fitting model for diffusion in 3d fit by 3d gaussian model: aragon & pecora j. chem. phys. 64,...

23
B z 1 1 0,0,0 g 0,0, r d 2 2p 2 2p d 11 11 Fitting Model for Diffusion in 3D Fitting Model for Diffusion in 3D d 2 2p exp τ 4 ω D -1 2 -8 exp s cm 10 x 2.4 D -1 2 -8 theory s cm 10 x 2.3 D Fit by 3D Gaussian Model: ragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Upload: sherman-mosley

Post on 21-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

B

z 1 1

0,0,0g 0,0,r

d22p

22p

d

1111

Fitting Model for Diffusion in 3DFitting Model for Diffusion in 3D

d

22p

exp τ4

ω D

-12-8exp scm 10 x 2.4 D

-12-8theory scm 10 x 2.3 D

Fit by 3D GaussianModel:

Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976)ICS: D 10-8-10-12 cm2s-1

Page 2: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Diffusing Population: 2D SystemDiffusing Population: 2D System

Simulation: <N>=10

<N>spatial = <g(0,0)n>-1 = 10.18 ± 0.03

<N>temporal = g(0,0,0)-1 = 10.18 ± 0.01

Autocorrelation Function Amplitude: Number Density

Simulation: D = 0.01 m2s-1; <N>=10

Page 3: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Diffusing Population: 2D SystemDiffusing Population: 2D System

(s)

0 10 20 30 40

r 11(

0,0

,)

0.000

0.025

0.050

0.075

0.100

D2D = 0.0101 ± 0.0005 m2s-1

B τ

τ 1 (0,0,0)g τ0,0,r

-1

d1111

Best Fit with 2D

Diffusion Model

Simulation: D = 0.01 m2s-1; <N>=10

Page 4: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Flowing Population & Diffusing Population 2DFlowing Population & Diffusing Population 2D

Simulation: <N>diff =5 <N>flow =5

<N>spatial = <g(0,0)n>-1 = 10.01 ± 0.03

<N>temporal : <N>diff =4.9 ± 0.3 <N>flow =5.1 ± 0.3

Autocorrelation Function Amplitude: Number Density

Simulation: D = 0.01 m2s-1; <N>diff =5 |v| = 0.071 m s-1; <N>flow =5

Page 5: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

(s)

0 10 20 30 40

r 11(

0,0

,)

0.000

0.025

0.050

0.075

0.100

Flowing Population & Diffusing Population 2DFlowing Population & Diffusing Population 2D

D2D = 0.010 ± 0.001 m2s-1

|v| = 0.071 ± 0.001 m s-1

Best Fit with 2D Two populationDiffusion & Flow Model

B τ

τ-exp(0,0,0)g

τ

τ 1 (0,0,0)g τ0,0,r

2

ff11

-1

dd1111

Simulation: D = 0.01 m2s-1; <N>diff =5 |v| = 0.071 m s-1; <N>flow =5

Page 6: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

2-Photon ICS on Living Cells2-Photon ICS on Living Cells

10 m

CHO Cell: Actinin/EGFP Plated on Fibronectin

Two-photon fluorescence microscopy 7.5 min 37 °C

QuantifyDynamics &Clustering…

Page 7: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

2-Photon ICS on Living Cells2-Photon ICS on Living Cells

10 m

(s)

0 50 100 150

r 11(0

,0,

)

0.00

0.05

0.10

0.15

0.20

0.25

Region 1 64x64 pixels

Diffusion & Flow & Immobile3 Populations

D2D = 0.0031 ± 0.0003 m2s-1

|v| = 1.12 ± 0.07 m min-1

10% Immobile

<N>Diff = 2.6 ± 0.2 m-2

<N>flow = 0.33 ± 0.04 m-2

<N>Immobile = 0.34 ± 0.03 m-2

Page 8: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

(s)

0 50 100 150

r 11(0

,0,

)

0.000

0.025

0.050

0.075

0.100

0.125

2-Photon ICS on Living Cells2-Photon ICS on Living Cells

10 m

Region 2 128x128 pixels

Diffusion & Immobile2 Populations

D2D = 4.7± 0.3 x10-4 m2s-1

21% Immobile

<N>Diff = 7.6 ± 0.3 m-2

<N>Immobile = 2.0 ± 0.2 m-2

Page 9: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Transport Map for Transport Map for -actinin in a Living Cell-actinin in a Living Cell

10 m Fraction ImmobileFraction DiffusingFraction Flowing

10 min Diffusion Dist.

10 min Flow Dist.

Wiseman et al. Journal of Cell Science 117, 5521-5534, 2004Highlighted in Nature Reviews Mol. Cell Biol. Vol 5, 953, 2004

Page 10: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

2P-Image Cross-Correlation Spectroscopy (ICCS)2P-Image Cross-Correlation Spectroscopy (ICCS)

t=0

t=1

t=2

t=n

BiologicalSample

Auto1 Auto2 Cross

t bta

baab i i

) t ,y (x,i t)y, (x,i ,0 ,0r

Temporal Correlation

tbta

bajab i i

t),y ,(xi t)y, (x,i 0 , ,r

SpatialCorrelation

Wiseman et al., J. Microscopy 200, 14-25 (2000)

Page 11: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Temporal Two-photon ICCSTemporal Two-photon ICCS

Actinin - CFP 5 Integrin-YFP

10 m

2-Photon Imaging: 10 min, t = 5s, 3 hr after platingCHO-K1 Cells on 10 g/mL FN Ex. 880 nm Em. 485 & 560 nm

B τ

τ-exp (0,0,0)g

τ

τ 1 (0,0,0)g τ0,0,r

2

ffab

-1

ddabab

2D Diffusion 2D Flow (s)

0 50 100 150

r ab(0

,0,

)

0.0

0.2

0.4

0.6Crosstalk Corrected

Page 12: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Spatio-Temporal Image Correlation SpectroscopySpatio-Temporal Image Correlation Spectroscopy

t t

11 i i

) t ,y ,i(x t)y, i(x, , ,r

Calculate r11(,,) Central Peak is r11(0,0,)

t=0

t=1

t=2

t=3

r11(,,)

(s)

0 10 20 30 40

r 11(0

,0,

)

0.000

0.025

0.050

0.075

0.100

r 11(

0,0

,)

Hebert et al. Biophys. J. 88-3601 (2005)

Page 13: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Full Space Time Correlation on Living CellsFull Space Time Correlation on Living Cells

Directed Flow of -actinin at the basal membrane

Hebert et al. Biophys. J. 88-3601(2005)

Raw Data

ImmobileFiltered

r(0,0,)

Correlation PeakTracking

0 50 100 150 200-1.5

-1.0

-0.5

0.0

0.5

Gau

ssia

n po

sitio

n (

m)

(s)

x position y position

0 200 4000.10

0.15

0.20

r(0,

0,)

Tem

pora

l Cor

rela

tion

Fun

ctio

n

(s)

Temporal Correlation Function Fit (2 pop flow/diffusion)

i)

ii)

Δt=15s 45s 75s 105s 135sA)

B) C)

1 μm

r()

B

τ

τ-expA

τ

τ 1 A τ0,0,r

2

ff

-1

dd11

Page 14: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Vector Maps of Vector Maps of -actinin MEF Cell-actinin MEF Cell

TIRF Microscopy Time 100 s with Images sampled at 0.1 HzDr. Claire Brown and Ben Hebert

Page 15: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Vector Maps of Vector Maps of -actinin-actinin

0 μm/min

9 μm/min

5 μm

0.0 0.2 0.4 0.6 0.8 1.0 1.20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re

tro

gra

de

flo

w (

m/m

in)

Protrusion rate (m/min)0 s 2.8 s1.5 s

r()

r()Ff

Inverse relationship b/w retrograde flow & protrusion speed(similar to actin)

Page 16: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Quantum Dots…NanoparticlesQuantum Dots…Nanoparticles

Photostable…Different sizes…Different Colours

Colored Marker Tags for Molecules

CdSe CoreZnS CapSurfaceFunctionalized

Quantum Dot: Semiconductor Materials

10 nm

Silicon &Germanium Based Quantum Dots

Page 17: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Particle Tracking of QD Labeled AMPA ReceptorsParticle Tracking of QD Labeled AMPA Receptors

Richard Naud (Wiseman Group) withProf. Paul DeKoninck Laval University

20 m

Rat Purkinje neuron

Dendritic Spine and Synapse

Page 18: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

‘Off’ state

‘On’ state

(CdSe)ZnS – Streptavidin (QD605) (CdSe)ZnS – Streptavidin (QD605) TIRF TIRF Illumination CCD Illumination CCD Detection Detection 50ms Integration Time 50ms Integration Time 2000 Frames 2000 Frames

Nirmal et al. Nature(London) (1996)

But…Quantum Dots Blink!But…Quantum Dots Blink!

See Bachir et al. JAP 99 (2006)Affects ICS measurements

Single Dot i(t) trace

Page 19: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Some New Things: kICSSome New Things: kICS

Point sourcefluorescence

emitters

Imageseries

2D Fouriertransformof images

k-space timecorrelation

function

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Is This Just another Acronym?

No! k-space Correlation has distinct advantages…

For Photobleaching and Blinking of FluorophoresSpecial Thanks to Prof. David Ronis

See Kolin et al. Biophysical Journal 91 3061-3075 (2006)

Page 20: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

0 2 4 6 8-15

-10

-5

0

5

10

0 2 4 6 8-101

Residuals

InterceptPhotophysics

SlopeTransport Properties

Some New Things: kICSSome New Things: kICS

Transport CoefficientsIndependent ofPhotophysics

Blinking orPhotobleaching!

Page 21: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Determine the slopes for each value of τ, plot them as a function of τ:

2 4 6 8

-0.12

-0.11

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

2 4 6 8-0.01

0

0.01

Residuals

Intercept

Slope

Some New Things: kICSSome New Things: kICS

D independentof o

No non-linearCurve fitting

Page 22: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

Slope

kICS Live cell measurement kICS Live cell measurement 5 integrin5 integrin

For a given :

Page 23: Fitting Model for Diffusion in 3D Fit by 3D Gaussian Model: Aragon & Pecora J. Chem. Phys. 64, 1791-1803 (1976) ICS: D 10 -8 -10 -12 cm 2 s -1

ConclusionsConclusions

Fluctuations Contain Information about Molecules

Fluctuation Size…Concentrations/Oligomerization

Fluctuation Time…Dynamics/Kinetics

FCS…Temporal Analysis of Fluctuations

Image Correlation…Space & Time Analysis

Quantum Dots…Promising…but not perfect!