flood risk mapping from orbital remote sensing

33
1 FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING 1 2 Manuscript for “Global Flood Hazard: applications in modeling, mapping and 3 forecasting”, G. J-P Schumann, P.D. Bates, G. T. Aronica, and H. Apel, editors. 4 (In review) 5 6 G. Robert Brakenridge 7 Dartmouth Flood Observatory 8 CSDMS/INSTAAR, University of Colorado, Boulder, CO USA 9 10 Introduction 11 Standardized methods for flood risk evaluation in the United States were 12 developed by the United States Geological Survey over more than a century 13 (Klingeman, 2005; Wahl et al., 1995). They use an extensive network of river 14 gauging stations and associated time series of annual flood peak discharge; many of 15 these extend for 50-100 y. To meet regulatory and insurance requirements, flood 16 risk assessments must be not only objective and scientifically defensible, but also 17 uniformly applicable across highly variable hydrological regimes. The results are 18 commonly subject to legal challenges as property owners contest the level of risk 19 assigned; consistency of method is thus critical. Through these standard methods, 20 risk is modeled: a flood discharge of particular calculated recurrence interval is 21

Upload: others

Post on 18-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

1

FLOODRISKMAPPINGFROMORBITALREMOTESENSING1

2

Manuscriptfor“GlobalFloodHazard:applicationsinmodeling,mappingand3

forecasting”,G.J-PSchumann,P.D.Bates,G.T.Aronica,andH.Apel,editors.4

(Inreview)5

6

G.RobertBrakenridge7

DartmouthFloodObservatory8

CSDMS/INSTAAR,UniversityofColorado,Boulder,COUSA9

10

Introduction11

StandardizedmethodsforfloodriskevaluationintheUnitedStateswere12

developedbytheUnitedStatesGeologicalSurveyovermorethanacentury13

(Klingeman,2005;Wahletal.,1995).Theyuseanextensivenetworkofriver14

gaugingstationsandassociatedtimeseriesofannualfloodpeakdischarge;manyof15

theseextendfor50-100y.Tomeetregulatoryandinsurancerequirements,flood16

riskassessmentsmustbenotonlyobjectiveandscientificallydefensible,butalso17

uniformlyapplicableacrosshighlyvariablehydrologicalregimes.Theresultsare18

commonlysubjecttolegalchallengesaspropertyownerscontestthelevelofrisk19

assigned;consistencyofmethodisthuscritical.Throughthesestandardmethods,20

riskismodeled:aflooddischargeofparticularcalculatedrecurrenceintervalis21

Page 2: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

2

routedthroughthechannelandacrossthelandscapeviaregulatoryagency-22

approvedhydrodynamicmodelssuchasHEC-RAS(FEMA,2002).23

24

ManydevelopednationsoutsidetheUnitedStateshavesimilarriskevaluation25

methodologies.Quitecommonly,a“100y”dischargeandassociatedfloodplainare26

defined:thisfloodplainisthelandareaalongariverwhere,atitsmargins,a1%27

annualexceedanceprobabilityiscalculatedforinundationbyfloodwater(interior28

portionsmayexperiencemuchhigherinundationfrequencies).Thus,the29

probabilityPethatoneormorefloodsoccurringduringanyperiodwillexceeda30

givenfloodthresholdcanbeexpressed,usingthebinomialdistribution,as31

Pe=1–[1–(1/T)]n (Equation1)32

whereTisthethresholdreturnperiod(e.g.100y)andnisthenumberofyearsin33

theperiod.Forfloods,theeventmaybemeasuredinpeakm³/sorheight;most34

commonlythecalculationusesatimeseriesofannualfloodpeakdischarges(Flynn35

etal.,2006;Klingeman,2005).36

37

Inregardtothisapproach,manydevelopingnationshavealessdeveloped38

hydrologicalmeasurementinfrastructure,andrelativelyfewreliableinsiturecords39

ofpastfloodpeakdischarges.Theneedforreliablefloodhazardinformationmaybe40

evenmorecritical,however,asagriculturalandmanufacturingeconomiesexpand,41

andpopulationgrowthandmigrationincreasesettlementoffloodplainlands42

(Brakenridgeetal.,2016b).Intheselocations,adifferentkindofhydrological43

modelingoffloodhazard,generallyonarelativelycoarsespatialscaleandwithout44

Page 3: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

3

abundantstreamflowrecords,isoneapproachtowardsaddressingtheneed(as45

discussedelsewhereinthisbook).Suchapproachesdonotrequireinsituflood46

measurements,butinsteadreconstructthefloodhistoryfromclimatologicaldata47

inputandtopography-assistedmodeling.48

49

Thepresentchapteroffersathirdapproach:combinedanalysisof:50

1) A1998-presenttimeseriesofsatellitepassivemicrowavedatathatrecords51

floodhydrographsatselectedmeasurementsites(Brakenridgeetal.,52

2012a;DeGroeveetal.,2015a;VanDijketal.,2016),and53

2) Opticalsensorimagingandmappingoffloodevents,alsosustainedovera54

similartimespan.55

Thesetogetherproduceaninundationrecordwhichiscoupledtothe56

microwaveinformation:inordertoassignexceedanceprobabilitiestothemapped57

inundationlimits.58

59

Usingthisapproach,standardfloodprobabilitydistributionscanbeappliedto60

agloballyconsistentobservationalperiodofrecordofnearly20y(1998-present).61

Notethatastandard“ruleofthumb”forextrapolationoffloodprobability62

distributionsis2x:iftheperiodofannualpeakflowrecordis20y,the“40y”event63

canbeestimated.Thus,theserecordsshouldallowestimationat-a-siteofthis64

discharge,andsomemappedfloods,iftheyarethelargestofrecord,willbeassigned65

recurrenceintervalsinexcessof20y.Evenareliable25yfloodplain(annual66

exceedanceprobability=4%)isveryusefulriskinformationinanyregionwhere67

Page 4: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

4

riskinformationisotherwiselacking,andthesegeospatialdatacanbemadequickly68

availableviathemethodologyanddatadescribedhere.69

70

Orbitalremotesensinginthelate20thandearly21stcenturieshasprovideda71

richarchiveofactualfloodinundationextents.Forsuchdata,seeforexample72

(Brakenridgeetal.,2016a).Somenationsalreadyusesatellite-basedmapsofany73

extremefloodeventforfloodplainregulation,onthesimpleprinciplethatwhathas74

occurred,mayoccuragain(deMoeletal.,2009).Exploredhereisaglobally75

applicablestrategy,however,towardstransformingsuch“mappedlargeflood”76

informationintoquantitativefloodrisk.Suchmapscan,inturn,alsobeusedto77

validateandcalibratefloodriskmapscreatedusingmodelingapproaches.78

MicrowaveRadiometryforMeasuringRiverDischarge79

Asnoted,oncealargefloodhasbeenmappedfromspace,theneedisto80

constrain“howlarge/howrare”isthemappedevent.Inthisregard,satellite81

microwavesensorsprovideglobalcoverageoftheEarth’slandsurfaceonadaily82

basisand,atcertainwavelengths,withoutmajorinterferencefromcloudcover.83

Griddeddataproducts,updatedinnearrealtime,areavailable(DeGroeveetal.,84

2015a).Theproductsarelowinspatialresolution(bestavailableresolutionfor85

theseglobalcoveragesensorsis8-10km).However,usingastrategyfirstdeveloped86

forwide-areaopticalsensors(Brakenridgeetal.,2005;Brakenridgeetal.,2003b),87

sensorssuchasAMSR-E,AMSR-2,TRMM,andGPM(figure1)canmeasureriver88

Page 5: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

5

dischargechangesatcertainlocations,bymonitoringthesurfacewaterareasignal89

fromindividualimagepixelsovertime.90

91

Themethodissimpleinconcept:asriversriseanddischargeincreases,water92

areawithinthesingle-pixelsatellitegaugingsites(~10kmx10km),asselected93

fromagriddedglobalimageproduct(figure2),alsoincreases(Brakenridgeetal.,94

2012a;Brakenridgeetal.,2007;DeGroeveetal.,2015b;DeGroeveetal.,2006;De95

GroeveandRiva,2009).Thiswaterareachangetracksriverwidthanddischarge96

variationinamanneranalogoustohowstage(riverlevel)tracksdischargeatinsitu97

gaugingstations.Therelationshipofflowareatodischargeisviathecontinuity98

equation99

Q=wdv (Equation2)100

101

whereQiswaterdischargeinm3/s,wisflowwidth,diswaterdepth,andviswater102

flowvelocity(m/sec),asintegratedacrosstheflowcrosssection.Asdischarge103

increases,andprovidedthechannelisnotrectangularinshape,flowwidth104

increasesatacrosssection,andflowareaincreasesoverallwithinariverreach:in105

thiscase,a10km2measurementsite.106

107

Page 6: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

6

108

Figure1.Temporalcoverage,1998topresent,ofpassivemicrowavesensorsbuilt109

andoperatedbyNASAandbyJAXA(theJapaneseSpaceAgency).Eachsatellite110

providesdailyornear-dailyimagingoftheglobe.111

112

Notethata~10km37GHzimagepixelinthesegriddedproducts,centered113

overariver,iscommonly"mixed";itincludesbothwater(lowemission)andland114

(highemission).Astheproportionofwaterarearises,thenetemittedradiation115

declines.Themicrowavesignalisthusverysensitivetoflowwidthchanges.The116

physicalmechanismsareexploredelsewhereforthisfrequencyradiation(e.g.,117

reasonsforlowemissionfromwaterandmuchhigheremissionfromland,118

Brakenridge,etal.,2007).However,thesamemethodologycanalsousethenearIR119

bandsofopticalsensors:again,watersurfacesprovidemuchlowerradiancethan120

adjoininglandsurfaces,butcloudcoverwillintermittentlyinterfere(Brakenridgeet121

al.,2005;VanDijketal.,2016).122

123

Page 7: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

7

124

125

126

Figure2.LocationofSatelliteGaugingSiteDFO#30overAyeyarwadyRiverandits127

floodplaininMyanmar.ThesiteisasinglepixelselectedfromtheJRCgrid;pixelis128

10kminsizeandproducesthedailyMvalue.The95thpercentileofthehighest129

(driestandwarmest)valuesfroma9x9pixelarrayinthesurroundingarea130

producesthebackgroundcalibrationCvalue.131

132

Asdischargealongariverincreases,theflowarea,asseenfromabove,should133

generallyincreasemonotonically(hysteresiseffectscanlocallyoccur,however).134

Althoughinsitugaugingstationsinsteadcommonlyusestage,thereisnoapriori135

reasonwhythisisamoresensitiveflowmonitor.Ifriverchannelsarenot136

rectangularinshape,dischargevariationisexpressedbybothstageandwidth137

variations;and,alongmanyrivers,widthvariationwithflowisquiterobust.Also,138

sinceareachinsteadofasinglecrosssectionismonitored,thesensitivityoftheflow139

Page 8: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

8

areameasurementdependsonthecompletesuiteofriver/floodplainmorphologic140

featureswithinthereach,andincludingin-channelbarsandlowfloodplainsurfaces,141

slip-offslopesalongmeanderbends,braidedchannelsandislands,andfloodplain142

oxbowlakeswhichareconnectedtothemainchannel.Asforinsitustations,the143

bestsatellitegaugingsitesthusmustbecarefullyselected;inthiscase,forreaches144

wheresurfaceareachangessignificantlyoverthefullrangeofin-channelandflood145

discharges.146

147

Oneimplementationofsatellitemicrowave-basedflowareainformationfor148

operationalhydrologicalmeasurementsistheRiverWatchprocessoratthe149

DartmouthFloodObservatory(DFO),UniversityofColorado,150

http://floodobservatory.colorado.edu/.RiverWatchusestheNASA/JapaneseSpace151

Agency(JAXA)AdvancedScanningMicrowaveRadiometer(AMSR-E)bandat36.5152

GHz,theNASA/JapaneseSpaceAgencyTRMM37GHzchannel,and37GHzdata153

fromthenewAMSR-2andGPMsensors.Thedischargeestimator(theremote154

sensingsignal)istheratioofthedaily"M",microwaveemissivityfroma155

measurementpixelcenteredovertheriveranditsfloodplain,andacalibratingvalue156

("C"),the95thpercentileoftheday'sdriest(brightest)emissivitywithina9pixelx157

9pixelarraysurroundingthemeasurementpixel.(figure2).The95thpercentile158

excludesoutliersduetosensornoisewhilestillprovidingasuitablenon-hydrologic159

backgroundmeasurement.At~37GHz,C/Misprimarilysensitivetochanging160

surfacewaterareawithintheMpixel;usingtheratioremovesotheremission161

Page 9: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

9

variability(e.g.fromsurfacetemperature)thataffectsallpixelsinthearea(De162

Groeveetal.,2015b;DeGroeveetal.,2006;DeGroeveandRiva,2009).163

164

ThetimeseriesatsiteswithinreachofTRMM(<50degreeslatitude)beginin165

January1998(figure1).ThenAMSR-Edata(mergedwiththeTRMMinformation)is166

addedwhensuchbecomesavailableinmid-2002.TheseriescontinuesusingTRMM,167

only,duringtheAMSRhiatusbetweenAMSR-EterminationandinitiationofAMSR-168

2;figure1)andthenitaddsAMSR-2andGPM(nowmergingthetwodatastreams,169

into2016).Themicrowaverecordathigherlatitudesitesbeginsinmid-2002170

(followinglaunchofAMSR-E),andthereisdatagapin2012-2013betweenthe171

terminationofAMSR-EandinitiationofAMSR-2.Thegriddingalgorithmthat172

producestheglobaldailyimagesisperformedattheEuropeanCommission’sJoint173

ResearchCentre(JRC);theoriginaldataarenearrealtimeswathinformationfrom174

eachsensorprovidedbyNASAand/orJAXA.AJRCtechnicaldocumentprovides175

furtherinformationincludingdatasources(DeGroeveetal.,2015b).176

177

JRCproducesadailyglobalgridat10km(neartheequator)pixelresolution,178

andpublishesdailyratiodataforfixedpixelswithinthat4000x2000pixelgrid.At179

lowerlatitudes,thecoverageislessthandailyfromAMSR-EandAMSR-2:thelatest180

RiverWatchversionusesaforwardrunning,4-daymeanofthedailyresultsto181

avoidsuchdatagaps.Becauseriverdischargeexhibitsstrongtemporal182

autocorrelation,suchaveragingalsoprovidesusefulsmoothingandnoisereduction.183

Page 10: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

10

Also,whenmultiplesamplesforonepixelareavailableinoneday,thelatestsample184

valueisusedatJRCinthegriddedproduct.185

186

AtDFO,thelatestratiodatafromtheJRCareingestedtwiceeachday,andthe187

web-hosteddisplaysandcalculateddischargedataforeachsatellitegaugingsiteare188

thenupdated.Eachsitedisplayincludestwo(html)onlinewebpages:oneprovides189

plotsoftheresultsbutalsosometabulardata:190

(E.g.,http://floodobservatory.colorado.edu/SiteDisplays/30.htm).191

Thesecondpresentsthesignal/dischargeratingcurve(seebelow)andaccesstothe192

completerecordofsatellite-measureddischarge:193

(http://floodobservatory.colorado.edu/SiteDisplays/30data.htm).194

Forcomparisonpurposes,areference20thpercentileofthemeasureddischargefor195

eachdayoftheyearisalsoprovidedandprovidesausefullowflowthreshold.196

ProductionofSignal/DischargeRatingCurves197

Asisthecaseforriverstagemeasuredatinsitugaugingstations,independent198

informationisneededtotranslatethedischarge-sensitiveobservable(inthiscase,199

watersurfacearea)tothecorrespondingdischargevalue.Thetransformationis200

accomplishedbyanempiricalratingequationthatmatchesthesignalto201

independentdischargeinformation.ForRiverWatch,thecalibratingdischarge202

valuesareobtainedbyrunsofaglobalrunoffmodel(WBM)(Cohenetal.,2011).203

Fiveyears(2003-2007)provideabundantdailymodeloutputforcalibration;204

additionalyearscomparingmodelandremotesensingcouldfurtherrefineand205

Page 11: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

11

possiblyextendtheresultingratingcurves(iflargermodeledflowsoccurthan206

previously).TheWBMmodel,alsousingaglobalgridresolutionof~10km,inputs207

climateandlandsurfacevariablesandproducesdailyriverdischargevaluesfor208

theseyearsateachmeasurementsite.Earlierworkdeterminedthatadequate209

calibrationinformationforeachsite’sratingcurvecanbeobtainedbycomparing210

justthemonthlydailymaximum,minimum,andmeanvalues,son=180forthe5y211

run(Brakenridgeetal.,2012a;Cohenetal.,inpreparation,2013;Cohenetal.,212

2011).Figure3providessampleresultsatonesiteasascatterplot;figure4213

illustratesthesamedataintimeseriesform.Inthelattercase,thesignaldataare214

firsttranslatedtodischargevaluesusingthescatterplot’sratingcurveinorderto215

showthetwotimeseriesonthesamescale.216

217

218

Figure3.ScatterplotcomparingWBM-modeleddailydischargeovera5y(January-219

Decembermonthlydailymaximum,minimum,andmeandischarges)totheC/M220

ratioforRiverWatchsite30.Therelationshipisempiricalandabettercurvecould221

befittothesedata,butastraightlineisausefulfirst-approximationratingcurve.222

Page 12: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

12

223

224

Figure4.Samedataasinfigure3,butarrangedastimeseriesofmaximum(left)225

mean(middle),andminimum(right)dischargevalues.Theredlineshowsthe226

modelresultsandthebluelineistheremotesensingastransformedbytherating227

equationinfigure3.228

229

Withoutotherinformation,itisnotpossibletodeterminewhichdeparturesin230

asmoothmonotonicrelationinfigure3isfromerrorsintheremotesensingsignal231

andwhichfromerrorsinthemodel.Forthepurposeofthefloodriskassessments232

tobedescribedhere,however,thecorrelationofindependentmodeltoremote233

sensingfurtherestablishesthatthemicrowavewaterareasignalisindeed234

respondingtodischargevariation.Also,andwhetherornotWBMisstrongly235

affectedbymodelbiasandisreportingconsistentlytoo-highortoo-lowdischarge236

numbers,suchbiaswillnotaffecttheriskprobabilities.Figure5providestheentire237

remotesensingdailytimeseriesatthissatellitegaugingsite,andusingtherating238

curveinfigure3.Becausetheratiosignalisrespondingtosurfacewater(and239

flooding)extentwithintheMpixel,therelativeheightsofthefloodhydrographs240

shownshouldaccuratelyreflectthetruetimeseriesoffloodingthere:regardlessof241

anymodelbiasinthedischargecalibration.Thisresultthenprovidestheessential242

Page 13: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

13

informationneededforfloodhazardmapping:amethodtoconstraintheobserved243

frequency/exceedanceprobabilityofanimagedflood.244

245

Figure4.Daily(4-dayforwardrunningmean)dischargevaluesforsatellitegauging246

site30ontheAyeyarwadyRiver.Thelowflowthreshold(greenline)isthe20%247

percentiledischargeforeachday;thefloodthresholdsuserecurrenceintervals248

computedusingtheLogPearsonIIIdistributionandtheannualmaximumdaily249

values.Majorfloodingin2015approachedthecalculated5yrecurrenceinterval;250

thefloodofrecord,in2004,wasproducedbyaverydamagingtropicalstorm251

(Brakenridgeetal.,2016b);floodinghereexceededthe25ythreshold.252

253

Thereisanimportantfactorthatmaychangetheexactreturnperiodstobe254

assignedtotheannualfloodpeaksshowninfigure4.Thatis,thestraightlinerating255

equationshowninfigure3clearlyproducessomewhattoohighdischargesforthe256

highestwaterareasignalvalues(figure3).Adjustingtheratingequationtoflatten257

theslopewouldproducesomewhatsmallerfloodpeaksandalsoalterthe258

correspondingreturnperiodsforthelargerevents.Thisdependencyindicatesthe259

importanceofdevelopingthehighestqualityratingcurves(thesameneedexistsfor260

insitugaugingstations).261

Page 14: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

14

AssessingRiverWatchAccuracy262

Asnoted,theaccuracyofthesatellitegaugingsiteresultsdependsinparton263

riverandfloodplainmorphology.Othersite-specificfactorssuchasvegetationare264

alsoimportant(Revilla-Romeroetal.,2014).Usingboththemodelandtheremote265

sensingresults,withoutanyground-basedinformation,itisalsopossibleto266

calculateusefulstatisticscomparingtheoverallaccuracyofthedischargetime267

seriesresults.Forexample,flowareasmaynotchangeverymuchinresponseto268

dischargealongsomereaches,inwhichcasetheexpectedsignalrangeissmall269

comparedtothedailynoisethatcanbeinducedbyotherfactors(seebelow).Two270

descriptivestatisticsforasampleofsitesinMyanmaralongtheAyeyarwadyanda271

majortributary(theChindwinRiver)areprovidedasTable1toillustratetheir272

utilityandapplication.Thesignal/modelagreementisasimplerankingand273

classificationofthesignal/modelleastsquaresregression(coefficientof274

determinationr2)results,asinfigure3(eitherforstraightlinefitsorsecondorder275

polynomialsthatcanbettermatchthedata).Amongdifferentsites,higherr2276

indicatesastrongercorrelation;itismorelikelythattheremotesensingsignalis277

accuratelytrackingriverdischargevariationifitisstronglycorrelatedtomodeled278

dischargeoutput.Thesethresholdswerechosentogroupther2valuesintoclasses:279

>.7,Excellent,.6-.69,VeryGood,5-.59,Good,.4-.49,Fair,<.4,Poor.280

281

Second,thesitesvaryinmaximumsignalrangeovertheperiodofrecord(in282

thetable,fromalowof.08to.20,ormorethan2-fold).Theyalsovaryintheaverage283

dailysignalchange(fromalowof.08to.14,ornearly2-fold).Thus,somesitesmay284

Page 15: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

15

exhibitaverysmalltotalrange,butsignificantdailyvariation,muchofwhichmay285

benoise;othersalargetotalrangeandrelativelysmalldailyvariation(stronger286

signal/noise).Theratioprovidesaconsistent“signalstrength”measurethatcanbe287

similarlyclassifiedfromexcellenttopoor.Thefollowingthresholdswerechosento288

groupthesignal/noisevaluesintoclasses:>.8,Excellent,.7-.79,VeryGood,.6-.69,289

Good,.47-.59,Fair,<.47,Poor.290

291

Thetwometricsseparatelyprovideanobjectiveassessmentofhowwellthe292

remotesensingagreeswiththemodeling,andhowstronglythesignalisrecording293

dischargevariationcomparedtotheday-to-dayvariationthatmaybemainlynoise294

alongmanyrivers.Knownsourcesfornoisemayinclude:1)geolocationerror(the295

geographicfootprintoftheswathimagedataincorporatedintothegriddedglobal296

productvariesslightly);2)sensornoise(theradiancemeasurementshavefinite297

precision);and3)non-surfacewaterareaeffectsontheratio(soanydifferential298

environmentalfactorsaffectingtheMpixelovertheriverandthedriestpixelsinthe299

Ccalibrationarray.300

301

Site Signal/Model SignalRange DischargeRange Signal/Noise r2302

Agreement anddaily303

304

108 VeryGood .11,.008 21,091m3/s Good .66305

23 Good .08,.009 25,507m3/s Fair .57306

26 VeryGood .09,.013 17,242m3/s Fair .67 307

29 Good .12,.014 35,891m3/s Fair .57308

Page 16: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

16

30 VeryGood .20,.013 35,245m3/s VeryGood .70309

Table1.Summaryofmicrowavedischargemeasurement(RiverWatch)sitecharacteristics310

andaccuracyforsitesalongtheChindwin(108and23)andAyeyarwady(26,29,30).The311

signalrangestatisticrecordsthetotalmeasuredvariabilityofthedischarge-estimator312

signal;largervaluesindicateasitewheretheremotesensingsignalismoresensitiveto313

dischargevariation.Thenoisestatisticreferstotheaveragesignalvariabilityonadaily314

basis;largervaluesindicatemorenon-hydrologicnoise.Ther2valuesarecoefficientsof315

leastsquaresregressionoftheindependentWBMmodelingdischargeresultstotheremote316

sensingsignal(over5years,2000-2010,monthlydailymaximum,mean,andminimum317

values,n=180).318

319

Wheregroundgaugingstationsandsatellitegaugingsitesareco-located,the320

remotesensingcanalsobedirectlycalibratedtodischargedirectlyviatheground321

information.SelectedU.S.sites(e.g.,figure5)thereforecomparemodel-basedand322

groundstation-basedratingcurves:providingbothanassessmentofmodelbiasand323

oftheoverallaccuracyoftheRiverWatchinformation.Intheexampleshown,the324

riverchannelismeandering,butonly45mwide;thusalsodemonstratingthatthe325

RiverWatchmethodisnotlimitedtolargeriversbutinsteadrequiresonly326

floodplain/channelreacheswheretotalsurfacewaterextentchangesrobustlyas327

dischargechanges.328

329

Page 17: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

17

330

Figure5.Model-andgroundstation-basedratingcurvesforTrinityRiver,331

Texas,RiverWatchsite446intheDartmouthFloodObservatory/Universityof332

Coloradoarray.TheWBMmodelwasusedtoproducetheblacklineratingcurve,333

whichisfittowidelyscattereddata.Aco-locatedUSGSgaugingstationwasusedto334

producetheredlineratingcurve,withmuchbettercorrelationtotheremote335

sensing.ComparisonofthetwocurvesindicatesaWBMmodelpositivedischarge336

biasincreasingwithhigherdischarges.Also,atthislocation,theWBMmodelmay337

performrelativelypoorlybecauseitdoesnotincorporateupstreamrivercontrol338

structures.339

SatelliteGaugingSiteSelection340

Thereareseveralfactorsaffectingtheselectionofgauginglocations.Itis341

importantthattheMpixelbelocatedtoavoidsaturation(completefillingofthe10342

kmmeasurementpixelbywater)duringfloodevents.Itisalsonecessarythatthe343

pixelmonitorsarelativelyuniformstretchofriverwithoutmajortributary344

junctions,ornearbystreams,orothervariablewaterbodiesthatmaychangein345

Page 18: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

18

surfaceareawithoutdirectlyindicatingdischargechangesatthesiteintended.The346

measurementsitecan,however,include,suchriver-connectedfeaturesasoxbow347

lakesandotherwater-fillednegativerelieffloodplainfeatures(Lewinand348

Ashworth,2014)thatareconnectedtotheriver:theirexpansionorcontractionis349

responsivetolocalriverdischargechanges.350

351

Notethattheremaybesignificanttimelagsandhysteresisbetweenthefilling352

anddrainingoffloodplainsandthedischargestraversingthetrunkstreamchannel353

(Brakenridgeetal.,2007).Considerinthisregardthatthemicrowavemethodisnot354

usingreachwatersurfaceareaasasimpleproxyforriverflowwidth.Instead,a10355

kmx10kmparceloffloodplainandchannellandwithinterconnectedwater356

featuresisrecordingdischargevariation.Thesitesmustbevisuallyinspectedin357

mapformtoensurethat,ineachcase,theflowareachangesrelatetotheriverbeing358

monitoredandtoevaluatethepotentialinfluenceoftimelagsandalsoflowcontrol359

structuresalongtheriver.Anotherimportantconfoundingfactorisirrigated360

agriculture,especiallyricepaddies.Suchfarming,ineithertheMortheCpixel,can361

produceanentirelyerroneouschangeinthesignalratioasregardsdischarge;362

insteadthesignalrecordsirrigationchanges.363

364

Despitetherequirementforcarefulevaluationofeachpotentialriver365

measurementsite,thereareatleastseveralthousandsofadditionalRiverWatch366

sitesthatcouldbeestablishedandbeyondthe~300nowbeingpublishedonline367

(http://floodobservatory.colorado.edu/DischargeAccess.html).Themicrowave368

Page 19: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

19

ratiosignalinformationisalreadyavailableforeachcelloftheglobalgrid.Aswell,it369

ispossibletouseobservedsitenumericalcorrelationstoknowndischargevariation370

enmasse:toselect,viathedegreeofcorrelation,thebestsitestoexaminefurther371

(VanDijketal.,2016).Throughthissatelliteobservationalmethod,insitugauging372

stationsarenotrequiredtoconsistentlyevaluatefloodriskalongsatellite-373

monitoredriverreachesandfloodplains:atleastforpredictedrecurrenceintervals374

ranginguptoapproximately40y.375

FloodMappingFromOpticalSatellites376

OneusefulmethodformappingfloodsandfloodhazardusesthetwoNASA377

MODISsensors(aboardthesatellitesTerraandAqua).Theseprovide36optical378

spectralbands;mostbandsofferspatialresolutionof1000or500m.However,two379

bands,inthevisibleandnear-IRportionsofthespectrum(620–670nm,band1,380

and841–876nm,band2)providespatialresolutionof250m;band2inparticular381

stronglydifferentiatessurfacewaterfromland.Suchinformationhasbeenusedto382

maptheinundationextentsreachedbyfloodsatmanylocationsworldwide383

(Brakenridgeetal.,2003a;Brakenridgeetal.,2012b;Policelli,2016),figure6.Allof384

the(twicedaily,globalcoverage)imagedatasincelate1999areavailableinvarious385

formatsinpublicNASAandotherdataarchives.386

387

Asfloodsevolve,dailymappingoftheinundationextentsprovideanearreal388

timeindicationoffloodseverity.Floodingcanbecomparedtopreviouslymapped389

water,suchaswinterlowflowconditionsandtypicalannualhighwater(figure6).390

Page 20: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

20

Thus,accurate“flood”mappingdoesnotonlyinvolvemappingmaximumflood391

extentreachedbyanevent,butalsocomparisontowaterextentthatistypicalfor392

thesametimeofyear.Figure6illustratesthelargeamountofnormalannualwater393

variabilityinasummermonsoon-affectedregion,whichmustfirstbemaskedbefore394

unusualfloodingcanbediscerned.Mappingoversomeyearscantherebyprovide395

bothincreasinglycomprehensivefloodhazardinformation(moreprobabilityof396

imagingandmappingtheunusualhighfloods)andbetterinformationconcerning397

whataretypicalandatypicalhighwaterconditions.398

399

Page 21: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

21

400

Figure6.MODISremotesensing-producedmapofmajor2015floodinginMyanmar401

(lightred),andalsothetypicalannualhighwater(2014,lightblue).Recurrence402

intervalsattheRiverWatchmeasurementsitesforthe2014“flood”are403

approximately1.5y.DarkblueisapermanentwatermappedbytheShuttleWater404

BoundaryData(https://lta.cr.usgs.gov/srtm_water_body_dataset)fromFebruary,405

2000,andrepresentstypicalwintersurfacewaterextent.406

407

Page 22: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

22

RemoteSensing-basedFloodHazardQuantification408

Floodinundationmappingcanbecoupledwitheitherground-orspace-based409

rivergaugingtoconstrainthefrequencyofthemappedflood.Thus,usingriver410

dischargetimeseries,standardfloodfrequencymethods(Flynnetal.,2006)can411

analyzetheseriesofannualpeakdischargeswithintheperiodofrecordtoevaluate412

floodrecurrenceintervals/annualexceedanceprobabilitiesforanyparticularevent.413

IntheU.S.,theLogPearsonIIIprobabilitydistributionisused.Thereareother414

potentialissuesinvolvedincreatingariskassessmentatagaugingstation,415

particularlyforlarge,rareevents,andincludingthepossibilitytoapplyskewness416

coefficientsusingregionaldataandwithinthestandardizedLogPearsonIIIorother417

distributionfunctions.Thesetechniquesarewelldescribedintheliterature,and418

providevariousmethodsforextendingand/orextrapolatingthedataprovidedby419

anysingleriverpeakdischargetimeseries.420

421

Inanycase,however,theneedforspatialextrapolationoveraflood-prone422

landscaperemains.Asingleimageofalargefloodeventshowstheinundation423

extentoverlongreachesoffloodplain,andthelocalexceedanceprobabilitymay424

varysignificantlywithlocation.Theprobabilityestimatesobtainedfromatime425

seriesatadischargetimeseriesmeasurementsitestrictlyapplyonlytofloodingat426

thatsite.Thisposesaninterestingcontrasttomodel-basedriskmapping(other427

chaptersinthisbook):suchmodelspredictinundationfromaspecificrecurrence428

intervalanddischargevalueinaspatiallycontinuousmanner,andusing429

informationaboutchannelandfloodplainmorphologyandflowroutingequations.A430

Page 23: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

23

floodimageinsteaddirectlyprovidestheinundationextent,withoutknowledge431

everywhereoftherecurrenceinterval.432

433

Infloodmodeling,thespatialcontinuityissueisimplicitlyaddressedby434

interpolation.Forexample,the20yfloodatsiteAmaybecalculatedat12,000m3/s435

andthatatdownstreamsiteB,16,000m3/s.Atariverlocationmid-waybetween436

thetwostations,andiftherearenomajortributaryjunctions,a20ydischargeof437

14,000m3/smaybemodeledforinundationpredictionthere(ingrid-based438

modeling,thisinterpolationisatthegridresolution).Borrowingfromthis439

approach,ifthesatelliteimagemapsafloodatbothstationlocations,witha440

calculatedrof12yatAbut18yatB,100kmdownstream,theimagedfloodlimits441

mayhave,inthiscase,arangeofrsomewherewithin12to18y.Theriskvaluesand442

mapinformationthenbecomesevenmorecomplex,asadditionalfloodsofdifferent443

returnperiodsaremapped.Suchcomplexitywouldnotaddresstheneedtoidentify444

inaconsistentwayfloodplainlandareasataparticularriskofflooding.445

446

Amorepracticalapproachistoinsteaddividethefloodeddrainagenetwork447

intoaseriesofsegmentedriverreaches:eachmonitoredneartheirmidpointsby448

eitheraground-basedorspace-baseddischargemeasurementsite(figures7and8).449

Underthisapproach,theassociatedrisassumedtoapplytotheinundationextent450

throughoutthereach,andlargerorsmallerfloodsimagedandmappedforthesame451

reachwilleachalsohavespecificrecurrenceintervals.Inthiscase,noattemptis452

madetointerpolatebetweenriverdischargemeasurementsites,butinsteadrisk453

Page 24: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

24

454

455

456

457

458

Page 25: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

25

Figure7.RecurrenceintervalandpeakdischargeestimatesforRiverWatchsite30459

alongthelowerAyeyarwadyRiver.Themicrowavemeasurementsiteisdefinedby460

thewhite10kmsquare.Inundationfor,top,anormalwinterflowof6253m3/son461

February11-22,2000;middle,observedviaMODISat250mspatialresolution,462

floodedareaforatypicalsummermonsoonal“flood”,r=1.5y(27,138m3/s,463

observed2013),andbottom,observedviaMODISagain,floodedareaformajor464

floodingin2004,r=24y(50,579m3/s.Notethatduringthisfloodamajor465

distributarytotheeast(theareaisattheheadoftheAyeyarwadydelta)isalso466

flooded.467

468

mapsarepreparedseparately,foreachmonitoredriverreach.Acombined469

mappingandmodelingapproach,whereinthemodelingprovidesthecontinuityand470

abilitytomapaparticularrecurrenceintervalflood,andtheremotesensing-based471

mappingprovidestheobservationalvalidation,reachbyreach,appearstobethe472

mostproductivewayforwardforlarge-regionmappingoffloodrisk.(DeGroeveet473

al.,2015a)474

475

476

477

478

479

480

481

Page 26: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

26

482

483

484

485

Figure8.RecurrenceintervalandpeakdischargeestimatesforRiverWatchsite26486

alongtheupperAyeyarwadyRiver.Inundationfor,top,anormalwinterflowof487

Page 27: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

27

~200m3/sinFebruary,2000;middle,atypicalmonsoonseasonflood,recurrence488

intervalof1.1y,~9000m3/s,in2002,and,bottom,inundationduringarareflood,489

recurrenceintervalof21y,18,200m3/s,in2013.490

Conclusion491

Theoutlinedapproachcouplesmicrowaveandopticalremotesensingto492

producequantitativefloodriskmaps.Thischapterdescribeshowthetwocanbe493

integrated:theincreasinglycomprehensiveglobalsatellitemaprecordofflood494

eventscanbematchedtoexceedanceprobabilitiesfrommicrowavedischarge495

recordstoproduceriskmapswithoutanyinsituinformation.Forthetwoexamples496

provided,theperiodofsatellite-microwave-observedflooddischargesbeginsin497

1998andisnowapproaching20y.Byaddingtheassociatedmicrowaverecord,the498

reach-levelfloodmapspreparedfromMODISopticalremotesensingshownotonly499

actualmappedfloods,butalsotheassociatedannualexceedanceprobabilities.Asis500

thecaseforfloodmodelingproducts,thesemapsareaquantitativeguidetofuture501

risk.502

503

Thereisalsoanimportantadditionaluseofsuchmaps:fornearrealtime504

floodinundationprediction.Unlesschannelsandfloodplainshavechangedsince505

previouslymappedfloods(e.g.,throughleveeconstructionorremoval),similar506

flooddischargesinthefuturealongthemonitoredreachesshouldcontinueto507

producesimilarinundationextents.Thispresentsanobservationalratherthan508

modelingpathforwardforfloodinundationprediction.Thatis,ifaparticularflood509

Page 28: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

28

hydrographwasmeasured,eitherviaaninsitugaugingstationorthesatellite510

microwaveapproach,andtheresultingfloodplaininundationwasalsoobservedand511

mapped,thenthemapcanbeusedtounderstandwhatlandareaswillbe512

submergedwhenthatdischargeisonceagainattained.Alibraryofinundationmaps513

canbeassembled,andreferredtowhenfloodingagainoccurs.Notehowever,that514

floodhydrographvolume,aswellassimplypeakdischargeandstage,mayalso515

affectmaximuminundationextent,andespeciallyoverlargefloodplains.Flooded516

areaisarelativelynewhydrologicalobservablethatismadepossibleviaorbital517

remotesensing.Productiveresearchcannowbeaccomplishedrelatingdifferent518

aspectsoffloodhydrographstothesocietallyandecologicallyrelevantvariablesof519

inundationextentandduration.520

521

Thissatellite-basedfloodriskmethodispresentedinoutlineformhere,but522

therearecomplexitiesinvolvedinitspracticalimplementationandvalidation.For523

example,shorteningthereachlengthsandobtainingdatafromadenserarrayof524

dischargemeasurementsiteswouldincreasetheaccuracyanddetailofrisk525

mapping:bytestingandcomparingindividualmeasurementsiteresults.Asinmany526

otherareasofwork,replicationofthehazardresultsobtainedareimportantforthe527

resultstobetrusted.Also,considerthattheremayberelativelylargestepchanges528

betweencontiguousreachesinthecalculatedreturnperiodsforaparticular529

mappedflood,forexample,duetotheinfluenceoftributarydischarges:thiscould530

poseachallengeinthepreparationofregionalmaps,butalsoreflectstherealityof531

theactualfloodhistoryandfuturerisk.Ifregionalmapsareneeded,anotheruseful532

Page 29: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

29

strategymaybetocouplethedescribed,reach-specificobservationalapproachwith533

regionalandevenglobalfloodhazardmodelingmethodssuchasaredescribedin534

otherchaptersinthisbook.Forthis,continuousspatialcoverageviaremotesensing535

isnotneeded(itisprovidedbythemodeling).Instead,thediscretereacheswhere536

riskischaracterizedbyremotesensingcanprovidecriticalmodelvalidation.537

538

Finally,thereisevidentutilityinfocusedattemptstoimageandmapthevery539

largestfloodeventsintheperiodofrecord(e.g.,the2004floodinginfigure4and6).540

Suchworkprovidesanunambiguousmappedhazardareafromthemostinfrequent541

andoftenexceptionallydamaginglargeevents,andnowtheirexpectedfrequency542

canalsobeapproximatelyconstrained.Indeed,thesesatelliteimagesand543

associatedmapsneedtobepreservedas“memorials”forposterityandinthesame544

waythatmanycommunitiesacrosstheglobepreservehighwatermarksfrom545

historicextremefloods(Davies,2014).Givenachangingclimate,andalsochanges546

inwatershedlandcoverandothercharacteristics,thereisalackofsupportfor547

assumingtemporalstationarityintheseriesofannualpeakdischarge(Millyetal.,548

2008).Yetitisonlybyusingthisassumptionthatprobabilitydistribution-based549

exceedanceprobabilitiescanbecalculated.Thiscautionsagainstmappingflood550

hazardasastaticquantity.Instead,quantitativefloodriskmapscanbeusedasa551

startingpoint,andpredictivemodelsthatprovideinformationforhowfloodregime552

maychangeintothefutureshouldbeincorporatedintofloodhazardmappingas553

well.554

Page 30: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

30

References555

Brakenridge,G.R.,Anderson,E.,Nghiem,S.V.,Caquard,S.andShabaneh,T.,2003a.556

Floodwarnings,flooddisasterassessments,andfloodhazardreduction:the557

rolesoforbitalremotesensing.,Proceedingsofthe30thInternational558

SymposiumonRemoteSensingoftheEnvironment,Honolulu,pp.4.559

Brakenridge,G.R.,Anderson,E.,Nghiem,S.V.andChien,S.,2005.Space-based560

measurementofriverrunoff.EOS,TransactionsoftheAmericanGeophysical561

Union,86.562

Brakenridge,G.R.,Carlos,H.,Anderson,E.andInternationalSocietyforOptical563

Engineering(SPIE),C.,Greece,andProceedingsofSPIE,Vol.4886,p.479-564

485..2003b.Satellitegagingreaches:astrategyforMODIS-basedriver565

monitoring.9thInternationalSymposiumonRemoteSensing9th566

InternationalSymposiumonRemoteSensing.567

Brakenridge,G.R.,Cohen,S.,Kettner,A.J.,DeGroeve,T.,Nghiem,S.V.,Syvitski,J.P.M.568

andFekete,B.M.,2012a.Calibrationoforbitalmicrowavemeasurementsof569

riverdischargeusingaglobalhydrologymodel.JournalofHydrology,570

http://dx.doi.org/10.1016/j.jhydrol.2012.09.035.571

Brakenridge,G.R.,Kettner,A.J.,Slayback,D.andPolicelli,F.,2016a.GlobalAtlasof572

Floodplains,Sheet090E030N.DartmouthFloodObservatory,Universityof573

Colorado,Boulder,CO.574

Brakenridge,G.R.,Nghiem,S.V.,Anderson,E.andMic,R.,2007.Orbitalmicrowave575

measurementofriverdischargeandicestatus.WaterResourcesResearch,576

43(W04405,doi:10.1029/2006WR005238).577

Page 31: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

31

Brakenridge,G.R.,Syvitski,J.P.M.,Nieburh,E.,Overeem,I.,Higgins,S.A.,Kettner,A.J.578

andPradesh,L.,2016b.DesignwithNature:CausationandAvoidanceof579

CatastrophicFlooding,Myanmar.Earth-ScienceReviews,Inreview.580

Brakenridge,G.R.,Syvitski,J.P.M.,Overeem,I.,Stewart-Moore,J.A.andKettner,A.J.,581

2012b.Globalmappingofstormsurges,2002-presentandtheassessmentof582

coastalvulnerability.NaturalHazards,DOI10.1007/s11069-012-0317-z.583

Cohen,S.,Kettner,A.J.andSyvitski,J.P.M.,2011.WBMsed:adistributedglobal-scale584

riverinesedimentfluxmodel-modeldescriptionandvalidation..Computers585

andGeosciences,doi:10.1016/j.cageo.2011.08.011(2011).586

Davies,T.,2014.FloodandHighWaterMarks.FloodList.587

DeGroeve,T.,Brakenridge,G.R.andParis,S.,2015a.GlobalFloodDetectionSystem588

DataProductSpecifications.JRCTechnicalReport.,589

http://www.gdacs.org/flooddetection/Download/Technical_Note_GFDS_Dat590

a_Products_v1.pdf.PublicationsOfficeoftheEuropeanUnion.591

DeGroeve,T.,Kugler,Z.andBrakenridge,G.R.,2006.NearRealTimeFloodAlerting592

fortheGlobalDisasterAlertandCoordinationSystem.Proceedings593

ISCRAM2007(B.VandeWalle,P.BurghardtandC.Nieuwenhuis,eds.):33-39.594

DeGroeve,T.andRiva,P.,2009.Earlyflooddetectionandmappingfor595

humanitarianresponse.Proceedingsofthe6thInternationalISCRAM596

Conference–Gothenburg,Sweden,May2009,J.LandgrenandS.Jul,eds.597

deMoel,vanAlphen,J.andAerts,J.C.J.H.,2009.FloodmapsinEurope-methods,598

availability,anduse.Nat.Hazards.EarthSyst.Sci,9:289-301.599

Page 32: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

32

FEMA,2002.HEC-RASproceduresforHEC-2modelers.FloodplainModeling600

Manual.FederalEmergencyManagementAgency,Washington,DC,78pp.601

Flynn,K.M.,Kirby,W.H.andHummel,P.R.,2006.User’sManualforProgramPeakFQ,602

AnnualFlood-FrequencyAnalysisUsingBulletin17BGuidelines.U.S.603

GeologicalSurvey,Reston,Virginia:42.604

Klingeman,P.,2005.AnalysisTechniques:FloodFrequencyAnalysis.Streamflow605

evaluationsforwatershedrestorationplanninganddesign.OregonState606

University,Corvalis,Oregon,USA.607

Lewin,J.andAshworth,P.J.,2014.Thenegativereliefoflargeriverfloodplains.608

EarthScienceReviews,129:1-23.609

Milly,P.C.D.,Betancourt,J.,Malin,F.,Hirsch,R.M.,Kundzewicz,Z.W.,Lettenmaier,610

D.P.andStouffer,R.J.,2008.StationarityIsDead:WhitherWater611

Management?Science,319:573-574.612

Policelli,F.,2016.TheNASAglobalfloodmappingsystem,.In:V.Lakshmi(Editor),613

RemoteSensingofHydrologicExtremes.Springer-Verlag.614

Revilla-Romero,B.,Thielen,J.,Salamon,P.,DeGroeve,T.andBrakenridge,G.R.,615

2014.Evaluationofthesatellite-basedGlobalFloodDetectionSystemfor616

measuringriverdischarge:influenceoflocalfactors..Hydrol.EarthSyst.Sci.,617

18:4467-4484.618

VanDijk,A.I.J.M.,Brakenridge,G.R.,Kettner,A.J.,Beck,J.E.andDeGroeve,T.,2016.619

Rivergaugingatglobalscaleusingopticalandpassivemicrowaveremote620

sensing.WaterResourcesResearch,52:6404-6418.621

Page 33: FLOOD RISK MAPPING FROM ORBITAL REMOTE SENSING

33

Wahl,K.L.,Thomas,W.O.andHirsch,R.M.U.,RestonVA,1995.Stream-gaging622

programoftheU.S.GeologicalSurvey,USGSCircular1123.U.S.Geological623

Survey.624

625