focus on fixation - zimmer biomet on fixation pps ... or dislocation.23 other sintered bead surfaces...

12
Focus On Fixation PPS ® Porous Plasma Spray ORTHOPEDICS

Upload: vumien

Post on 16-Apr-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Focus On Fixation PPS® Porous Plasma Spray

ORTHOPEDICS

PPS®PorouS PlaSma SPray•Createsamechanicalinterlockwiththesubstrate,resultingin nearlyatwo-foldincreaseinfatiguestrengthwhencomparedwith

sinteredsurfacecoatings.5

•Providesinitialimplantstabilitythroughascratch-fitfixation obtainedbyenhancedsurfaceroughness.

•Maximizesshortandlong-termingrowththroughrandom, non-interconnectedporesandporesizedistribution.

•Createsabarriertomigratingdebrisparticles,reducingthe likelihoodofosteolysis.3

Theimplantsurfaceareaistheonlyaspectofaprosthesistoactually

touchapatient’sbone,meaningtheefficacyofthesurfacecoating

isanimportantcontributingfactortothelong-termstabilityof

cementlessarthroplasty.

Indeterminingwhichimplantandsurfacecoatingisbestforyourpatients,

considerthefollowing:

- How are initial stability and fixation achieved?

- To what degree will osseointegration occur, and when?

- Will the coating successfully inhibit debris migration?

Byaddressingtheseissuessinceitsintroductionin1981,Biomet’s

PPS®PorousPlasmaSprayhasachievedoutstandingclinicalsuccess,

asdocumentedbynumerousstudies.Atfollow-up,manysurgeonshave

observedextremelylowratesofosteolysisandnearly100%survivorship

atover10yearswithPPS®coatedprostheses.1,2,3,4

Focus On

FIXATION

Non-Interconnected Pore Structure

Anon-interconnectedporestructureeffectivelyblocksroutesfordebrismigratingdistallyalongthelengthoftheimplant.

Mechanical Bond

PPS®PorousPlasmaSpraybondsmechanically,notmetallurgically,tothesubstrate,resultinginahighretentionofsubstratefatiguestrength.

Biocompatible Titanium Alloy

Titaniumalloyhasbeenshowntobehighlybiocompatibleandenhancesosseointegration.6

Rough, Porous Surface

Irregularlyshapedparticlescreateaproudsurface,whichallowsascratch-fitduringimplantationforinitialstability.

Random Pore Size

Avariableporesizedistributionrangebetween100and1,000micronsaidsinbothshortandlong-termfixation.

Titanium Substrate

ThesubstrateisneverheatedduringtheapplicationofthePPS®PorousPlasmaSpray,resultinginaveryhighfatiguestrength.

TheapplicationofBiomet’stitaniumporousplasmaspraycoatingisacomputer

controlledprocesssubjecttostrictmanufacturingtolerancesforparticlesize,

voltagecurrentandgaspressure.Theresultingrough,mechanicallybonded

circumferentialcoatingaidsinshortandlong-termfixationandgreatlyreduces

theriskofosteolysisthroughitsnon-interconnectedporestructure.Thefigure

belowdetailsengineeringcharacteristicsthatcontributetoBiomet’sPPS®

PorousPlasmaSpray’scontinuingclinicalsuccess.

Focus On Time-Proven Design & Process

Allprosthesesaresubjectedtoextremelyhighloadsonceimplanted,

particularlyinweight-bearingjoints.Biometusesspecializedmanufacturing

procedurestooptimizesubstratequalityandimplantstrength,allowingfor

long-termviability.

Substrate Preparation

Tocombatnotchsensitivity(aphenomenonwheresmallsurfaceimperfections

onthesubstratecanadverselyaffectfatiguestrength),Biometprepares

thesubstratesurfacetomaximizefatiguestrengthandensurestrong

mechanicalbonding.

Shot Peening—Bombardingthetitaniumsubstratewithsmallbeads

inducescompressivestressdeepwithinthesurface,increasingfatigue

strengthandreducingnotchsensitivity.

Grit Blasting—Thesubstrate’sroughenedsurfaceaidsinthemechanical

interlockingbetweentheimplantandthePPS®Coating.

Titanium Alloy Coating—Withintheplasmachamber,irregularlyshaped

titaniumalloypowderisprojectedathighspeedsthroughahigh

temperatureplasmaarc,strikingthesubstrateinasemi-moltenstate.

Themoltenoutershellofeachparticleflowsoverthegrit-blasted

roughenedsubstratesurfaceandsolidifies,resultinginastrong

mechanicalinterlockwiththesubstrate.

Bead Blasting—Thefinishedprosthesisisbeadblastedtoremoveany

loosecoatingparticles.

Result of Plasma Spray Process

Maintaininganimplant’sinherentfatiguestrengthallowsforastronger

prosthesisthatisbetterabletowithstanddailypatientdemandswith

lowerriskofbreakagetoprovideforincreasedlongevity.

Biomet’sproprietaryplasmasprayapplicationisuniqueincomparisonto

competitivemethodsduetothefactthatonlythetitaniumalloypowderis

heated,notthesubstrateoftheimplant.“Withthesinteringordiffusion

bondingtechniques,themechanicalstrengthofthesubstrateisreducedby

50%ormore...Plasmaspraytechniquesallowthesubstratematerialtoretain

90%ormoreofthefatiguestrengthcharacteristicsreportedforuncoated

titaniumalloyimplants.”5

Focus On Mechanical Properties

TitaniumPPS®PorousPlasmaSpraybeingappliedthroughaheatedplasmaarc.

Pressurizedgasmixture

BiometappliesPPS®PorousPlasmaSprayinawaythatprotectsthesubstratefromheatdamage,maintainingimportantfatiguestrengthpropertiesandpermittingtheproductionofhighfatiguestrengthcomponents(suchasthe5mmTaperloc®hip)forsmallerpatients.

TitaniumPowderandgasmixture

Fatigue Strength Comparison35

PorousPlasmaSprayedCoCrMo 75

PorousPlasmaSprayedTi63

SinteredBeadCastCoCr40

SinteredBeadTi30

DiffusionBondedFiberMesh 30

010,00030,00050,00070,00090,000

PSIat10MillioncyclesPoundspersquareinchin1000s

Focus On Scratch-Fit

Biomet’sPPS®PorousPlasmaSprayisuniqueamongsurfacecoatingsinits

abilitytoattainimmediatepost-operativefixation.Unlikesmoothbeadsand

fibermesh,thesurfaceofplasmasprayonamicroscopiclevelisveryrough,

resultinginmarkedlyhighercoarsenessandsurfaceinterlocking(Fig.1).

Achieving Immediate Fixation

Allsurfacecoatingsmayhavevaryingdegreesofsurfaceroughnesstothe

touch;however,roughnessmakesadifferenceinfixationatthemicroscopic

andcellularlevel.PPS®PorousPlasmaSpray’smicroscopicroughnessis

theresultofirregularlyshapedpores,inducingosseointegrationbycreating

a“scratch-fit”betweentheporouscoatingandthecorticalboneduring

prosthesisinsertion.Thisscratch-fitactioncausestheroughtitanium

surfacetoscrapethewallsofthefemoralcanal,fillingthesmallpores

withboneandprovidingexcellentinitialstability.Implantswithasmooth

surfaceprofile(suchassinteredbeads)havelimitedmicroroughness.

A study comparing the scratch-fit stability of acetabular shellswiththreedifferentporouscoatingsconcludedthatPPS®PorousPlasmaSprayedcupswere twiceasstrong in resistance to rimfailureasthebeadedorfibermeshcups.21

PrimaryCementlessHipStemFailureRates:10+YearFollow-Up

Biomet’ssuperiorclinicalresultswithcementlessprosthesesareadirectresultoftheimmediatefixationachievedthroughtitaniumalloyPPS®PorousPlasmaSpray.

20%

15%

10%

5%

0%

BiometDePuyZimmerStryker

BIOLOGICS

17.1%16.8%

12%

8.6%

5.7%

3%2.7%

5%

2%1.1%

2%

.83% 1% 1%

7% 7%

9.2%

Fig.1:PPS®PlasmaSpray.

0%

Bour

ne,M

allo

ry-H

ead

® 28

Med

ing,

Bi-M

etric

®4

McL

augh

lin,T

aper

loc®

7

Roth

man

,Tap

erlo

c®8

Hea

d,M

allo

ry-H

ead

®2

Kim

,AM

9Bu

rt,T

riloc

10Kr

onic

k,A

ML

®11

Engh

,AM

12

Saka

lkal

e,T

riloc

13Ner

cess

ian,

AM

14Ro

thm

an,T

riloc

8

Cloh

isy,

HGI1

6

Cape

llo,O

mni

fitH

EX®

17

Hel

lman

,Om

nifit

HEX

®6

Has

tings

,PCA

®18

Xeno

s,P

CA®

19Xe

nos,

PCA

®20

Hoz

ack,

Tril

ock

®15

1%

Focus On Pore Size Distribution

Optimalfixationmaybeachievedasaresultofanidealporesizedistribution

attainedthroughthePPS®PorousPlasmaSprayapplicationprocess(Figs.3&4).

Successful Osseointegration with PPS® Porous Plasma Spray

Theengineeringdesignofanimplant’ssurfacecoatingseekstomaximize

corticalbonecontactthroughamoderatelyproudprofileandawide

distributionofporesizestoencouragefullosseointegration.Inkeepingwith

theseprinciples,Biomet’sproprietaryapplicationprocessdistributesmultiple

coatsofporoustitaniumalloyoverthesubstrate,creatinglayersofvaryingpore

sizesintendedtomaximizeosseointegration.Thecircumferentialcoatingalso

sitshighenoughoffofthesubstratetoprovidestablescratch-fitfixation.

Increasingly,surgeonsareencouragingpatientswithBiomet’sPPS®Porous

PlasmaSprayedimplantstoweight-bearimmediatelypost-op,whichattests

tothevalueofscratch-fitfixation.22

Fixation with Beads

Inthecaseoflargebeads,thesmoothbeadedsurfaceandlarge

interconnectedporesmayfailtoprovideinitialstabilityandabarrierto

debrismigration,whichcouldpotentiallyleadtomicromotion,earlyloosening

ordislocation.23Othersinteredbeadsurfaces(Fig.5)composedofonlyvery

smallporesizesmayresultinquestionablelongtermfixation.3Accordingto

onestudy,“Thestrengthoftheinterfaces[bone-to-prosthesis]formedbythe

PPS®coatedspecimensexceeded[sinteredbead]porouscoatedspecimens

by81%.”24Similarly,thesmoothsurfaceofwiremeshcombinedwithitslarge

porestructurecouldfailtoachievesuccessfulinitialfixation(Fig.6).23

Biomet’s PPS® Porous Plasma Spray vs. Other Plasma Sprays

ThefabricationprocessofStrykerArcDeposition(Fig.7)issimilartoBiomet’s

inthatitentailsshootingtitaniumparticlesthroughaplasmaflamebutnotina

fashionconducivetoporosity,fixationandlong-termstability.TheFood&Drug

AdministrationprohibitsStrykerfrommarketingArcDepositionas“promoting

biologicalingrowth”becauseitisanon-porouscoating.25

Substrate

Mostporesaresmall

Mixtureoflarge&smallpores

Mostporesarelargeforstresstransfer,butafewaresmallforinitialfixation

Fig.4

Fig.5:Uniformsizedbeadsresultsinuniformsizedpores.

Fig.7:StrykerArcDepositionisdefinedasanon-poroussurfaceandisnotindicatedforbiologicalingrowth.25

Fig.6:Largeporestructureoffibermeshistheresultofsimilarsizedwires.

Fig.3:Theirregularlyshapedtitaniumparticlessprayedontothesubstrateresultinawideporesizedistribution,whichallowsoptimalfixationthroughmechanicalinterlockingwiththeingrowingbone.

PPS®PorousPlasmaSprayisdesignedtopreventdebrisfrommigrating

distally,minimizingthegreatestthreattoimplantlongevity:osteolysis.

Non-Interconnected PPS® Porous Plasma Spray

PPS®PorousPlasmaSpray,byitsdesign,hasnodefinedpathwaysthrough

whichparticledebriscantravelduetoitsnon-interconnectedporestructure.

Together,thesealbetweenthetitaniumsubstrateandnon-interconnected

circumferentialporouscoatingcreatesabarriertoparticulatedebrismigration

thathelpsreduceosteolysisandimprovelong-termfixation(Fig.8).

Mostmoderncoatingsarefullycircumferential;however,afullycircumferential

coatingmaynotguardagainstosteolysis,particularlyifthecoating’spore

structureisinterconnected,suchasinsinteredbeads(Fig.9).

Thismayresultinagreaterriskofparticulatematterpassingunobstructed

proximallytodistally.26

Focus On Preventing Osteolysis

PrimaryCementlessHipStemOsteolysisRates:10+YearFollow-Up

TheconstructofBiomet’snon-interconnectedPPS®PorousPlasmaSprayiscriticaltothelong-termperformanceoftheprosthesis.

70%

60%

50%

40%

30%

20%

10%

0%

BIOLOGICS

60%

55%

39%

9.5%

3.2%

11%

3.2%

42%

28.9%

55%

9.2%

Non-Interconnected

6%

0%0% 0.5%

BiometDePuyZimmerStryker

Bour

ne,M

allo

ry-H

ead

® 28

Med

ing,

Bi-M

etric

®4

McL

augh

lin,T

aper

loc®

7

Mar

shal

,Int

egra

l3

Hea

d,M

allo

ry-H

ead

®2

Kim

,AM

9

Burt

,Tril

ock

®10

Kron

ick,

AM

11

Engh

,AM

12

Saka

lkal

e,T

riloc

13

Cloh

isy,

HGI1

6

Cape

llo,O

mni

fitH

EX®

17

Hel

lman

,Om

nifit

HEX

®6

Xeno

s,P

CA®

19

Xeno

s,P

CA®

20

Hoz

ack,

Tril

ock

®15

Park

,Mal

lory

-Hea

27

0%0%

Fig. 9: 50x photomicrograph of theinterconnected pores of a sinteredbeadcoating

Fig. 8: 50x photomicrograph of thenon-interconnected pores of PPS®PorousPlasmaSpray

Substrate

Substrate

Biomet’sOsteocoat®HAcoatingprovidesforacceleratedbonyingrowth.

A2001JBJSstudydemonstratedthatHydroxyapatitestimulatesosteoblastic

activityforoptimalinitialstabilitywhenappliedoverthetopoftheclinically

provenPPS®PorousPlasmaSpray.29

ThefollowingcharacteristicsofHydroxyapatitecompositionhavea

considerableimpactonitsclinicalsuccess.30

Features of Biomet’s OsteoCoat® HA Coating

Pore Size-HydroxyapatiteenhancesPPS®PorousPlasmaSpray’sproven

clinicaleffectivenessbyitsthinsurfacecoating(~75microns)designed

toenhancebonyingrowth.Theresultantpost-ingrowthporesizeofplasma

sprayisentirelyunaffectedbytheHAcoating.WhenHydroxyapatiteis

brokendownandreplacedbythebody,theunderlyingtitaniumPPS®

PorousPlasmaSpraycoatingmaybeintegratedtoaneven

greaterextent.

Crystallinity-Crystallinityisameasureofasubstance’sstructural

homogeneity.Althoughthereisnorecognizedidealcrystallinity,anHA

coatingwithaveryhighcrystallinityisresorbedslowly,generating

slowosseointegration.However,averylowcrystallinityvalueresults

inrapidresorbtion,preventingthebodyfromgeneratingameaningfulbone

producingresponse.Biomet’sHAcoatingemploysacrystallinityvalue

greaterthan50%butlessthan70%,whichallowsthecoatingtoperform

asintendedwithinthebody.

Purity-HAismosteffectivewhenitishighlyrefinedandcontainsveryfew

extraneoussubstances.Biometmaintainsaveryhighpurity(95%+)forall

HAproducts.Theremainingphasesarecalciumphosphates.

Thickness-TheprocessofbreakingdownHAandreplacingitwithnatural

bonecantakemonths,buttheimmediatepost-operativeperiodisperhaps

themostcriticalindeterminingsuccess.AnextremelythickHAcoating

(>100microns)willactthesameasathincoating;however,thebody

isunlikelytoresorbitfastenoughtofullyinterdigitatebonewiththe

prosthesis.Biometappliesa75micronlayeroverPPS®PorousPlasma

Spraytomaximizethebody’snaturalbone-producingresponseandfully

leveragethepowerofrapidfixation.

Focus On Hydroxyapatite

PPS®PorousPlasmaSprayCoating

HASubstrate

Focus On Unparalleled Clinical Results

Bi-Metric® Porous Primary Hip Stem

Mallory-Head® Porous Primary Hip Stem

100% survivorship4

10.4yearaveragefollowup105hips

100% survivorship34

Juvenilechronicarthritispatients9.6yearaveragefollow-up77hips

100% survivorship30

12.2yearaveragefollow-up104hips

99.5% survivorship2

12yearfollow-up188hips

99.9% survivorship28

10-13yearfollow-up307hips

98.2% survivorship33

Patientsaged40yearsandyounger7.6yearaveragefollow-up249hips

97.3% survivorship27

10.1yearaveragefollow-up76hips

Taperloc® Hip Stem

99.6% survivorship8

12yearfollow-up4,750hips

98% survivorship7

8-12yearfollow-up114hips

100% survivorship31

Rheumatoidarthritispatients5yearfollow-up50hips

95% survivorship32

Obesepatients14.5yearaveragefollow-up100hips

References1. Head,WilliamC.et al.ATitaniumCementlessCalcar

ReplacementProsthesisinRevisionSurgeryoftheFemur:13-YearExperience.Journal of Arthroplasty.16(8):183-87,2001.

2. Head,WilliamC.et al.TheProximalPorousCoatingAlternativeforPrimaryTotalHipArthroplasty.Orthopedics.22(9):813-15,1999.

3. Marshal,A.D.et al.CementlessTitaniumTapered-WedgeFemoralStem–10-to15-YearFollow-Up.Journal of Arthroplasty.19(5):546-552,2004.

4. Meding,JohnB.et al.MinimumTen-YearFollow-UpofaStraight-Stemmed,Plasma-Sprayed,Titanium-Alloy,UncementedFemoralComponentinPrimaryTotalHipArthroplasty.Journal of Bone and Joint Surgery.86-A:92-7,2004.

5. Bourne,RobertB.et al.IngrowthSurfaces:PlasmaSprayCoatingtoTitaniumAlloyHipReplacements.Clinical Orthopaedics and Related Research.298:37-46,1994.

6. Hellman,E.J.et al.OmnifitCementlessTotalHipArthroplasty.Clinical Orthopaedics and Related Research.364:164-74,1999.

7. McLaughlin,J.R.andLee,K.R.TotalHipArthroplastywithanUncementedFemoralComponent.ExcellentResultsatTen-YearFollowUp.Journal of Bone and Joint Surgery(British).79-B:

900-7,1997.

8. Rothman,R.H.et al.10-YearMinimumFollow-upwithaTaperedTitaniumCementlessFemoralComponentinPrimaryHipArthoplasty.9thAnnualAAHKS.Paper#3.November1999.

9. Kim,Y.H.et al.PrimaryTotalHipArthroplastywiththeAMLTotalHipProsthesis.”Clinical Orthopaedics and Related Research.

360:147-58,1999.

10. Burt,C.F.et al.AFemoralComponentInsertedwithoutCementinTotalHipArthroplasty.Journal of Bone and Joint Surgery.(80):952-60,1998.

11. Kronick,J.andPaprosky,W.G.10-to14-YearResultsofCementlessTotalHipArthroplastyinPatientsUnderFifty. 8thAnnualAAHKS.November1998.

12. Engh,C.A.et al.Long-termResultsofUseoftheAnatomicMedullaryLockingProsthesisinTotalHipArthroplasty.Journal of Bone and Joint Surgery.79:177-84,1997.

13. Sakalkale,D.P.et al.Minimum10-YearResultsofaTaperedCementlessHipReplacement.Clinical Orthopaedics and Related Research.362:138-44,1999.

14. Nercessian,O.A.et al.ClinicalandradiographicresultsofcementlessAMLTotalHipArthroplastyinyoungpatients.Journal of Arthroplasty.16(3):312-6,2001.

15. Hozacket al.Minimum15-YearFollow-UpwithaCollarless,UncementedFemoralComponentMadeofCobaltChrome(TriLock).AAOSPoster#PE353.March2001.

16. Clohisy,J.C.andHarris,W.H.TheHarris-GalanteUncementedFemoralComponentinPrimaryTotalHipReplacementat10Years.Journal of Arthroplasty.14(8):915-17,1999.

17. Capello,W.N.et al.HydroxyapatiteCoatedFemoralStemsinPrimaryTotalHipArthroplasty:Minimum10-YearClinicalandRadiographicFollow-up.AAOSPaper267.March2001.

18. Hastings,D.E.et al.Reviewof10-yearresultsofPCAHipArthroplasty.Canadian Journal of Surgery.41(1):48-52,1998.

19. Xenos,J.S.etal.Resultsofporous-coatedanatomicTotalHipArthroplastywithoutcementatfifteenyears:aconcisefollow-upofapreviousreport.JournalofBoneandJointSurgery.85-A(6):1079-83,2003.

20. Xenos,J.S.et al.ThePorous-CoatedAnatomicTotalHipProsthesis,InsertedwithoutCement.AProspectiveStudywithaMinimumTenYearsofFollow-up.Journal of Bone and Joint Surgery.81-A(1):74-82,1999.

21. Market,D.C.et al.InitialScratchFitStabilityofAcetabularCups:ComparisonofThreePorousCoatingSystems.ISTA.SanDiego,CA.1997.

22. Andersson,L.et al.ImmediateorLateWeightBearingAfterUncementedTotalHipArthroplasty.Journal of Arthoplasty.16(8):1063-65,2001.

23. Bobyn,J.D.et al.TheOptimalPoreSizefortheFixationofPorous-surfacedMetalImplantsbytheIngrowthofBone.Clinical Orthopaedics and Related Research.(150):263-70,1980.

24. Alexander,J.et al.ChoiceofIngrowthCoatingDramaticallyAffectstheTorsionalStabilityofCementlessFemoralStems.Posterexhibit.46thAnnualORSMeeting.Orlando,FL.March2000.

25. HowmedicaOsteonics,Inc.DepartmentofRegulatoryAffairsandResearch.LettertoFoodandDrugAdministration,June1999.

26. Hofmann,A.A.ResponseofHumanCancellousBonetoIdenticallyStructuredCommerciallyPureTitaniumandCobaltChromiumAlloyPorous-CoatedCylinders.Clinical Materials.14:101-15,1993.

27. Park,M.S.et al.PlasmaspraycoatedTifemoralcomponentforcementlessTotalHipArthroplasty.Journal of Arthroplasty.18(5):626-30,2003.

28. Bourne,RobertB.et al.TaperedTitaniumCementlessTotalHipReplacements:A10-to13-YearFollow-upStudy.Clinical Orthopaedics and Related Research.(393):112-120,2001.

29. Coathup,M.J.andBlum,G.W.AComparisonofBoneRemodelingAroundHydroxyapatite-Coated,Porous-CoatedandGrit-BlastedHipReplacementsRetrievedatPost-Mortem.Journal of Bone and Joint Surgery(British).82-B:118-23,2001.

30. Boden,H.et al.TotalHipArthroplastywithanuncementedhydroxyapatite-coatedtaperedtitaniumstem:Resultsataminimumof10years’follow-upin104hips.Journal of Orthopaedic Science.11:175-79,2006.

31. Rothman,R.et al.CementlessFemoralFixationintheRheumatoidPatientUndergoingTotalHipArthroplasty:Minimum5yearResults.Journal of Arthroplasty.16(4):415-21,2001.

32. McLaughlin,J.R.andLee,K.R.TheoutcomeofTotalHipReplacementinobeseandnon-obesepatientsat10-to18-years.Journal of Bone and Joint Surgery(British).88-B:1286-92,2006.

33. Ellison,B.et al.TaperedTitaniumPorousPlasmaSprayedFemoralComponentinPatientsAged40YearsandYounger.Journal of Arthroplasty.21(6Suppl2):32-7,2006.

34. Lyback,C.C.et al.SurvivalofBi-Metricfemoralstemsin77TotalHipArthroplastiesforjuvenilechronicarthritis.International Orthopaedics.28(6):357-61,2004.

35. DataonfileatBiomet.Benchtestresultsarenotnecessarilyindicativeofclinicalperformance.

ORTHOPEDICS, INC.DrivenByEngineering

P.O.Box587,Warsaw,IN46581-0587•800.348.9500ext.1501©2007BiometOrthopedics,Inc.AllRightsReserved•www.biomet.com

FormNo.Y-BMT-1048/041507/

ThismaterialisintendedforthesoleuseandbenefitoftheBiometsalesforceandphysicians.

Itisnottoberedistributed,duplicatedordisclosedwithouttheexpresswrittenconsentofBiomet.

Bio-Modular,®Taperloc,®AGC,®Bi-Metric,®Mallory-Head,®OsteoCoat,®PPS®andIntegral®

areregisteredtrademarksofBiometManufacturingCorp.

AML®andTrilock®aretrademarksofDePuy.

OmnifitHFX®isatrademarkofHowmedica/OsteonicsCorp.