flipper: fault-tolerant distributed network management and ... · introductionsdnflipperproperties...

30
Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion Flipper: Fault-Tolerant Distributed Network Management and Control Subhrendu Chattopadhyay, Niladri Sett, Sukumar Nandi, and Sandip Chakraborty May 8, 2017 Flipper Subhrendu

Upload: others

Post on 13-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Flipper: Fault-Tolerant Distributed NetworkManagement and Control

Subhrendu Chattopadhyay,Niladri Sett, Sukumar Nandi, and Sandip Chakraborty

May 8, 2017

Flipper Subhrendu

Page 2: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Content

1 Introduction

2 SDN

3 Flipper

4 Properties of Flipper

5 Simulation Results

6 Emulation Results

7 Conclusion

Flipper Subhrendu

Page 3: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Example Scenario

An academic institute Just like IIT, Guwahati

Sys admin wants to distribute bandwidth policies based onnetwork usage

Not scalable

Minor misconfiguration may lead to network underutilization

Flipper Subhrendu

Page 4: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Problems of Traditional Architecture

Lack of programmability

Complex architecture

Customized protocols for heterogeneous hardware platformand vendor dependence

Delay in deployment

Resource management and inconsistent policies.

Flipper Subhrendu

Page 5: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Definition

Data and control plane separation

Controller based decision

Flow based decision

Programmable network

Flipper Subhrendu

Page 6: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

SDN with distributed controller

Required for improved scalability

e.g ONIX1, ONOS2

ONIX uses two types of data bases

Transactional database for high level network rules.DHT-based database for volatile network state information.

Controller Placement trade-off: Number of controller vscontrol plane overhead3,

1Teemu Koponen et al. “Onix: A Distributed Control Platform for Large-scale Production Networks”. In:Proceedings of the 9th USENIX Conference on OSDI, 2010. USENIX Association, 2010, pp. 1–6.

2Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”. . In: Proceedings of the 3rd HotSDN,2014. ACM. 2014, pp. 1–6.

3Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. “On scalability of software-definednetworking”. In: IEEE Communications Magazine, 51.2 (2013), pp. 136–141.

Flipper Subhrendu

Page 7: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

SDN with distributed controller

POCO-PLC4

Off-line placement of controllers.Fault-resilience towards node or double link failure.Claims 20% of needs nodes needs to be deployed as controllerfor most practical small scale topology.

4David Hock et al. “POCO-PLC: Enabling Dynamic Pareto-Optimal Resilient Controller Placement in SDNNetworks”. In: Proceedings of the 33rd INFOCOM, 2014 (2014).

Flipper Subhrendu

Page 8: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Issues with POCO-PLC and SDN

POCO-PLC

Requires SDN enabled infrastructureDoes not cope up with arbitrary link/node failure.Off-line solution

Flipper Subhrendu

Page 9: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Proposal: Flipper Architecture

COTS devices acts as PDEP.

Uses NFV to achieve this feature5

Based on ONIX, tran-NIB and DHT-NIB.Each nodes are called flipper.Each flipper can act as either DHT-NIB or switch.

DHT-flipper can convert itselves to switch flipper dynamically(and vice versa)

5M Said Seddiki et al. “Flowqos: Qos for the rest of us”. In: Proceedings of the 3rd HotSDN, 2014. ACM.2014, pp. 207–208.

Flipper Subhrendu

Page 10: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Proposal: How Flipper works

DHT-flipper:Hosts: A,B,C,D

tran-NIB: Highlevel network rules(e.g ACLs etc.)

Switch-flipper:Acts as forwardingdevice

Flipper Subhrendu

Page 11: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Proposal: How Flipper works

DHT-flipper: Actsas NIB for volatilenetworkinformation. (e.g.Link statistics)

DHT-flipperrequires to beplaced withinone-hop ofdistance of theswitch.

Flipper Subhrendu

Page 12: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Flipper: Failure Use-Case

R5 fails.

R4 and R6 candetect failure.

R4, R6 readjustsnew locations ofDHT-NIBs.

Flipper Subhrendu

Page 13: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Fault-tolerant Flipper Readjustment

Algorithm is represented asGuarded statements.(Ruleno)| < Guard >→< Action >

Each guarded statementexecution timing diagram isgiven in the figure.

Flipper Subhrendu

Page 14: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Fault-tolerant Flipper Readjustment

Variables:Labeli = {NIB,Swi ,Wait}Prii = {0, 1, . . . ,B}Functions:NNIB(i) = ∀j ∈ Ni : Labelj = NIBNWait(i) = ∀j ∈ Ni : Labelj = WaitMaxW (i) = ∀j ∈ NWait : Max(Prij)Trial(i)Prii = Rand(0, 1, . . . ,B)

Labeli =Wait

Labeli =NIB

Labeli = Swi

NNIBi = ∅|Trial(i)

NNIB

i6=∅ (N

NIBi

=∅)

∧(Prii >

Max

W(i))

(NNIB

i=∅)

∧(Pri i=Max

W(i))|Trial(i)

NNIBi 6= ∅

Flipper Subhrendu

Page 15: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Properties of Flipper Readjustment

If any flipper in the system is in intermediate state then thereis at least one rule which can be executed further.

If the system is in a state where flippers with DHT-flippersform a MIS, it will remain in that state forever, provided nofurther fault occurs. (Closure property)

Flipper Subhrendu

Page 16: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Properties of Flipper Readjustment

If X denote the random variable indicating the number ofrounds required to find a unique maximum priority in theclosed neighborhood of v then E [X ] ≤ e, where e representsEuler-Mascheroni constant.

The expected number of moves for convergence is O(n).

Flipper Subhrendu

Page 17: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Properties of Flipper Readjustment

Flipper is partitiontolerant:

Say, R3 andR4 fails.In such casesthe R1 and R3invokes theflipperreadjustment.A newDHT-flipper ischosen in theirvicinity.

Flipper Subhrendu

Page 18: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Simulation Results

Based on NS3.

Comparison with POCO-PLC

3 different topologies are used.

Synthetic Grid (64x64 nodes)AS733 real dataset6

Oregon real dataset7

6SNAP Autonomous systems AS-733 data set. http://snap.stanford.edu/data/as.html.7SNAP Autonomous systems - Oregon-1 data set. http://snap.stanford.edu/data/oregon1.html.

Flipper Subhrendu

Page 19: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Simulation Result

0

1

2

3

4

5

6

Grid AS Oregon

Mo

ve

s/N

od

e

Topology

Theoritical boundNumber of moves per node

Figure : Number of moves executed per node

Flipper Subhrendu

Page 20: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Simulation Result

0

2000

4000

6000

8000

10000

12000

Grid AS Oregon

Nu

mb

er

Of

DH

T-f

lip

pers

Topology

Total flippersNumber of DHT-flippers

Figure : Number of placed controllers

Flipper Subhrendu

Page 21: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Simulation Result

0

2

4

6

8

10

Grid AS Oregon

Co

ntr

oller

- O

FS

dela

y (

ms)

Topology

POCO-PLC (20% controller)SS-DCP

Figure : Number of moves executed per node

Flipper Subhrendu

Page 22: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Summery of Simulation Results

Number of required Flipper depends on the topology.

5% 10% increase in number of DHT-flipper can reduce flowsetup delay by more than 60% for both of the real networks.

The performance improvement in terms of flow initiation delayis due to the fact that, each switch-flipper has a DHT-flipperin its neighborhood.

Flipper Subhrendu

Page 23: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Emulation Results

50 node topology takenfrom Oregon dataset.

200 random flows

Mininet for emulation.

Experiment 1: Theselected flippers are 1-hopaway from each other.Experiment 2: Theselected flippers are morethan 2 hops distanceapart.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

3536

37

38

39

40

41

42

43

44

4546

47

4849

Figure : Used Topology

Flipper Subhrendu

Page 24: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Emulation Results

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6

Co

nverg

en

ce T

ime (

ms)

Number of Faults

Experiment 1Experiment 2

Figure : Convergence time vs number of flipper failure

Flipper Subhrendu

Page 25: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Emulation Results

20

40

60

80

100

1 2 3 4 5 6

Nu

nb

er

of

flo

w a

dju

stm

en

t

Number of Faults

Experiment 1Experiment 2

Figure : Number of flow adjustment readjustment vs number of flipperfailure

Flipper Subhrendu

Page 26: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Emulation Results

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6

Co

nverg

en

ce T

ime (

ms)

Number of Faults

Experiment 1Experiment 2

Figure : Convergence time vs number of link failure

Flipper Subhrendu

Page 27: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Emulation Results

20

40

60

80

100

1 2 3 4 5 6

Nu

nb

er

of

flo

w a

dju

stm

en

t

Number of Faults

Experiment 1Experiment 2

Figure : Number of flow adjustment readjustment vs number of flipperfailure

Flipper Subhrendu

Page 28: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Summery of Emulation Results

Convergence time is dependent on the separation of the failedflippers or failed links.

Increase in number of flipper failure or link failure increasesthe number of flows required to be rerouted.

The performance improvement in terms of flow initiation delayis due to the fact that, each switch-flipper has a DHT-flipperin its neighborhood.

Flipper Subhrendu

Page 29: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Future Plan

Flipper:

Supports SDN like network management and control.

Avoids the controller bottleneck problem.

Supports a stronger notion of fault tolerance.

Provides a scalable notion of dynamic role adaptation.

Flipper Subhrendu

Page 30: Flipper: Fault-Tolerant Distributed Network Management and ... · IntroductionSDNFlipperProperties of FlipperSimulation ResultsEmulation ResultsConclusion Flipper: Fault-Tolerant

Introduction SDN Flipper Properties of Flipper Simulation Results Emulation Results Conclusion

Thank You

Flipper Subhrendu