flare thermal energy

21
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/2008 1 Solar Cycle 24, Napa, 8-12 December 2008

Upload: stacy

Post on 07-Jan-2016

111 views

Category:

Documents


0 download

DESCRIPTION

Flare Thermal Energy. Brian Dennis NASA GSFC Solar Physics Laboratory. Flare Thermal Energy. Objective Determine thermal energy vs. time during flare. Estimate total thermal energy of flare. Simple Method Thermal energy at time of soft X-ray peak Assume a single temperature - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Flare Thermal  Energy

Flare Thermal Energy

Brian DennisNASA GSFC

Solar Physics Laboratory

12/6/2008 1Solar Cycle 24, Napa, 8-12 December 2008

Page 2: Flare Thermal  Energy

Flare Thermal EnergyObjective

– Determine thermal energy vs. time during flare.– Estimate total thermal energy of flare.

Simple Method– Thermal energy at time of soft X-ray peak– Assume a single temperature

Advanced Methods– Allow multithermal plasma– Allow for cooling during impulsive phase– Add thermal energy required for decay phase

Page 3: Flare Thermal  Energy

Thermal Flare EnergySimple Method

– Assume a single temperature plasma.

– Ignore cooling during impulsive phase and heating afterwards.

– Use GOES fluxes at time of peak soft X-ray emission to obtain temperature (T in degrees K) and emission measure (EM).

– Use RHESSI 6 – 12 keV image at same time to obtain a volumeV = A3/2

– Assume 100% filling factor.

– Thermal energy, Uth = 3nkT= 4.14x10-16 (EM V)1/2 T ergs

Page 4: Flare Thermal  Energy

21 April 2002

Page 5: Flare Thermal  Energy

GOES Temperature & Emission Measure

Page 6: Flare Thermal  Energy

RHESSI Light Curve

Page 7: Flare Thermal  Energy

RHESSI Image (6 – 12 keV)

Area inside50% contour

=8576 arcsec2

Area inside70% contour

=3056 arcsec2

Page 8: Flare Thermal  Energy

Peak Thermal Energy• GOES Soft X-ray Peak - 21 April 2002

Time: 01:45 UTTemperature (T): 16 MKEmission Measure (EM): 2 1050 cm-

3

• RHESSI Area (A): 9 103 arcsec2

(inside 50% contour, 6-12 keV at 01:30 UT)• Volume (V = A3/2): 3 1029 cm3

• Density (EM/V)1/2 3 1010 cm-3

• Thermal Energy (Uth): 5 1031 ergs

(Eth = 4.14 x 10-16 (EM V)1/2 T ergs)

Page 9: Flare Thermal  Energy

Advanced Method

• Allow multithermal plasma

• Assume DEM = A T- cm-3 keV-1

• Fit RHESSI spectra to multithermal +

power-law function.

• Calculate thermal energy for Tmin = TGOES

• Quote thermal energy at peak of RHESSI flux.

Page 10: Flare Thermal  Energy

Peak Thermal Energy• RHESSI Soft X-ray Peak - 21 April 2002

Time: 01:30 UT

a (DEM Q T-a) 6.0Tmin = TGOES: 1.4 keV (16

MK)

EM (Tmin to Tmax): 2 1049 cm-3

• RHESSI Area (A): 9 103 arcsec2

(inside 50% contour, 6-12 keV at 01:30 UT)• Volume, V = A3/2: 3 1029 cm3

• Density, n = (EM/V)1/2 0.9 1010 cm-3

• Thermal Energy (Uth): 23 1030 ergs(Eth = 3 k/n DEM T dT ergs)(for density independent of T)

Page 11: Flare Thermal  Energy

23 July 2002

Page 12: Flare Thermal  Energy

GOES Temperature & Emission Measure

Page 13: Flare Thermal  Energy

RHESSI Light Curve

Page 14: Flare Thermal  Energy

RHESSI Image (6 – 12 keV)

Area inside50% contour

=244 arcsec2

Area inside70% contour

=115 arcsec2

Page 15: Flare Thermal  Energy

RHESSI Images

Page 16: Flare Thermal  Energy

Peak Thermal Energy• GOES Soft X-ray Peak - 23 July 2002

Time: 00:35 UTTemperature (T): 22 MKEmission Measure (EM): 3.5 1050 cm-3

• RHESSI Area (A): 2.4 102 arcsec2

(inside 50% contour, 6-12 keV at 00:35 UT)• Volume (V = A3/2): 1.4 1027 cm3

• Density (EM/V)1/2 5 1011 cm-3

• Thermal Energy (Uth): 7 1030 ergs

(Eth = 4.14 x 10-16 (EM V)1/2 T ergs)

Page 17: Flare Thermal  Energy

Thermal Flare EnergyMore Advanced Method (Veronig et al.)

• Assume a single temperature plasma.

• Include conductive (Lcond) and radiative (Lrad) cooling losses.

• Include estimated gravitational (Ugravity) and kinetic (Ukinetic) plasma energies.

• Include heating after impulsive phase.

• Use GOES spectra throughout flare to obtain temperature T and emission measure EM as functions of time.

• Estimate volume V (assumed constant) from RHESSI footpoint area x loop length.

• Assume 100% filling factor.

• SXR plasma energy, USXR = Uthermal + Ugravity + Ukinetic

= (3 – 10) nkTV = (4 – 13) x 10-16 (EM V)1/2 T ergs

• Heating rate, P = dU/dt + Lcond + Lrad erg s-1

• Total heating = P dt erg

Page 18: Flare Thermal  Energy

Veronig - 21 April 2002

Page 19: Flare Thermal  Energy

Veronig - 23 July 2002

Page 20: Flare Thermal  Energy

Thermal EnergiesUnits

21 April 2002

x1.5

23 July 2002

X4.8

Author

Spacecraft

Dennis

GOES

Dennis

RHESSI

Veronig

GOES

Dennis

GOES

Veronig

GOES

Holman

GOES

Holman

RHESSI

Time – UT hh:mm 01:45 01:30 <04:00 00:35 <02:00 00:36 </>00:27

T MK 16 16-100 O17 22 O29 23 34

EM 1050 cm-3 2 0.2 O1.7 3.5 3.4 3 0.5

Loop Length (l) 108 cm 140 35

Area (A) 1018 cm2 50 50 1 1 1

Volume (V) 1026 cm3 3000 3000 140 14 40 40 O180/40

Density (EM/V)1/2 1010 cm-3 3 0.9 11 50 29 27 10

Thermal Energy 1030 ergs 50 23 7 11 6.6

Total Heating 1030 ergs 90 200

Nonthermal E 1030 ergs 2610

Page 21: Flare Thermal  Energy

Conclusions• Thermal energy estimates subject to order-of-

magnitude uncertainties.• SXR-emitting plasma has ~10 times more energy at

the peak of the 21 April flare than at the peak of the 23 July flare.

• Including conductive cooling losses can increase the total energy requirement by a large factor.

• Including the decay phase energy input increases the total flare energy by factor of ~2.