fluent 15.0 beta features manual

174
Fluent 15.0 Beta Features Manual Release 15.0 ANSYS, Inc. February 2014 Southpointe 275 Technology Drive ANSYS, Inc. is certified to ISO 9001:2008. Canonsburg, PA 15317 [email protected] http://www.ansys.com (T ) 724-746-3304 (F) 724-514-9494 1 Release 15.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.

Upload: humormelo

Post on 12-Oct-2015

609 views

Category:

Documents


80 download

TRANSCRIPT

  • Fluent 15.0 Beta Features Manual

    Release 15.0ANSYS, Inc.

    February 2014Southpointe

    275 Technology Drive ANSYS, Inc. iscertified to ISO

    9001:2008.Canonsburg, PA 15317

    [email protected]

    http://www.ansys.com

    (T) 724-746-3304

    (F) 724-514-9494

    1Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Copyright and Trademark Information

    2014 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

    ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS, AIM

    and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks

    or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark

    used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product,

    service and feature names or trademarks are the property of their respective owners.

    Disclaimer Notice

    THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-

    ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products

    and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement

    that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting

    laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products

    and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions

    of that software license agreement.

    ANSYS, Inc. is certified to ISO 9001:2008.

    U.S. Government Rights

    For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,

    duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.

    software license agreement and FAR 12.212 (for non-DOD licenses).

    Third-Party Software

    See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software

    and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

    Published in the U.S.A.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.2

    Beta Features Manual

  • Table of Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1. New Beta Features in Fluent 15.0 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2. Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1. Fluid-Structure Interaction (FSI) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.2. Multi-Grid Parallel FieldView Export ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3. Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.1. Smoothing Registers ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    3.2. Meshing Mode Access .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    4. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94.1. Reference Temperature from a Boundary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    4.2. Impedance Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    4.2.1. Overview .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    4.2.2. Restrictions and Limitations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4.2.3. Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4.2.4. Using Impedance Boundary Condition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    4.3. Wave Spectrum for Random Wave Boundaries .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    4.4. Average Pressure Specification For Radial Profiles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    5. Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155.1. Using REFPROP v9.1 Database in the NIST Real Gas Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.1.1. Legal Notice .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.1.2. Changing the Version of the REFPROP Database .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.1.3. Additional Features Supported by the REFPROP v9.1 Database .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    5.1.4. Limitations on Using the REFPROP v9.1 Database .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    6. Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176.1. Enhanced Encapsulation for Shell Conduction and the S2S Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    7. Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197.1. Improved Curve Fitting for Heat-Exchanger Model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    7.1.1. Limitations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    7.1.2. Usage ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    7.2. Alternate Formulation for the Dual Cell Heat Exchanger ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    8. Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218.1. Explicit Algebraic Reynolds Stress Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    8.1.1. Accessing the WJ-BSL-EARSM Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    8.1.2. Applying Scale-Adaptive Simlulation (SAS) with WJ-BSL-EARSM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    8.1.3. References .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    8.2. Near-Wall Treatment for the Porous Media Interface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    8.2.1. Accessing the Turbulent Wall Treatment Option .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    8.2.2. Example .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    8.3. Near-Wall Treatment for Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    8.3.1. Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    8.3.1.1. Momentum Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    8.3.1.2. k- Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    8.3.1.3. Iteration Improvements .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    8.3.2. User Interface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    8.3.3. Example .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    8.3.4. References .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    8.4. Buoyancy Effects on Omega-Based Turbulence Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    8.4.1. Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    8.4.2. User Interface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    9. Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    iiiRelease 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • 9.1. Char Burnout Kinetics (CBK) Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    9.1.1. References .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.2. Modeling Electrochemistry .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.2.1. Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.2.2. Using Electrochemical Reactions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    9.2.2.1. Limitations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    9.2.2.2. Setting Electrochemical Reactions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    10. Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5310.1. Coal Derived Soot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    10.1.1. Using the Coal Derived Soot Model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    10.1.1.1. References ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    10.2. Atomic Balance for Sulfur .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    10.3. Mercury Pollutant Formation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    10.3.1. Mercury Speciation in Coal Flames .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    10.3.1.1. Overview .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    10.3.1.2. Governing Equations for Mercury Transport ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    10.3.1.3. Mercury Speciation Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    10.3.1.3.1. One Step Mechanism ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    10.3.1.3.2. Two Step Mechanism ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    10.3.1.3.3. Detailed (Wilcox) Mechanism ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    10.3.1.4. Species Production Sources from Different Fuel Types .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    10.3.1.4.1. Hg and HCl Production in a Gaseous Fuel ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    10.3.1.4.2. Hg and HCl Production in a Liquid Fuel ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    10.3.1.4.3. Hg and HCl Production from Coal ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    10.3.1.4.4. Hg and HCl from Char .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    10.3.1.4.5. Hg and HCl from Volatiles ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    10.3.1.5. Species Production/Consumption due to Elementary Reactions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    10.3.1.6. Mercury Species Capture and Retention in Ash Residue .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    10.3.1.7. Mercury Species Capture using Sorbent Injection .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    10.3.1.8. Mercury Formation in Turbulent Flows .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    10.3.1.8.1.The Turbulence-Chemistry Interaction Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    10.3.1.8.2. The PDF Approach .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    10.3.1.8.3. The Mean Reaction Rate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    10.3.1.8.4. The PDF Options .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    10.3.2. Using the Mercury Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    10.3.2.1. Setting Up the One Step Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    10.3.2.2. Setting Up the Two Step Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    10.3.2.3. Setting Up the Detailed (Wilcox) Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    10.3.2.4. Defining the Fuel Streams .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    10.3.2.5. Defining the Mercury Fuel Stream Settings .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    10.3.2.6. Setting Mercury Parameters for Gaseous and Liquid Fuel Types .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    10.3.2.7. Setting Mercury Parameters for a Solid Fuel ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    10.3.2.8. Setting Turbulence Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    10.3.2.9. Specifying a User-Defined Function for the Hg Rate .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    10.3.2.10. Defining Boundary Conditions for the Mercury Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    10.3.3. Solution Strategies .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    10.3.4. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    10.3.5. DEFINE_HG_RATE UDF Macro .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8010.3.5.1. Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    10.3.5.2. Usage .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    10.3.5.3. Example 1 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    10.3.5.4. Hooking DEFINE_HG_RATE UDFs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.iv

    Beta Features Manual

  • 10.3.5.5. Hg Macros .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    10.3.6. Mercury Model Dialog Box A Quick Reference Guide .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    10.3.7. References ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    11. Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9311.1. Modal Analysis .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    11.1.1. Limitations ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    11.1.2. Modal Analysis Theory ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    11.1.3. Using the Modal Analysis Model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    11.1.4. Setting Model Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    11.1.5. Postprocessing of the Modal Analysis Model .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    11.1.5.1. References ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    11.2. Band Analysis of Acoustic Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    12. Discrete Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9912.1. Extended Collision Stencil .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    12.2. Tracking of Child Droplets Within the Same Time Step .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    12.3. Linearized Source Terms .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    12.4. Volume Injections .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    12.4.1. Limitations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    12.4.2. Using the Volume Injection .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    12.5. Discrete Element Method with Periodic Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    13. Multiphase Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10513.1. Interphase Species Mass Transfer ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    13.1.1. Overview .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    13.1.2. Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    13.1.2.1. Modeling Approach .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    13.1.2.1.1. Equilibrium Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    13.1.2.1.2. Two-Resistance Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    13.1.2.2. Species Mass Transfer Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    13.1.2.2.1. Raoults Law .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    13.1.2.2.2. Henrys Law .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    13.1.2.2.3. Equilibrium Ratio .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    13.1.2.3. Mass Transfer Coefficient Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    13.1.2.3.1. Constant .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    13.1.2.3.2. Sherwood Number .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    13.1.2.3.3. Ranz-Marshall Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    13.1.2.3.4. Hughmark Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    13.1.2.3.5. User-Defined .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    13.1.3. Using the Species Mass Transfer Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    13.2. Implicit Virtual Mass Force .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    13.3. Wave Spectrum for Random Wave Open Channel Boundaries .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    13.3.1. Definitions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    13.3.2. Wave Spectrum Implementation Theory .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    13.3.2.1. Long-Crested Random Waves (Unidirectional) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    13.3.2.1.1. Pierson-Moskowitz Spectrum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    13.3.2.1.2. Jonswap Spectrum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    13.3.2.1.3. TMA Spectrum ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    13.3.2.2. Short-Crested Random Waves (Multi-Directional) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    13.3.2.2.1. Cosine-2s Power Function (Frequency Independent) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    13.3.2.2.2. Hyperbolic Function (Frequency Dependent) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    13.3.2.3. Superposition of Individual Wave Components Using the Wave Spectrum ..... . . . . . . . . . . . . . . 120

    13.3.3. Using the Wave Spectrum Boundary Condition .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    13.3.4. Reporting During Initialization and Wave Spectrum Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    vRelease 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Beta Features Manual

  • 14. Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12514.1. Recursive Projection Method ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    14.2. Reduced Rank Extrapolation (RRE) Method .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    14.2.1. References .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    14.3. Executing Commands at a User-specified Iteration or Time Step .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    14.3.1. Executing a Command at a Particular Iteration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    14.3.2. Executing a Command at a Particular Time Step .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    14.4. Alternative Rhie-Chow Flux With Moving Or Dynamic Meshes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    14.5. Automatic Solver Defaults Based on Setup .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    15. Custom Field Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13315.1. Postprocessing Unsteady Statistics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    16. Turbomachinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13516.1. Pitch-Scale Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    16.2. Implicit Mixing-Plane Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    17. Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13917.1. Laplace Partitioning .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    18. Fluent in Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14118.1. Performing Transient Two-Way Simulations with Fluent and ANSOFT .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    18.2. Working with Custom Input Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    18.3. Using UDFs to Compute Output Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    18.4. Creating Output Parameters for Surface/Volume Monitors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    19. User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14519.1. Six-DOF Motion Constraint Using UDFs ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    20. Fluent as a Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14720.1. ANSYS Session Manager .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    20.1.1. Using ANSYS Session Manager .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    20.1.2. Configuring ANSYS Session Manager .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    20.2. Fluent Remote Console .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    20.2.1. Connecting to ANSYS Session Manager .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    20.2.2. Concurrent Access .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    20.2.3. Interactive Prompts for Text Commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    20.3. Fluent as a Server SDK .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    20.3.1. IAnsysSessionManager CORBA Interface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    20.3.2. COM Connectors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    20.3.2.1. Interfaces .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    20.3.2.2. Registering the COM Connectors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    20.3.3. Interactive Text User Interface Prompts .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    20.3.3.1. Using Interactive Prompting .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

    20.3.3.2. Exceptions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    20.3.3.3. Example Code Listing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    21. Population Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15921.1. Coulaloglou and Tavlarides Breakage ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    21.1.1. References ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    22. Adjoint Module Add-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16122.1. Multiple Objective Design .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    22.1.1. Overview .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    22.1.2. Using the Multiple Objective Design Tool ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    22.2. Prescribed Displacements .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    22.2.1. Overview .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    22.2.2. Usage .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.vi

    Beta Features Manual

  • Chapter 1: Introduction

    This document contains information about ANSYS Fluent 15.0 beta features, which provide options for

    modeling and reporting that are outside of the normal scope of ANSYS Fluent. These features are not

    always accessible through the standard menus and dialog boxes, and will require the following text

    user interface (TUI) command to enable them:

    define beta-feature-access

    Note

    Please note that if you enable beta features in this case, use any beta features, and then

    disable beta features, the beta features you put into use may still be active, even though

    the text and graphical interfaces for these features may no longer be visible. It is

    therefore recommended that you save a separate copy of the case before any beta

    feature is activated. This will allow you to return to working on the case with only released

    features if you desire.

    Important

    Note that beta features have not been fully tested and validated. ANSYS, Inc. makes no

    commitment to resolve defects reported against these prototype features. However,

    your feedback will help us improve the overall quality of the product.

    Note

    Beta features are not subject to our Class 3 error reporting system. In addition, we will not

    guarantee that the input files using this beta feature will run successfully when the feature

    is finally released so you may, therefore, need to modify the input files.

    1.1. New Beta Features in Fluent 15.0

    The following beta features are new in Fluent R15:

    Numerics

    Automatic adjustment of various solver settings based on the class of problem being solved and the

    models in use. (Automatic Solver Defaults Based on Setup (p. 130))

    Average pressure specification is made available with radial profiles and with the Radial EquilibriumPressure Distribution option. (Average Pressure Specification For Radial Profiles (p. 14))

    Wave spectrum modeling for random wave boundary conditions when using the VOF model with open

    channel boundaries. (Wave Spectrum for Random Wave Open Channel Boundaries (p. 116))

    1Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • An improved formulation of the Rhie-Chow flux treatment for unsteady terms. (Alternative Rhie-Chow

    Flux With Moving Or Dynamic Meshes (p. 130))

    Impedance boundary condition option for Mass Flow and Velocity boundaries. (Impedance Boundary

    Conditions (p. 10))

    Solver-Meshing

    Ability to smooth wrinkled surfaces between marked and unmarked regions. (Smoothing Registers (p. 7))

    Parallel

    A Laplace partitioning option that extends the Laplace coarsening method to ensure that partition in-

    terfaces do not lie along areas of high cell aspect ratio. This improves convergence in parallel for highly

    stretched cells (for instance, in some dynamic mesh applications). (Laplace Partitioning (p. 139))

    Performance improvement for FieldView exports.

    Turbulence

    Enhancements to the existing band analysis for acoustic sources beta feature. (Band Analysis of Acoustic

    Sources (p. 96))

    Improvements to the formulation for the Menter-Lechner near-wall treatment (available for standard,

    realizable, and RNG k- turbulence models). (Near-Wall Treatment for Models (p. 29))

    Multiphase

    Generalized species mass transfer model. (Interphase Species Mass Transfer (p. 105))

    Implicit virtual mass treatment for improved convergence in steady-state multiphase simulations. (Im-

    plicit Virtual Mass Force (p. 116))

    Discrete Phase

    Volume injection type. (Volume Injections (p. 101))

    DEM model compatibility with periodic boundary conditions. (Discrete Element Method with Periodic

    Boundary Conditions (p. 103))

    Reacting Flow

    Generalized electro-chemistry model. (Modeling Electrochemistry (p. 44))

    Support for NIST database version 9.1 (separately installed). (Using REFPROP v9.1 Database in the NIST

    Real Gas Models (p. 15))

    Adjoint

    Multi-objective optimization tool that determines optimal mesh morphing to maximize an objective

    function based on sensitivity data from an arbitrary set of observables and/or flow conditions. (Multiple

    Objective Design (p. 161))

    Prescribed design changes tool that allows you to evaluate the effect of a user-specified boundary

    shape change on the chosen observable. (Prescribed Displacements (p. 166))

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.2

    Introduction

  • Fluent as a Server

    Support for interactive prompting for text commands arguments. (Interactive Prompts for Text Com-

    mands (p. 150))

    Fluent in Workbench

    Data interpolation is performed if the available initial data file is not compatible with the current

    mesh/case file.

    EM mapping for fluid cell zones.

    Ability to define output parameters for surface/volume monitors.

    Ability to make multiple upstream mesh connections to the Fluent Setup cell.

    Included in the information about the beta features are references to related chapters and sections in

    the ANSYS Fluent 15.0 Getting Started Guide, Users Guide, Theory Guide, UDF Manual, Fuel Cell Modules

    Manual, and Population Balance Module Manual.

    3Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    New Beta Features in Fluent 15.0

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.4

  • Chapter 2: Files

    2.1. Fluid-Structure Interaction (FSI)

    When setting up a fluid-structure interaction problem, you can ensure that the forces mapped to the

    FEA mesh are conserved by performing the following steps:

    1. Enable the beta feature access (as described in Introduction (p. 1)).

    2. Read an FEA mesh, using either the Read button of the Volume FSI Mapping or Surface FSI Mappingdialog box, or the file/fsi/read-fsi-mesh text command.

    3. Enable the conservation of the mapped forces by using the following text command:

    file fsi conserve-force?

    2.2. Multi-Grid Parallel FieldView Export

    In parallel simulations with beta features enabled, three additional TUI commands are available for ex-

    porting FieldView files. These make use of parallel optimizations giving improved performance. These

    commands are:

    /file/export/fieldview-unstruct-parallel-grid/file/export/fieldview-unstruct-parallel-result/file/export/fieldview-unstruct-parallel-combined

    Usage of these commands is the same as for their non-optimized counterparts. When using the parallel-

    optimized commands, each partition writes out a grid for each cell zone that is exported. A regions file

    is also written that contains information about which grids are part of the same cell zone.

    Important

    FieldView does not support more than 10,000 grids

    5Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.6

  • Chapter 3: Meshes

    3.1. Smoothing Registers

    If the surface between a marked and an unmarked region is wrinkled, you can use the /adapt/smooth-register TUI command to smooth it.

    > /adapt/smooth-registermarking register id/name [] 0

    118586 cells marked after smoothing step 1 119718 cells marked after smoothing step 2

    The smoothing is accomplished by marking additional cells at the boundaries of the specified marked

    register. The resulting collection of cells (i.e. the cells in the original register and the newly marked cells)

    are added to a new register. The original register is preserved. You can thus see which cells have been

    added to the marked region using register operations.

    3.2. Meshing Mode Access

    For 3D serial processing, you have the ability to switch from the solution mode of Fluent to the meshing

    mode at any point, even when a mesh or case file is in memory. By enabling beta feature access (Intro-

    duction (p. 1)), the following text command will always be available in the console, and can be used

    as described in Switching Between Meshing and Solution Modes in the Getting Started Guide :

    switch-to-meshing-mode

    7Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.8

  • Chapter 4: Boundary Conditions

    In this chapter you will find descriptions of beta functionality for setting up boundary conditions.

    4.1. Reference Temperature from a Boundary

    4.2. Impedance Boundary Conditions

    4.3.Wave Spectrum for Random Wave Boundaries

    4.4. Average Pressure Specification For Radial Profiles

    4.1. Reference Temperature from a Boundary

    When any fluid material inside the domain is an incompressible-ideal-gas or ideal-gas, the option ofspecifying the Density Method will appear as a drop-down list in the Operating Conditions dialogbox. Select one of the inlet boundaries (velocity inlet, mass-flow-inlet, pressure-inlet) for the calculation

    of the operating density. The temperature specified in the temperature tab of an inlet boundary dialog

    box will be used to calculate the operating density. If no boundary type is an Inlet, then ANSYS Fluent willcalculate the reference density using the default method.

    Important

    This option can be used only when you specify the temperature and/or species concentra-

    tion on the boundary as constant.

    This option will not be available if the boundary has a profile or UDF for temperature.

    This option is only available for the pressure-based solver.

    Specifying the inlet boundary for the calculation of reference density helps in predicting quiescent

    flows.

    9Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Figure 4.1: The Operating Conditions Dialog Box

    After enabling beta feature access (Introduction (p. 1)), you can use the following text command:

    define operating-conditions use-inlet-temperature-for-operating-density

    Enter the Zone-id/name [()].

    4.2. Impedance Boundary Conditions

    Impedance boundary conditions contains the following sections:

    4.2.1. Overview

    4.2.2. Restrictions and Limitations

    4.2.3.Theory

    4.2.4. Using Impedance Boundary Condition

    4.2.1. Overview

    Traditional flow boundary conditions are reflective. The non-reflective boundary condition is fully non-

    reflective. The impedance boundary condition (IBC) lies in between and provides the ability to specify

    a partial reflection in the range from full-reflection to no-reflection. Impedance is a complex value; It is

    the reflection that changes the amplitude and the phase of the incoming wave. The use of impedance

    boundary conditions comes in cases where the flow in the simulation is highly influenced by reflected

    waves from objects outside the computational domain. In such cases the acoustic wave interaction

    from the larger domain can be modeled in the smaller domain through the use of impedance boundary

    conditions.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.10

    Boundary Conditions

  • 4.2.2. Restrictions and Limitations

    The impedance boundary condition is available only in the pressure-based solver. It is incompatible

    with steady-state flow, multiphase, or compressible liquid models (compressible-liquid method fordensity).

    4.2.3. Theory

    Impedance specifies an acoustic resistance in the frequency domain. It is a characteristic of the properties

    of the media and specific geometry described by a ratio of the pressure perturbation to the normal

    velocity perturbation at the boundary Blackstock [[1] (p. 14)].

    (4.1)

    =

    where apostrophe denotes acoustic perturbation and hat denotes quantity in the frequency domain.

    Fluent is a time domain solver. It cannot use the impedance from the frequency domain directly. The

    above expression and all its variables have to be converted to the time domain. After the conversion

    the relation between pressure and normal velocity perturbations is expressed through a convolution

    integral.

    (4.2) =

    If impedance, , is unbounded in the time domain, then admittance is used (admittance is the

    inverse of impedance). Fluent uses the reflection coefficient instead of impedance/admittance, to uni-

    formly treat unbounded cases Fung [[2] (p. 14)]. The reflection coefficient is a ratio between reflected

    and incoming wave amplitudes at the boundary. It is expressed through the impedance as:

    (4.3)

    =

    +

    Using a reflection coefficient, the relation between pressure and normal velocity perturbation is:

    (4.4) = +

    The discretized form of this expression is used in Fluent to connect acoustic pressure and normal velocity.

    The computed acoustic perturbations are superimposed onto the pressure and velocity from non-re-

    flecting boundary condition equations. The non-reflecting boundary condition equations provide mean

    flow values at the boundary, which drive the flow in the domain.

    The data for the reflection coefficient are available in the frequency domain. As such they usually do

    not satisfy the causality and reality conditions. Fluent asks you to provide the reflection coefficient data

    in the form of a special approximation. This approximation is based on the system theory which ensures

    that the reflection coefficient in the time domain will satisfy the above conditions Fung [[3] (p. 14)].

    The reflection coefficient is represented as a sum of zero, first and second order systems. The zero system

    is described with a real value, the first order system is described with a real pole, and the second order

    system is described with a pair of complex conjugate poles. Introducing a system variable, = the

    complete approximation for the reflection coefficient is:

    11Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Impedance Boundary Conditions

  • (4.5) = +

    ++

    +

    + +

    + +

    = =

    where is a real term,

    is a number of real poles,

    and

    are real pole and its amplitude,

    is a

    number of complex conjugate pole pairs,

    ,

    are real and imaginary part of the complex conjugate

    pole,

    and

    are real and imaginary part of the amplitude of the complex pole.

    To obey the causality and reality conditions, real pole !"

    , real #$

    and imaginary part %&

    of the complex

    conjugate pole should be positive. The passivity condition requires that the absolute value of zero order

    term ' be less than 1. The above restrictions are enforced in the user interface. In addition you should

    ensure that the absolute value of the reflection coefficient computed by this formula is less than 1.

    The impedance data can be obtained from measurements or from an acoustic solver. Running these

    data through a mathematics package will provide an approximation in terms of first and second order

    poles.

    4.2.4. Using Impedance Boundary Condition

    The impedance boundary condition (IBC) is available for use in the Pressure Inlet, Pressure Outlet,Velocity Inlet and Mass Flow Inlet dialog boxes. The example below shows you how to activate theIBC for a Pressure Outlet case. Similarly, you can activate IBC for Pressure Inlet, Velocity Inlet andMass Flow Inlet cases for compressible flows with the pressure-based solver.

    1. Select pressure-outlet from the Boundary Condition task page and click the Edit... button.

    2. In the Pressure Outlet dialog box, enable Impedance Boundary option.

    The dialog box with expand to reveal Impedance Input.

    3. In Impedance Input enter data for the reflection coefficient according to the approximation formula(Equation 4.5 (p. 12)).

    Important

    If flow is tangential to the boundary, then specify either From Neighboring Cell orDirection Vector for Back flow Direction Specification Method. Do not select Normalto the boundary because this computes the face velocity components from flux to zerovalues during initialization, which impairs solver convergence.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.12

    Boundary Conditions

  • The IBC is implemented on top of the non-reflective boundary condition. Choose a time step that

    will not make the CFL number exceed a value of 1 in the cells adjacent to the impedance boundary.

    Note

    The mean flow in the domain should be well established before enabling IBC.

    13Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Impedance Boundary Conditions

  • 4.3. Wave Spectrum for Random Wave Boundaries

    For VOF simulations with open channel boundaries you can specify a wave spectrum to simulate random

    wave boundary conditions. For details about this functionality refer to Wave Spectrum for Random

    Wave Open Channel Boundaries (p. 116).

    4.4. Average Pressure Specification For Radial Profiles

    As a beta feature, the Average Pressure Specification option is also available with the following optionsat pressure outlet boundaries:

    Radial Equilibrium Pressure Distribution

    a profile for Gauge Pressure with profile type Radial

    Bibliography[1] Blackstock, D.T.. Fundamentals of Physical Acoustics. John Wiley & Sons. 2000.

    [2] Fung, K. -Y, Ju, H. and Tallapragada, B.. "Impedance and Its Time-Domain Extensions. AIAA Journal,

    Vol. 38, No. 1 pp. 3038.. January 2000.

    [3] Fung, K. -Y, Hongbin, Ju,. "Broadband Time-Domain Impedance Models. AIAA Journal, Vol. 39, No. 8.

    January 2001.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.14

    Boundary Conditions

  • Chapter 5: Physical Properties

    5.1. Using REFPROP v9.1 Database in the NIST Real Gas Models

    By default, ANSYS Fluent uses the REFPROP v7.0 property database, which is dynamically loaded as a

    shared library when you activate one of the NIST real gas models.

    You have the option to use version 9.1 of the REFPROP database that is available on the Customer

    Portal.

    5.1.1. Legal Notice

    NIST Standard Reference Data (SRD); 2013 by the U.S. Secretary of Commerce on behalf of the United

    States of America. All rights reserved.

    NO EXPRESS OR IMPLIED WARRANTY AS TO ANY MATTER, INCLUDING NO WARRANTY OF MERCHANT-

    ABIILTY AND NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. THE REFPROP DATABASE IS EX-

    PESSLY MADE AVAILABLE ON AN AS IS BASIS.

    5.1.2. Changing the Version of the REFPROP Database

    Follow these steps to upgrade to the REFPROP v9.1 database.

    1. On the Customer Portal, under Downoads Tools, locate the REFPROP v9.1 database.

    2. Download the zip file containing the REFPROP v9.1 library and fluid files to your local system.

    3. Unzip the zip file you have downloaded to the same directory as your case file.

    4. In the ANSYS Fluent console, change the REFPROP library version by entering the following text command:

    /define/user-defined/real-gas-models/nist-settings

    5. When prompted with Upgrade refprop library version and fluids files? [no], answeryes.

    6. Accept the default names for the refprop library and fluid files paths when prompted:

    Select refprop library path ["refprop9.1"]

    Select refprop fluid files path ["refprop9.1/lib"]

    ANSYS Fluent will open REFPROP v9.1 library and report this information in the console:

    Opening library "refprop9.1"...

    Library "refprop9.1/lnamd64/librealgas.so" opened

    15Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • To revert to the default REFPROP v7.0 property database, enter the /define/user-defined/real-gas-models/nist-settings command again and enter no at the prompt. ANSYS Fluent will reportthe change in the console window.

    5.1.3. Additional Features Supported by the REFPROP v9.1 Database

    The REFPROP v9.1 database includes the following additional fluids that are available for your analysis.

    Pure fluids

    d5.fldd4.fldcyclopen.fldc1cc6.fldcf3i.fldc3cc6.fld

    ioctane.fldhcl.fldebenzene.flddmc.flddee.fldd6.fld

    mlinolen.fldmlinolea.fldmdm.fldmd4m.fldmd3m.fldmd2m.fld

    novec649.fldmxylene.fldmstearat.fldmpalmita.fldmoleate.fldmm.fld

    r1233zd.fldr1216.fldr161.fldpxylene.fldoxylene.fldorthohyd.fld

    re347mcc.fldre245fa2.fldre245cb2.fldr1234ze.fldre143a.fldr1234yf.fld

    r40.fld

    Pseudofluids

    r507a.ppfr410a.ppfr407c.ppfr404a.ppfair.ppf

    The following fluids are now allowed in mixtures:

    water, heavy water, helium, hydrogen, parahydrogen, deuterium, neon, ammonia, fluorine, methanol,

    and ethanol.

    5.1.4. Limitations on Using the REFPROP v9.1 Database

    Note that several limitations with mixture simulations still exist. Transport property calculations are not

    supported for mixtures that include water with molar concentration over 5%. Changing the REFPROP

    library version is not supported when running parallel ANSYS Fluent on heterogeneous (mixed windows-

    linux) clusters

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.16

    Physical Properties

  • Chapter 6: Heat Transfer

    6.1. Enhanced Encapsulation for Shell Conduction and the S2S Model

    In the parallel version of Fluent, you can specify that an enhanced routine is used for the encapsulation

    of coupled walls that is a consequence of enabling shell conduction and/or the surface to surface (S2S)

    radiation model. This enhanced encapsulation will produce partitions that yield better load balance and

    smoother interfaces, which improves solver convergence. To use this option, first enable beta feature

    access (as described in Introduction (p. 1)) and then enable the enhanced encapsulation using the

    following text command:

    define models shell-conduction enhanced-encapsulation?

    17Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.18

  • Chapter 7: Heat Exchangers

    7.1. Improved Curve Fitting for Heat-Exchanger Model

    In the dual cell heat exchanger model, you can specify the performance data table (either heat transfer

    or NTU) for calculating local heat transfer in the cell. If the operating mass flow rates fall within the

    range of the mass flow rates provided in the performance data table, then linear interpolation has been

    found to be the best method to calculate the NTU value. However, if the operating mass flow rates fall

    outside the range specified in the performance data table, then the NTU value corresponding to the

    maximum mass flow rate is taken if the operating mass flow rate is greater; otherwise the NTU value

    corresponding to the minimum mass flow rate is taken if the operating mass flow rate is lower. Due to

    this clipping of NTU values, unexpected heat transfer may occur. To avoid this, curve fitting allows you

    to use the exponential curve for extrapolation. You can use the following flavors of exponential decay

    curves for NTU versus mass flow rates.

    (7.1)&= +

    (7.2)& &

    =

    +

    where a,b,c,d,e,g are user-specified coefficients and & is the primary mass flow rate.

    To use Equation 7.1 (p. 19), you have to create a file named coefficient3.dat in your workingdirectory, which contains the coefficients a,b, and c for each auxiliary mass flow rate row by row. For

    example, if the number of auxiliary mass flow rates is 3, then the file will read as

    a1 b1 c1 a2 b2 c2 a3 b3 c3

    ANSYS Fluent will read the file coefficient3.dat and use the coefficients in Equation 7.1 (p. 19)to compute the NTU value if the primary mass flow rate is out of range. If the primary mass flow rate

    is within the range, the above coefficients will be ignored and linear interpolation will be used.

    Similarly, to use Equation 7.2 (p. 19), you have to create a file named coefficient5.dat in yourworking directory, which contains the coefficients a,b,c,d, and g for each of the auxiliary mass flow rates

    row by row. For example if the number of auxiliary mass flow rates is 3 then the file will read as

    a1 b1 c1 d1 g1 a2 b2 c2 d2 g2 a3 b3 c3 d3 g3

    7.1.1. Limitations

    This feature can be used only for one heat exchanger since it can read only one file for coefficients.

    This feature is available only with the dual cell heat exchanger model (see Using the Dual Cell Heat Ex-

    changer Model in the User's Guide).

    This feature cannot be used for interpolation. Linear interpolation is used for such cases.

    Curves of the type outlined above can only be used for extrapolation.

    19Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • 7.1.2. Usage

    Make sure you first enable beta feature access, as described in Introduction (p. 1). The feature can

    be activated by setting an rpvar as follows:

    For curve (1), enter (rpsetvar dc/extrapolation-method exponential3) in the console. Acoefficient file named coefficient3.datwill be created in the working directory when you performiterations.

    For curve (2), enter (rpsetvar dc/extrapolation-method exponential5) in the console. Acoefficient file named coefficient5.dat will be created in the working directory when you performiterations.

    To go back to the default extrapolation, use the following rpvar:

    (rpsetvar dc/extrapolation-method default)

    7.2. Alternate Formulation for the Dual Cell Heat Exchanger

    It is a well known fact that the dual cell model depends on the resolution of the core meshes. If the

    core mesh is very coarse, then accuracy is severely affected. Make sure you first enable beta feature

    access, as described in Introduction (p. 1), then activate the alternate formulation for heat transfer

    using the following text command:

    define models heat-exchanger dual-cell-model alternate-formulation?

    The results obtained using the alternate formulation is mesh independent and gives a reliable solution

    even on very coarse meshes. Please note that the default formulation and alternate formulation results

    are comparable on a sufficiently fine core mesh. Also the alternate formulation should not be used for

    non-matching core meshes.

    For background information about the dual cell heat exchanger, see Using the Dual Cell Heat Exchanger

    Model in the User's Guide.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.20

    Heat Exchangers

  • Chapter 8: Turbulence

    This chapter contains information relating to turbulence models implemented as beta features in ANSYS

    Fluent 15.0.

    8.1. Explicit Algebraic Reynolds Stress Model

    8.2. Near-Wall Treatment for the Porous Media Interface

    8.3. Near-Wall Treatment for Models

    8.4. Buoyancy Effects on Omega-Based Turbulence Models

    8.1. Explicit Algebraic Reynolds Stress Model

    Explicit Algebraic Reynolds Stress Models (EARSM) represent an extension of the standard two-equation

    models. They are derived from the Reynolds stress transport equations and give a nonlinear relation

    between the Reynolds stresses and the mean strain-rate and vorticity tensors. Due to the higher order

    terms, many flow phenomena are included in the model without the need to solve transport equations

    for individual Reynolds stresses. The WJ-BSL-EARSM allows an extension of the BSL turbulence

    model to capture the following flow effects:

    Anisotropy of Reynolds stresses

    Secondary flows

    The BSL model is the basic model underlying the SST model. The BSL model is described in [4].

    The implementation of the WJ-BSL-EARSM in ANSYS Fluent is based on the explicit algebraic Reynolds

    stress model of Wallin and Johansson [1]. Differences from the original formulation by Wallin and Jo-

    hansson are explained in the following text.

    With EARSM, the Reynolds stresses are computed from the anisotropy tensor according to its definition:

    = +

    where the anisotropy tensor

    is searched as a solution of the following implicit algebraic matrix

    equation:

    (8.1)= + = +

    The coefficients

    in this matrix equation depend on the

    -coefficients of the pressure-strain term in

    the underlying Reynolds stress transport model. Their values are selected here as

    =1.245,

    =0,

    =1.8, !

    =2.25.

    The values of "#

    , $%

    , and &'

    are the same as those used in the original model by Wallin and Johansson

    [1]. As for the value of ()

    , it is increased from 1.2 to 1.245 in the course of calibrating EARSM for its

    use together with the BSL * + model.

    21Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • and

    denote the non-dimensional strain-rate and vorticity tensors, respectively. They are defined

    as:

    (8.2)=

    +

    (8.3)=

    where the time-scale is given by:

    (8.4)= = =

    In order to arrive at an explicit solution of the Equation 8.1 (p. 21), the anisotropy tensor is expressed

    as a polynomial based on the strain rate and the vorticity tensors as follows:

    (8.5)

    = + +

    + +

    ! ! " "! # ! " "! " "!

    " "$ $! " "$ $! ! # !

    % & '

    (

    The )-coefficients are evaluated to:

    = * + ,-

    = . /0 1 2 1 //3

    4

    5

    = 6 78

    = 9 : ; :

    ?

    where the denominator Q is:

    = @ A BB CD

    E

    F

    The invariants, which appear in the formulation of the anisotropy tensor and the coefficients, are defined

    by:

    =GG H HI JK KJ

    =LL M MN OP PO

    =QR S T TUV VW WU

    The model representation of the anisotropy tensor Equation 8.5 (p. 22) and its coefficients XY

    follows

    the original model by Wallin and Johansson [1] with two differences. First, the fourth order tensor

    polynomial contribution (the Z[

    \ \

    term) is neglected in Equation 8.5 (p. 22). Second,

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.22

    Turbulence

  • the tensor basis is slightly changed for convenience according to Apsley and Leschziner [2]. Although

    the tensor basis is changed, the model remains algebraically equivalent to the original model of Wallin

    and Johansson. The latter change results in correspondingly changed expressions for the coefficients

    .

    In three-dimensional flows, the equation to be solved for the function is of sixth order and no explicit

    solution can be derived, whereas in two-dimensional mean flows the function can be derived from

    a cubic equation, an analytic solution of which is recommended by Wallin and Johansson [1] also for

    three-dimensional cases:

    (8.6)=

    + + +

    +

    HgCl2 + H2 A = 22.0e+03, b = 0.0, E = 28770.0 (SI units) *

    * Arguments: * char hg_func_name - UDF name * cell_t c - Cell index * Thread *t - Pointer to cell thread on * which the Hg rate is to be * applied * Pollut_Cell *Pollut - pointer to Pollut structure * Pollut_Parameter *Pollut_Par - pointer to * Pollut_Par structure * Hg_Parameter *Hg - pointer to Hg structure *

    Description of Pollut_Par->pollut_io_pdf: 1. Pollut_Par->pollut_io_pdf == IN_PDF

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.82

    Pollutants

  • All rate terms which are subjected to turbulent fluctuations must be included within this flag. 2. Pollut_Par->pollut_io_pdf == OUT_PDF All rate terms which must be outside of the pdf integration (are not affected by turbulence) must be included within this flag. e.g. Char contributions to pollutant formation. 3. Pollut_Par->pollut_io_pdf == SET_VAR To modify a parameter value, user may use this flag. e.g. Top temperature setting for pdf integration. 4. Pollut_Par->pollut_io_pdf == GET_VAR This flag may be used to obtain a mean rate of reaction or any other cell based value at the end of the source term computation.

    Pollut_Par->nfstreams : Number of fuel streams Pollut->r_fuel_gls[i] : rate of volatile release for stream "i" per unit volume in kg/m3-sec Hg->Yhg_fuelvolat[i] : mass fraction of Hg in fuel/vol stream "i" Hg->Yhcl_fuelvolat[i] : mass fraction of HCl in fuel/vol stream "i" Hg->Ycl_fuelvolat[i] : mass fraction of Cl in fuel/vol stream "i" Hg->Yhg_char[i] : mass fraction of Hg in char stream "i" Hg->Yhcl_char[i] : mass fraction of HCl in char stream "i" Hg->Ycl_char[i] : mass fraction of Cl in char stream "i"*********************************************************************/

    #include "udf.h"

    DEFINE_HG_RATE(user_hg, c, t, Pollut, Pollut_Par, Hg){ int ifstream; real rf=0., rr = 0., kf1=0.; /*Rate_Const KF_HG = {1.204409e4, 0.0, 18000.0};*/ /* Hall (1991)*/ Rate_Const KF_HG = {2.2e4, 0.0, 28770.0}; /* Gasper et al. (1997)*/

    POLLUT_FRATE(Pollut) = 0.0; POLLUT_RRATE(Pollut) = 0.0;

    kf1 = ARRH(Pollut, KF_HG);

    switch (Pollut_Par->pollut_io_pdf) { case IN_PDF: /* Include source terms other than those from char */ switch (POLLUT_EQN(Pollut_Par)) { case EQ_HG: /* Hg production */ for(ifstream=0; ifstreamnfstreams; ifstream++) { rf += Pollut->r_fuel_gls[ifstream]*Hg->Yhg_fuelvolat[ifstream] *1000./Pollut_Par->sp[IDX(HG)].mw; } rr = -kf1*MOLECON(Pollut, IDX(HG))*MOLECON(Pollut, IDX(HCL)); break; case EQ_HGCL2: rf = kf1*MOLECON(Pollut, IDX(HG))*MOLECON(Pollut, IDX(HCL)); break; case EQ_HCL: for(ifstream=0; ifstreamnfstreams; ifstream++) { rf +=Pollut->r_fuel_gls[ifstream]*Hg->Yhcl_fuelvolat[ifstream] *1000./Pollut_Par->sp[IDX(CL)].mw; } rr = -2.*kf1*MOLECON(Pollut, IDX(HG))*MOLECON(Pollut, IDX(HCL)); break; default: break; } break; case OUT_PDF: /* Char Contributions are not included in PDF integral */ switch (POLLUT_EQN(Pollut_Par)) { case EQ_HG: for(ifstream=0; ifstreamnfstreams; ifstream++) { if (Pollut_Par->pollut_type[ifstream] == FUEL_S) { rf += Pollut->r_char[ifstream]*Hg->Yhg_char[ifstream]*

    83Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Mercury Pollutant Formation

  • 1000./Pollut_Par->sp[IDX(HG)].mw; break; /*char stream cannot be split at present*/ } } break; case EQ_HCL: for(ifstream=0; ifstreamnfstreams; ifstream++) { if (Pollut_Par->pollut_type[ifstream] == FUEL_S) { if (Hg->char_cl_conv[ifstream] == 0 || Hg->char_cl_conv[ifstream] == 2) { rf += Pollut->r_char[ifstream]*Hg->Yhcl_char[ifstream]* 1000./Pollut_Par->sp[IDX(CL)].mw; break; /*char stream cannot be split at present*/ } } } break; default: break; } break; case SET_VAR: /* Set a value at each cell before Hg rate computations */ break; case GET_VAR: /* Get values at the end of Hg computations */ break; default: /* Not used */ break; } POLLUT_FRATE(Pollut) = rf; POLLUT_RRATE(Pollut) = rr;}

    10.3.5.4. Hooking DEFINE_HG_RATE UDFs

    After you have interpreted or compiled your DEFINE_HG_Rate UDF, the name of the function yousupplied as a DEFINE macro argument will become visible and selectable in the Mercury Model dialogbox (Figure 10.12: The Mercury Model Dialog Box (p. 85)) in AN