturbedtoanynewphasebutnostimulussendsittotheorigin.PanelC,incontrast,representsType0entrainment.Notethatthearrowsaremostlylonger,representingagreaterperturbation.Moreover,withsuchastimulus,theclockcannotbesettoanynewphasebutonlythosethatfallbetweentheisochrons1and10.Butmoreimportantly,theoriginisnolongerwithintheclosedfiguredefinedbythedashedline.FromFigure5onecandeterminethatthereisnotransitionfromType1toType0entrainmentthatdoesnotcausetheclosedfiguretocrossthroughtheorigin.AssumeagradualincreaseinthestimulusthatgeneratesFigureB.Atsomepointthedashedlineoftheclosedfigurewillcrosstheorigin.Asnotedabove,thisisasingularity—apointthathasnoamplitudeandhencenophase.Whatthisrepresentsisthatwheneverastimulusmovestheclosedfigurerepresentingtheoscillatortotheorigin,theamplitudeoftheoscillatoryprocessdropsto0.Withnoamplitude,oscillationceases.AsIdiscussbelow,Winfreewentbeyondthesegeometricdemonstrationstoconductanempiricalinvestigationtodetermineexactlywherethesingularityoccurredandthatcircadianoscillationsceasedwhenorganismsreachedthesingularity.Butwhatisimportanttonoteisthathedidnotdiscovertheexistenceofthesingularitynordemonstratethatithadtooccurthroughthisfurtherempiricalinquiry.TheoccurrenceofbothType1andType0entrainmentinthesamespecieswasdiscoveredempirically,buttheclaimthatwhenbothtypesofentrainmentoccurinthesameorganism,theremustbeasingularitywasdemonstratedmathematicallybyabstractlyrepresentingthetrajectoriesofthetwotypesofentrainment,notthroughthisfurtherempiricalinquiry.Itisamathematicaltruth(Lange,2012)thatexplainsthatasingularityoccurs.Inhisfurtherempiricalinvestigations,WinfreemadeuseofanotherdiscoverymadebyPittendrigh.Pittendrigh(1966)foundthatkeepingfliesinconstantlightcausescircadianrhythmstocease.Theserhythmswouldstartagainwithexposuretodarkness,withthephasedeterminedbythetimeofexposuretodarkness.Thisprovidedanexperimentalprotocolforpreciselysettingthephaseofthecircadianoscillators.Winfreecreatedatwo-dimensionalarrayofdishesofpupaeforwhichhecouldcontroltheirlightexposure.Hebeganbyexposingthefliestoconstantdimbluelightandthenprogressivelyblockedthelighttodifferentdishesoverathreedayperiod,beginningwiththoseontheright(designatedEastinFigure6a).Thisstartedoscillationsineachpopulationatthetimelighttoitwasblocked.Afterallthepopulationswereindarknessandexpectedtobeoscillating,heexposedthemtopulsesoflightofvaryingduration,withthosealongthetop(NorthinFigure6a)gettingthelongestexposure.Hethenrecordedwheneachflyemergedfromitspupa.Sincetheinitialexposuretodarknessoccurredoverthreedays,thereshouldbethreepopulations,eachexhibitingafullrangeoftimesofeclosion.Figure5bshowsthisexpectedresult.Ineachofthethreepopulations,thosefirstexposedtodarkness(D)shouldeclode

Page 11: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.11

first,withawavemovingfromDtoA.Alightpulseexperiencedearlyinthesubjectivenightshoulddelayeclosion(B),whereasonelateinthenightshouldadvanceit(C).ThisshouldresultintheoscillationofeclosionineachpopulationfromDtoA,toB,toC,andagaintoD.

Figure6.A.Winfree’sexperimentalprocedureofplacingsuccessivepopulationsindarknessasascreenpassedovertheirdishesoverathree-dayperiod.Theywerethenexposedtoapulseoflightoriginatingatthetop(North).ThisledtoanexpectedpatternofeclosioninvolvingthreepopulationseachexhibitingthecyclefromDtoC.

Thedataset,consistingoftheendogenouscircadiantime,lengthoflightpulse,andeclosiontimeforeachfly,washuge.Moreover,Winfreefounditchallengingtorepresentitsincethisrequiredexhibitingboththeendogenousandresultingphaseandthedurationofthestimulus.Initiallyheresortedtoconstructingaphysicalthree-dimensionalgraphinwhicheachwirerepresentsanexperimentatagiventime(T)aftertransfertodarknessandlogofexposureduration(S).Buttonsonthewiresrepresentedthecentroidofthetimesofemergencepeaksforthecorrespondinggroupofflies(photographedinFigure7a).Althoughhewasonlyabletoshowthefirstthirdofthedatabeforethestructurebecametoocomplextoworkwith,theexistenceofaspiralpatternaroundanaxisisalreadyclearlyapparent.Theaxisrepresentsthesingularity.Winfreecomments:“Therearenocentroiddatashownatthisrotationaxis,becausefollowingthisperturbation,phase-resettingiserraticandfliesemergenotindiscretepeaks,butatallhoursoftheday,asisdiscussedbelow”(p.331).

Page 12: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.12

Figure7.A.Photographofaphysicalthree-dimensionalgraphfromWinfree(1970).B.TimecrystalfromWinfree(1980,p.54).

Alreadyinhis1970paperWinfreedevelopedacomputeralgorithmtodefineasurfacethroughtheeclosionpoints,whichhetermeda“resettingsurface.”Hewasn’tabletopresentitvisuallybutdescribeditasa“verticalcorkscrewlinkingtogethertiltedplanes.”Hefurthernoted:“acorkscrewsurfacehasasingularity,acentralaxisalongwhichtheslopeisinfinite.”Hecalculatedthatinhisdatatheaxiscorrespondedtoastimulusof50secondsat6.8hoursafterexposuretodarkness.InGeometryofBiologicalTime(1980)andlaterworkhepresentedthisresettingsurfaceinwhathecalleda“timecrystal”(Figure7b).Inthetimecrystalthex-andy-axesrepresentoldandnewphaserespectivelywhilethez-axisrepresentsthedurationofthestimulus.(Twocompleteperiodsof24-hoursareshownonthex-axisandthreeonthey-axis.)Eachcircleconstitutesaneclosionevent.Winfreeadoptedtheschemeofrepresentingresponsestoshorterstimuli(representedintheforeground)withlargercirclesandresponsetolongerstimuliwithsmallercircles.Asaresult,oneseesType1resettingintheforegroundandType0inthebackground.TheplanedefinedbyWinfree’salgorithmappearsasasurfacethatwrapsaboutthesingularity.Thesingularity,whichisactuallyshowntwice,onceinthefirstperiodof24-hoursandagaininthesecond24-hourperiod,istheperpendicularaxisaroundwhichthesurfaceturnsinthefashionofacircularstaircase.Todeterminewhatwouldhappenatornearthesingularity,Winfreeperformed44additionalexperimentsusingstimulithatwereveryneartowherehecalculatedthesingularitywastobefound.Asthestimulusapproachedthesingularity,theeclosionpatternceasedtoshowaclearrhythm—thepeaksofthedistributionbroadensignificantlyandevenbecameindistinguishable.Whenanoscillationwassuggested,itsperiodoften

Page 13: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.13

variedfrom24hours.Winfreeconcludedthattheflieshadbecomearrhythmicandthecircadianclockhadessentiallystopped.Whathemeantbythisisthatalthoughthephysiologicalprocessesthatconstitutetheclockarestilloccurring,theynolongerresultinoscillation;itwasthephaseoftheoscillationthatrepresentedtime,andtherenolongerwasaphase.4Theclockwouldremainstoppeduntilanewlightstimuluswaspresented,atwhichtimeoscillationswouldresumeatthephaseitwasatwhenitwasinterrupted.Winfree’sexperimentalstudiesallowedhimtoidentifythetimeandstimulusstrengthofthesingularityanddemonstratewhathappenedinresponsetoastimuluscorrespondingtothesingularity.Nonetheless,Winfreehadnotonlypredictedtheoccurrenceofthesingularitybutalsoexplainedwhytherehadtobeonebeforetheseexperiments.Usingabstractrepresentations,suchasthetorusandthephasediagrams,heshowedthatthesingularitywasanecessaryfeatureofanysystemexhibitingbothType1andType0entrainment.Moreover,thisexplanationwasindependentofknowingthemechanismofentrainment.SubsequenttoWinfree’sanalysis,researchershaveidentifiedkeycomponentsofthemechanismofentrainment,butwestilldonotknowwhyoscillationstopsinresponsetoastimuluscorrespondingtothesingularity.Nonetheless,WinfreeprovidedanexplanationofwhythereisandmustbeasingularityintheentrainmentoforganismsthatexhibitbothType1andType0entrainment.ThisparticularfeatureofthephenomenonentrainmentthatoccursinatleastsomespeciesisexplainedanditsexplanationdoesnotdependonknowingtheresponsiblemechanismbutonunderstandingthemathematicalfactthattheremustbeadiscontinuityorsingularitybetweentherangeofstimulithatgenerateType1andtherangethatgeneratesType0entrainment.SomemayquestionwhetherwhatWinfree’sexplanationofthesingularityshouldcountasanexplanation.Itiscertainlynotacausalormechanisticexplanation,andifoneholdsthatitiscauses(Salmon,1984,1998)ormechanisms(Craver,2007)thatexplain,thentheywillnotcountwhatWinfreeofferedasanexplanation.SalmonandCraver,however,werearguingagainstanalternativeaccountofexplanation.Onthedeductive-nomological(D-N)accountofexplanation(Hempel,1965,1966)oneexplainsaneventbyshowingthatitsoccurrencefolloweddeductivelyfromlawsandinitialconditions.Winfree’saccountcanbeseenasadeduction—fromtheconjunctionofthetwotypesofentrainment,heshowedthatasingularitymustoccur.Butwhilethecharacterizationsofthetwotypesofentrainmentmayberepresentedasempiricalgeneralizations,theyarenotwhatwouldgenerallyberegardedascandidatelaws.Whatdoestheexplanatorywork,however,isnottheaccountsofthetwotypesofentrainmentbutthemathematicaldemonstrationthatnosmoothtransitionispossiblebetweenthem.WhileWinfree’sexplanationmightfallundertheD-Naccount,itleavesopenthequestionofwhenoneshouldseekamechanisticexplanationandwhenaD-Nstyleexplanationmightsuffice.Appealingtoyetanotherphilosophicalaccountofexplanationmaysuggestaframeworkforaddressthis.Bromberger(1966,1968)and(vanFraassen,1980)treat4WiththediscoverythatitwastheconcentrationsofproteinssuchasPERthatoscillated,theclockstoppingcanbeunderstoodastheconcentrationoftheseproteinsreachingaconstantlevelandnolongeroscillating.

Page 14: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.14

explanationsasanswerstoquestionsaboutwhysomethinghappens.ForvanFraassen,explanationispragmaticandrelativetothecontextinwhichthequestionisaskedandwhatisrequiredtoansweritisanaccountofwhysomeconditionaroseratherthansomeother.Onsuchapragmaticunderstandingofexplanation,Winfreeisofferinganexplanationsinceheisansweringthequestionwhytheremustbeasingularity.Inthiscontext,aD-Nstyleaccountprovidestheanswertothequestionposed.ThatWinfreeviewshisaccountasanexplanationisclearin(Winfree,1987)whenheextendshisaccounttoshowwhy,giventidalpatternsindifferentlocationsinanocean,theremustbeasingularityatwhichtherearenotides.Althoughheisnotofferingacausalormechanisticexplanation,orevenaD-Nexplanation,Winfreeisansweringaquestionaboutwhysomethingoccurs.Thosewhodon’tseeWinfreeasofferinganexplanationmightarguethatwhatheofferedwasonlyadiscoverystrategy:hepredictedthesingularityandhissubsequentresearchshowedthatitoccurredashepredicted.InthiscasethespecificfeatureofthephenomenonofentrainmentwasnotknownbeforeWinfreeperformedhisanalysis—hepredicteditbasedonhisanalysis.OntheD-Naccount,predictionandexplanationwereviewedaslinked—thesameargumentcouldservetopredictandexplain.Craver’scriticismoftheD-Nmodelfocusedonthisfeature.UsingAristotle’sexampleoftheflagpole,Craverarguedthatonecouldpredicttheheightoftheflagpolefromthelengthofitsshadow,butthatdidnotexplainit.Whileitiscertainlythecasethatsometimesthereasoningthatsupportsapredictiondoesnotsufficeforexplanation,infactfromasufficientlydetailedexplanation,evenanaccountofamechanism,onecanderivepredictions.Infact,manytestsofmechanistichypothesesdependuponmakingpredictionsabouthowaproposedmechanismwillbehaveanddeterminingwhethertheactualsystembehavesinthatway.Whilenotallpredictionsrelyonhavingacorrectexplanation,explanationsoftenfacilitatepredictionsand,asinthiscase,thediscoveryofanewfeatureofaphenomenon.Oncethefeaturewasestablishedempirically,theveryreasoningthatledtoitsdiscoveryalsosufficestoexplainitsoccurrence.Inhis1987bookTheTimingofBiologicalClocks,aScientificAmericanbookinwhichhepresentedhisaccountofwhycircadianentrainmentinmanyspeciesexhibitsasingularities,Winfreecommented“Howdoesphaseresettingcomeabout?Itsresultscanbedescribedwithoutdescribingtheprocess—apieceofgoodfortunate,sincenooneyetknowsthemechanismofasinglecircadianclock.”Subsequentlyresearchershavelearnedagooddealaboutthecircadianclockmechanisminmanyspeciesandevensomeofthedetailedaboutitcanbeentrainedbylightstimuli.FillingintheaccountofthemechanisminvolvedinentrainmentwillnotsupplanttheexplanationWinfreeofferedofthesingularity.Itwill,though,addressanewexplanatorychallengetowhichWinfree’sdiscoverygaverise:explaininghowastimuluscorrespondingtothesingularityactuallystopstheclockmechanismbystoppingtheoscillationsofcircadianproteins.Thischallengeisdirectedatadifferentfine-grainedphenomenonthanWinfreeaddressed—theresponseofthemechanismitselftothestimulusthatWinfreehadshownwouldstopcircadianrhythmicity.Notethatthemechanismitselffiguresinthisfine-grainedphenomenonwhereasitdidnotinthefeatureofthephenomenonthatWinfreediscoveredandforwhichheofferedanexplanation.Thishighlightsthefactthatsomefine-grainedphenomenaarein

Page 15: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.15

factcharacterizedintermsofamechanismandthechallengeistoexplainwhythemechanismexhibitsthatfeatureofthephenomenon.Thisisillustratedinthenextcase.3.AbstractlyRepresentingaMechanismtoExplainWhyItProducesthePhenomenonShortlyafterWinfreebemoanedthelackofknowledgeofanycircadianclock,Hardinetal.(1990)offeredthefirstproposalforaTTFLmechanism.Insection1Iprovideaverbalnarrationofhowtheinitiallyproposedfeedbackloopwouldgenerateoscillations.Thisdescriptiondoesnotestablishwhethertheproposedmechanismwouldgeneratesustainedoscillationsordampenovertime.Thoseinterestedinthismorespecificfeatureturnedtoacomputationmodel(Goldbeter,1995)ofthemechanism.5Inthesubsequentdecademanymorepartswerediscoveredandcircadianresearchersproposedmechanismsinvolvingmultiplefeedbackloops,bothpositiveandnegative(Figure8showstheconceptionofthecircadianclockmechanisminmammalsthatwasarrivedatby2005).Withthesediscoveries,computationalmodelsbecameevenmorecriticaltodetermininghowaproposedmechanismwouldbehave.ComputationalmodelsproposedbyLeloupandGoldbeter(2003,2008),(Gonze,2011),andothersprovidedsupportfortheclaimthatamechanismofthistypecouldgeneratesustainedoscillations.

5BechtelandAbrahamsen(2010,2011)refertomechanisticexplanationsthatrelyoncomputationalmodelingtoestablishthattheyexhibitspecificdynamicalbehaviorasdynamicmechanisticexplanations.

Page 16: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.16

Figure8.Arepresentationofthemajorcomponentsinthemammaliancircadianclockasunderstoodcirca2005.

Computationalmodelscanshowthataproposedmechanismisadequatetogeneratethespecificfeatureofthephenomenoninquestion—sustainedoscillation.Butgiventhenumberofpartsproposed,thesemodelsrequiredozensorhundredsofdifferentialequations.Whileonecanacquireanintuitivesenseofwhyasingledelayednegativefeedbackloopgeneratesoscillations,circadianresearcherslackedsuchanintuitiveunderstandingofhowthesemorecomplexmechanismsandmodelswouldbehaveandsoughttounderstandwhytheygeneratesustainedoscillations.TheproposedmechanismisclaimedtogenerateoscillationsasaresultofoscillationsintheconcentrationsofcomponentsofthemechanismsuchasPERandBMAL1.Theseareproposedtooscillateinacircadianfashionandtheirdoingsobecamethefeatureofthefine-grainedphenomenontobeexplained.Oneapproachtoexplainingthisfeaturehasbeentofocusonsomepartofthemechanismandviewitasresponsiblefortheoscillationinconcentrationoftheotherparts.Giventhatthemechanisminvolvesseveralfeedbackloops,onemightthinkoneoranotheriswhatdrivestheoscillationofthewholemechanism.Researchershavenotbeenabletopursuethislineofinquirythroughempiricalexperimentation,butsomeinvestigatorsexperimentedoncomputationalmodels.Theirstrategyistobuildamodelthatexhibits

Page 17: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.17

circadianoscillationsandthenalterpartsofthemodelinwaysthatcorrespondtoremovingorfixingthestateofsomeofthepartsofthemechanism.However,differentmodelerspursuingthisstrategyhavearrivedatdiametricallyoppositeresults(Smolen,Baxter,&Byrne,2002;Relógio,Westermark,Wallach,Schellenberg,Kramer,&Herzel,2011).Thedifferencesinconclusionsreflectdifferencesinthedetailsofhowthemodelsareconstructed.Althoughthislineofresearchhasnotyetgenerateddefinitiveresults,itmayinthefuture.However,Iwillnotdiscussthisapproachfurtherinthispaper.Analternativeapproachisnottolooktoapartofthemechanismtoexplainthephenomenonbuttotheorganizationofthewhole.Thechallengeisthattheoverallorganizationisverycomplicated(Figure8infactpresentsasimplifiedview)anditisnotobviouswhyitwouldgenerateasustainedoscillation.Uedaandhiscollaboratorsdevelopedastrategyforidentifyingwhatitisaboutthisorganizationthatisresponsibleforthefeatureofsustainedoscillation(Ukai-Tadenuma,Kasukawa,&Ueda,2008;Ukai-Tadenuma,Yamada,Xu,Ripperger,Liu,&Ueda,2011;Hogenesch&Ueda,2011).Theybeganbyre-representingthemechanismshowninFigure8usingtheschemeshowninFigure9.ThisrepresentationplacesatthecenterthethreepromoterboxesonthedifferentgenesinFigure8:theE-box,D-box,andRRE.Sinceoneormoreoftheseboxesispresentoneachgenethatispartofthecircadianclockaswellasonmanyothergeneswhoseexpressioniscontrolledinacircadianfashion,theyrefertotheseasclockcontrolledelements(CCEs).

Figure9.Ueda’sschemaforrepresentingtheclockmechanismshowninFigure8inwhichthepromoterboxesaremadecentralandthegene/proteinsservetolinkactivitybetweenthevariouspromoters.

Figure9downplaystheprocessesoftranscriptionandtranslationthatareshowninFigure8.First,thedistinctionbetweengenesandproteinsiscollapsed.TheCCEsregulatetranscriptionandthedottedlinesbetweenCCEsandtheovalssuggestthiscontrolover

Page 18: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.18

transcription.Butthefactthatthenamesintheovalsareincapitallettersandnotitalicizedsuggeststheyareproteins.Thisfitswiththearrowsanddashed,edge-endedlinesthatlinktheovalsbacktotheCCEs;theseindicatetheactivityofproteinsinhibitingorpromotingtranscription.Butthedistinctionbetweengenesandproteinsandtheoperationsinwhicheachparticipateultimatelydoesn’tmatterfortheanalysisUedaisadvancing.HisstrategyistoabstractfromthedetailsofthegenesandproteinsandsimplytreatthemasintermediariesbetweentheCCEs.TheforegroundingoftheCCEswaslargelymotivatedbyUeda’sexperimentalfindingthatwhenheinserteddestabilizedluciferasegenesintotheregionregulatedbytheCCEsinacellculturesystemandrecordedthetimingofmaximumbioluminescence,hefoundthateachCCEwasmostactiveatadifferenttime.Althoughtheprecisetimevariesbytissue,inthesuprachiasmaticnucleus,thoughttobethelocusofthecentralclockinmammals,E-boxesaremostactiveintheday,D-boxesaboutfivehourslater(evening)andRREsabouteighthourslater(night).Thissuggeststhattheactivityofthedifferentboxesplaysacentralroleingeneratinga24-houroscillation.Thegenes/proteinsaresimplythemeansbywhichtheCCEsaffecteachother.Tomaketheimplicationsofthisrepresentationclearer,inasubsequentdiagram(Figure10A)Uedanolongerdisplayedthegenes/proteinsandinsteadinsertedasinglearroworedge-endedlineforallthepathwaysbetweenagivenCCEandeachoftheothertwo.Thus,thearrowbetweentheE/E’boxandtheD-boxindicatesthatoneormoregenesregulatedbytheE/E’boxaresynthesizedintoproteinsthatfunctiontoenhanceexpressionofgeneswithaD-box.Thetwodotted,edge-endedlinesindicatethattheD-boxandRREhaveinhibitoryeffectsontheperiodandamplitudeofoscillationofgeneswithE/E’boxes.

Figure10.A.Arepresentationoftheclockmechanismthatabstractsfromthegenesandproteinsandshowsonlywhenthereisatleastonepathwayfromagenecontrolledbyoneboxtotheactivationorinhibitionoftheboxanothergene.B.AdecompositionofthefigureinAintotwomotifs,arepressilatorandadelayednegativefeedbackloop.

Thegoalofabstractingfromallthegenesandproteinsandgeneratingaskeletalrepresentationofthesystemwastoelicitifpossibleanexplanationforwhythemechanismgeneratesoscillationswithinit.ByremovingtheidentityofthegenesandproteinsandfocusingonlyonhowtheyservetoconnecttheCCEs,Uedaisfocusinghisattentionontheorganization.Apotentwaytorepresentorganizationandabstractfromthepropertiesof

Page 19: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.19

thecomponentsorthedetailsoftheoperationsthecomponentsperformistodevelopanetworkdiagraminwhichentitiesappearasnodesandanyconnectionsbetweenentitiesasedges.BothFigures9and10arenetworkdiagrams,whereasFigure8ismoreproperlythoughtofasamechanismdiagram.WhileFigure10Aisstillcomplexanddoesnotitselfprovideanexplanation,UedarecognizedthatthisnetworkcouldbedecomposedintothetwonetworksshowninFigure10B.Theoneontheleftisarepressilatorandtheoneontherightanegativefeedbackloop.Thesecorrespondtowhatareelsewherecalledmotifs.Workingattheleveloftheactualcomponentsinyeastgeneandproteininteractionnetworks,Alonandhiscollaborators(Milo,Shen-Orr,Itzkovitz,Kashtan,Chklovskii,&Alon,2002;Alon,2007a,2007b)identifiedsubnetworksoftwotofournodessimilartothoseinFigure10B.Theirattentionwasdrawntothesesubnetworks,whichtheytermedmotifs,becausetheyoccurredfrequently.Bymakingminimalassumptionsabouttheactualentitiesinvolved,theyanalyzedthebehaviorseachmotifwouldsupportandproposedthatwasthecontributionthespecificsubnetworkswouldmaketothelargernetwork.Uedaarrivedatmotifsinadifferentmanner(byabstractingfromthenumerousgenesandproteinsthroughwhichCCEsaffecteachother),butthenotionofmotifapplieshereaswell.Essentially,thetwonetworksshowninFigure10BareimplementedmanytimesinFigure9dependingonwhichgenesandproteinsserveasintermediaries.Whatrendersthenotionofmotifpowerfulisthatonecanestablishhow,withinarangeofparameters,anysubnetworkimplementingthemotifwillbehave.Indeed,bothofthemotifsUedaextractedhadalreadybeendemonstrated,bothincomputationalmodelsandinsynthesizedorganisms,tobecapableofgeneratingsustainedinteractions.Thedelayednegativefeedbackmotifplayedafundamentalroleintheorizingabouttheclockmechanismfromthe1960sandwasincorporatedintotheTTFLmodel.Itsoriginslaymuchearlier.SinceKtesibiosemployeditinhiswaterclockinthesecondcenturyBCE,ithasbeenrediscoveredandemployedinmaintainfeaturesofasystem(e.g.,temperatureinaroom)ataconstantlevel(Mayr,1970).Inthesecondquarterofthe20thcenturythisuseofnegativefeedbackwascelebratedbythecyberneticists(Wiener,1948).Butinavarietyofapplicationsresearchersalsorecognizedthatmanysystemsimplementingnegativefeedbackwouldnotsettletoasteady-statebutwouldoscillatearoundthedesiredvalue.Beyondempiricalobservationsofoscillationinnegativefeedbacksystems,numerousengineersdevelopedmathematicalanalysesoffeedbacksystem,ofwhichoneofthemostinfluentialwasproposedbyvanderPol(1920),anelectricalengineer.Theseanalysesshowedthatsustainedoscillationwaspossible.Althoughitsprominencearosemorerecently,therepressilatorwasalsorecognizedasamotifcapableofgeneratingoscillations.IntheprocessofdesigningasyntheticoscillatortheyplannedtoincorporateintoE.coli,ElowitzandLeibler(2000),constructedacomputationalmodelofarepressilatorcircuitandshowedthat,withappropriateparametervalues,itgeneratedsustainedoscillations.Theytheninsertedintobacteriagenesthatinteractedinthemannerindicatedinthemotifaswellasagreenfluorescentreporter.Theythenobservedoscillationswithaperiodofseveralhours.Giventhatbothmotifshadbeenshowntogenerateoscillations,Uedaarguedthattheabilityofthecomplexmechanismtogeneratesustainedcircadianrhythmsisduetothefact

Page 20: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.20

thattheorganizationfoundinthecomplicatedmechanismshowninFigure9realizesthesetwomotifs.InUeda’sanalysis,themotifswereidentifiednotinindividualcircuits,butinanabstractrepresentationofacomplicatednetwork.Thearrowsinthemotifsrepresentmultipletranscription/translationrelationsinwhichproductproteinsaffectanotherpromoter.Thus,insteadofalocalcircuit,itisthenetworkasawholethatimplementsthetwomotifs.Yetitisthemotifsthatexplainwhythecircadianmechanismexhibitssustainedoscillations.Itisexplainedbythewaythepartsareorganizedandthattheyoperationsthepartsperformrelatepartsinthemannerreflectedinthemotif.AsLevyandBechtel(2013)discusswithrespecttoAlon’swork,theanalysisofmotifsmakesonlyminimalclaimsaboutthenatureofthecomponentscorrespondingtothenodesandtheoperationstheyperformoneachother.Anysystemorganizedaccordingtothemotifinwhichtheseminimalconditionsaremetwillexhibittheassociatedbehavior.Inthissense,motifanalyses,andothernetworkanalyses,offergeneralaccountsthatapplytoallinstancesinthemannerproposedforD-Nexplanation.Themotifs,however,arenotlaws,butprinciplesoforganization(designprinciples)thatassertthatanysystemimplementingtheorganizationwillexhibitthespecifiedbehavior.WhileabstractionfacilitatesexplainingthefeatureofthegenerationofrhythmsthatUedawasinterested,itcanimpairtheabilitytoexplainotherfeatures.AdifferentfeatureofthephenomenonthatUedadidnotfocusonisthatacircadianoscillationisextremelyslowforchemicalreactions,completingacycleonlyonceevery24hours.Thisdependsondelayswithinthemechanism.OneoftheimportantoperationsthatUeda’saccountabstractsfromisthatinordertogetintothenucleuswheretheycanactonaCCE,Per1andCry1mustfunctionasadimertoreenterthenucleus,withtheformationofadimeroccurringoveranextendedperiodoftime.Otherfeaturesofthephenomenonrequireanintermediatelevelofabstraction.Considerableinterestinrecentyearshasbeendirectedattherobustnessoftheoscillationtoalterationofindividualcomponentsinthemechanism.Thisispartlyexplainedbythepresenceofmultipleorthologsofkeyproteins(e.g.,Cry1andCry2)inthemammalianclock.Knockingoutjustonehaslittleeffectsincetheothercancompensatebyincreasingtheamplitudeoftheiroscillationsandmaintainthefunctioningofthesamemotif(Baggs,Price,DiTacchio,Panda,FitzGerald,&Hogenesch,2009).Circadianresearchersdevotedmajoreffortsinthe1990sandearly2000stodevelopingadetailedmechanisticmodelofthemammaliancircadianclock.Asusefulasthismodelis,itdoesnotexplainwhythemechanismgeneratessustainedcircadianrhythmsoftheotherfeaturesnotedinthepreviousparagraph.Accordingtothemodel,componentsofthemechanismthemselvesexhibitsustainedcircadianrhythms.Thiscallsforexplanation.Byabstractingfromthedetailsofthegenesandproteinsinvolved,Uedawasabletodemonstratethattheorganizationofcomponentsinthemodeledmechanismrealizestwomotifsknowntogeneratesustainedoscillations.Theabstractmotifanalysisrevealedthedesignprinciplerealizedinthecomplicatedmechanismandtheseareadvancedasexplanationsoftheabilityofcomponentsinthemechanismtoexhibitsustainedoscillations.4.Conclusions

Page 21: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.21

Awidelyacceptedviewisthatexplanationinbiologyinvolvesidentifyingthemechanismresponsibleforaphenomenon.Indeed,wellsupportedmechanisticmodelshavebeenadvancedformanybiologicalphenomenasuchascelldivision,proteinsynthesis,andcircadianrhythms.Butagreatdealofresearchinbiologyisdirectednotatsuchgeneralphenomenabutatspecificfeaturesoffarmorefine-grainedphenomenaandoftenidentifyingthemechanismisnotwhatexplainsthesespecificfeatures.Toillustratetwoofthestrategiesresearchersinvokeinexplainingspecificfeaturesoffine-grainedphenomena,Ihavepresentedtwocasesinvolvingresearchoncircadianrhythms.Whiletextbooksmightcharacterizecircadianrhythmsinageneralway,researcherstypicallyfocusonaparticularfeatureofamorefine-grainedphenomenon,suchasentrainmentbylight.Thefirstexamplefocusesononesuchfeature,theoccurrenceofasingularity,whichWinfreebothpredictedandexplainedthroughthesametypeofargument.UpondiscoveringthatsomeorganismsexhibitbothType1andType0entrainment,Winfreedemonstratedusingageometricalargumentthattherecannotbeasmoothtransitionbetweenthetwotypesofentrainment.Rather,anytransitionfromType1andType0entrainmenthastogothroughasingularityatwhichtheamplitudeoftheoscillationdeclinesto0.Anentrainmentstimulusthatcausestheclocktoreachthesingularitystopstheclock.Winfree’sexplanationfortheimpossibilityofsmoothtransitionbetweentypesofentrainmentdidnotdependondetailsaboutthemechanism.Oncethemechanismofentrainmentisunderstood,itcancontributetounderstandinghowthesystemrespondswhenitreceivesaninputthatdrivesittothesingularity.Buttheexplanationfortherebeingasingularitydoesnotdependonthedetailsofthemechanism.Thesecondcaseinvolvesresearchthatwascarriedoutinthewakeofthediscoveryofmanyofthepartsandoperationsofthecircadianclock.Merelyidentifyingtheparts,operations,andorganizationofthemechanismdidnotexplainwhythemechanismexhibitssustainedoscillations.Byabstractingfromthedetailsofthemechanism,Uedawasabletoidentifytwomotifs(negativefeedbackandtherepressilator)thatarerealizedintheorganizationofthecomplicatedmechanismthatwasproposedfortheclock.Mathematicalandexperimentalinvestigationsofthesemotifsdemonstratethattheyaredesignprinciplesthatresultinsustainedoscillationsinsystemsinwhichtheyareimplemented.Whilethemechanismishighlyrelevanttoexplainingthegeneralphenomenonofcircadianrhythms,thespecificphenomenonofsustainedoscillationwithinthemechanismisexplainedintermsofthedesignthedesignprinciplesthemechanismimplementsinitsorganization.Tomakethisargument,Ihavehadtomakeclearwhatspecificfeatureofafine-grainedphenomenonisthetargetofagivenexplanation.Whatcountsasexplanatorydependscriticallyonwhataresearcheristryingtoexplain.FollowingBogenandWoodward(1988),mostaccountsofmechanisticexplanationhaveconstruedphenomenaquitebroadly,treating,forexample,thegenerationofcircadianrhythmsorthesynthesisofproteinsassinglephenomena.Intextbooksandsometimesinreviewarticlesscientistsdospeakthisway,butinactualresearchandtheresultingjournalarticles,phenomenaarecharacterizedfarmorenarrowlyandparticularfeaturesareaddressed.Winfreeandothersfocusingonentrainmentwerenotfocusedonthegeneralfactthatcircadianrhythmscanbeentrained

Page 22: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.22

tolightconditions,butspecificpatternsofphaseadvancesordelaysinresponsetovaryingdurationsoflightexposure.Uedawasnotconcernedwithcircadianrhythmsingeneral,butwithhowtheacceptedaccountofthemechanismisabletogeneratesustainedrhythms.Focusingonlyonthespecificfeatureofthephenomenonforwhichexplanationissoughthelpstoexplainwhyonlysomeinformationmayberelevanttoexplainingitandwhydetailsofthemechanismmaynotadvancethespecificexplanatorygoals.Findingtherelevantexplanatoryprincipletoexplainaspecificfeatureofaphenomenonoftenrequiresdevelopingtherequisiteabstractanalysis.Hadthedetailsofthemechanismofentrainmentbeenknown,thatwouldnothaveansweredWinfree’sexplanatoryquest.Thatrequiredamathematicalanalysisthatshowedwhyasingularityisrequiredgiventhenatureofthephenomenon.Likewise,inUeda’scase,answeringthequestionofwhythemechanismoscillatedrequiredidentifyingtheunderlyingdesignprinciplesandshowingthatsystemsimplementingthesedesignprinciplesgeneratesustainedoscillations.Developingexplanationsinvolvesbothidentifyingthespecificfeaturesofaphenomenonforwhichanexplanationissoughtanddevelopingthe(oftenabstract)accountthatistailoredtoexplainthosefeatures.Areasontofocusonidentifyingthefeaturesofaphenomenonthatarethetargetofparticularexplanationsisthatwhatisrequiredtoprovideexplanationwillvarywiththetarget.Justhowmuchanaccountofthemechanismisrequiredwillvary.Inarguingthatoftenthemechanismiseithernotneededorinsufficienttoprovidetheexplanationrequired,Iamrejectingtheclaimthatmechanisticaccountsaloneexplain.Insomecases,theexplanationsproducedcomeclosertoD-Nexplanations—researchersofferageneralaccountandshowwhatfollowsfromit.Whatprovidesthegeneralaccountmightnotbealaw.InWinfree’scase,itwasamathematicaltruththatcouldbeshowntoapplytothefine-grainedphenomenonwhenitwascharacterizedabstractly.InUeda’scase,itwastwomotifsthatcouldbemodeledmathematicallytoshowhowanysystemrealizingthemwouldbehave.Thesearejusttwoexamples.OthercaseswillinvolveavarietyofrelationsbetweenvariablesthatBurnston(2016)referstoasexplanatoryrelations.Themoregeneralpointisthattounderstandwhatprovidesthedesiredexplanationinagivenresearchendeavordependsonwhatfeatureofafine-grainedphenomenonaresearcherseekstoexplain.ReferencesAlon,U.(2007a).Anintroductiontosystemsbiology:Designprinciplesofbiologicalcircuits.

BocaRaton,FL:Chapman&Hall/CRC.Alon,U.(2007b).Networkmotifs:Theoryandexperimentalapproaches.NatureReviews

Genetics,8,450-461.Baetu,T.(2015).FromMechanismstoMathematicalModelsandBacktoMechanisms:

QuantitativeMechanisticExplanations.InP.-A.Braillard&C.Malaterre(Eds.),ExplanationinBiology.AnEnquiryintotheDiversityofExplanatoryPatternsintheLifeSciences.Dordrecht:Springer.

Baggs,J.E.,Price,T.S.,DiTacchio,L.,Panda,S.,FitzGerald,G.A.,&Hogenesch,J.B.(2009).Networkfeaturesofthemammaliancircadianclock.PLoSBiol,7,e1000052.

Page 23: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.23

Bechtel,W.,&Abrahamsen,A.(2005).Explanation:Amechanistalternative.StudiesinHistoryandPhilosophyofBiologicalandBiomedicalSciences,36,421-441.

Bechtel,W.,&Abrahamsen,A.(2010).Dynamicmechanisticexplanation:Computationalmodelingofcircadianrhythmsasanexemplarforcognitivescience.StudiesinHistoryandPhilosophyofSciencePartA,41,321-333.

Bechtel,W.,&Abrahamsen,A.(2011).Complexbiologicalmechanisms:Cyclic,oscillatory,andautonomous.InC.A.Hooker(Ed.),Philosophyofcomplexsystems.Handbookofthephilosophyofscience(Vol.10,pp.257-285).NewYork:Elsevier.

Bechtel,W.,&Richardson,R.C.(1993/2010).Discoveringcomplexity:Decompositionandlocalizationasstrategiesinscientificresearch.Cambridge,MA:MITPress.1993editionpublishedbyPrincetonUniversityPress.

Bogen,J.,&Woodward,J.(1988).Savingthephenomena.PhilosophicalReview,97,303-352.Brigandt,I.(2013).Systemsbiologyandtheintegrationofmechanisticexplanationand

mathematicalexplanation.StudiesinHistoryandPhilosophyofBiologicalandBiomedicalSciences,44,477-492.

Bromberger,S.(1966).Why-questions.InR.C.Colodny(Ed.),Mindandcosmos:Essaysincontemporaryscienceandphilosophy(Vol.68-111).Pittsburgh,PA:UniversityofPittsburghPress.

Bromberger,S.(1968).Anapproachtoexplanation.PaperpresentedattheInR.J.Butler,ed.,AnalyticPhilosophy:SecondSeries.Oxford:Blackwell.Pp.72-105.

Burnston,D.C.(2016).Datagraphsandmechanisticexplanation.StudiesinHistoryandPhilosophyofBiologicalandBiomedicalSciences,57,1-12.

Burnston,D.C.,Sheredos,B.,Abrahamsen,A.,&Bechtel,W.(2014).Scientists'useofdiagramsindevelopingmechanisticexplanations:Acasestudyfromchronobiology.PragmaticsandCognition,22,224-243.

Chemero,A.,&Silberstein,M.(2008).Afterthephilosophyofmind:Replacingscholasticismwithscience.PhilosophyofScience,75,1-27.

Craver,C.F.(2007).Explainingthebrain:Mechanismsandthemosaicunityofneuroscience.NewYork:OxfordUniversityPress.

Craver,C.F.(2008).PhysicallawandmechanisticexplanationintheHodgkinandHuxleymodeloftheactionpotential.PhilosophyofScience,75,1022-1033.

Craver,C.F.,&Darden,L.(2013).Insearchofmechanisms:Discoveriesacrossthelifesciences.Chicago:UniversityofChicagoPress.

DeMairan,J.-J.d.O.(1729).ObservationBotanique.Histoiredel'AcademieRoyaleSciences,35.

DeCoursey,P.J.(1960).Dailylightsensitivityrhythminarodent.Science,131,33-35.Edmunds,L.N.(1988).Cellularandmolecularbasesofbiologicalclocks:Modelsand

mechanismsforcircadiantimekeeping.NewYork:Springer-Verlag.Elowitz,M.B.,&Leibler,S.(2000).Asyntheticoscillatorynetworkoftranscriptional

regulators.Nature,403,335-338.Goldbeter,A.(1995).AmodelforcircadianoscillationsintheDrosophilaperiodprotein

(PER).ProceedingsoftheRoyalSocietyofLondon.B:BiologicalSciences,261,319-324.

Gonze,D.(2011).Modelingcircadianclocks:Fromequationstooscillations.CentralEuropeanJournalofBiology,6,699-711.

Page 24: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.24

Green,S.(2015).Revisitinggeneralityinbiology:systemsbiologyandthequestfordesignprinciples.Biology&Philosophy,30,629-652.

Halberg,F.(1959).Physiologic24-hourperiodicity:Generalandproceduralconsiderationswithreferencetotheadrenalcycle.ZeitschriftfürVitamin-,Hormon-undFermentforschung,10,225-296.

Hardin,P.E.,Hall,J.C.,&Rosbash,M.(1990).FeedbackoftheDrosophilaperiodgeneproductoncircadiancyclingofitsmessengerRNAlevels.Nature,343,536-540.

Hastings,J.W.,&Sweeney,B.M.(1958).ApersistentdiurnalrhythmofluminescenceinGonyaulaxpolyedra.BiologicalBulletin,115,440-458.

Hempel,C.G.(1965).Aspectsofscientificexplanation.InC.G.Hempel(Ed.),Aspectsofscientificexplanationandotheressaysinthephilosophyofscience(pp.331-496).NewYork:Macmillan.

Hempel,C.G.(1966).Philosophyofnaturalscience.EnglewoodCliffs,NJ::Prentice-Hall.Hodgkin,A.L.,&Huxley,A.F.(1952).Aquantitativedescriptionofmembranecurrentand

itsapplicationtotheconductionandexcitationofnerve.JournalofPhysiology,117,500-544.

Hogenesch,J.B.,&Ueda,H.R.(2011).Understandingsystems-levelproperties:timelystoriesfromthestudyofclocks.NatureReviewsGenetics,12,407-416.

Johnson,C.H.(1999).FortyyearsofPRCs-Whathavewelearned?ChronobiologyInternational,16,711-743.

Konopka,R.J.,&Benzer,S.(1971).ClockmutantsofDrosophilamelanogaster.ProceedingsoftheNationalAcademyofSciences(USA),89,2112-2116.

Lakin-Thomas,P.L.,Coté,G.G.,&Brody,S.(1990).CircadianRhythmsinNeurosporacrassa:BiochemistryandGenetics.CriticalReviewsinMicrobiology,17,365-416.

Lange,M.(2012).Whatmakesascientificexplanationdistinctivelymathematical?TheBritishJournalforthePhilosophyofScience.

Leloup,J.-C.,&Goldbeter,A.(2003).Towardadetailedcomputationalmodelforthemammaliancircadianclock.ProceedingsoftheNationalAcademyofSciences,100,7051-7056.

Leloup,J.-C.,&Goldbeter,A.(2008).Modelingthecircadianclock:Frommolecularmechanismtophysiologicaldisorders.BioEssays,30,590-600.

Levy,A.(2013).WhatwasHodgkinandHuxley’sAchievement?TheBritishJournalforthePhilosophyofScience.

Levy,A.,&Bechtel,W.(2013).Abstractionandtheorganizationofmechanisms.PhilosophyofScience,80,241-261.

Machamer,P.,Darden,L.,&Craver,C.F.(2000).Thinkingaboutmechanisms.PhilosophyofScience,67,1-25.

Mayr,O.(1970).Theoriginsoffeedbackcontrol.Cambridge,MA:MITPress.Milo,R.,Shen-Orr,S.,Itzkovitz,S.,Kashtan,N.,Chklovskii,D.,&Alon,U.(2002).Network

Motifs:SimpleBuildingBlocksofComplexNetworks.Science,298,824-827.Peterson,E.L.(1980).Phase-resettingamosquitocircadianoscillator.Journalof

comparativephysiology,138,201-211.Pittendrigh,C.S.(1966).ThecircadianoscillationinDrosophilapseudoobscurapupae:A

modelforthephotoperiodicclock.ZeitschriftfürPflanzenphysiologie,54,275-307.

Page 25: For special issue of Synthese on Modeling, Idealization ...philsci-archive.pitt.edu/13351/1/Explaining... · Department of Philosophy and Center for Circadian Biology University of

ExplainingFeaturesofFine-GrainedPhenomena p.25

Relógio,A.,Westermark,P.O.,Wallach,T.,Schellenberg,K.,Kramer,A.,&Herzel,H.(2011).Tuningthemammaliancircadianclock:Robustsynergyoftwoloops.PLoSComputationalBiology,7,e1002309.

Salmon,W.C.(1984).Scientificexplanationandthecausalstructureoftheworld.Princeton,N.J.:PrincetonUniversityPress.

Salmon,W.C.(1998).Causalityandexplanation.Oxford:OxfordUniversityPress.Smolen,P.,Baxter,D.A.,&Byrne,J.H.(2002).AReducedModelClarifiestheRoleof

FeedbackLoopsandTimeDelaysintheDrosophilaCircadianOscillator.BiophysicalJournal,83,2349-2359.

Ukai-Tadenuma,M.,Kasukawa,T.,&Ueda,H.R.(2008).Proof-by-synthesisofthetranscriptionallogicofmammaliancircadianclocks.NatCellBiol,10,1154-1163.

Ukai-Tadenuma,M.,Yamada,R.G.,Xu,H.,Ripperger,J.A.,Liu,A.C.,&Ueda,H.R.(2011).Delayinfeedbackrepressionbycryptochrome1isrequiredforcircadianclockfunction.Cell,144,268-281.

vanderPol,B.(1920).Atheoryoftheamplitudeoffreeandforcedtriodevibrations.RadioReview,1,701-710,754-762.

vanFraassen,B.C.(1980).Thescientificimage.Oxford:ClarendonPress.Weber,M.(2008).Causeswithoutmechanisms:Experimentalregularities,physicallaws,

andneuroscientificexplanation.PhilosophyofScience,75,995-1007.Wiener,N.(1948).Cybernetics:Or,controlandcommunicationintheanimalandthe

machine.NewYork:Wiley.Winfree,A.T.(1970).Integratedviewofresettingacircadianclock.JournalofTheoretical

Biology,28,327-374.Winfree,A.T.(1980).Thegeometryofbiologicaltime.NewYork:SpringerVerlag.Winfree,A.T.(1987).Thetimingofbiologicalclocks.NewYork:W.H.Freeman.