fisiología en ambientes calurosos

Upload: luis-emilio-carranza-quispe

Post on 14-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 fisiologa en ambientes calurosos

    1/80

    HumanAdaptationto Hot Environments

    C.BruceWenger,M.D.,Ph.D.,Research Pharmacologist

    USArmyResearchInstituteofEnvironmental MedicineNatick,Massachusetts01760-5007

    0$\% WfiOCjIfAirXi'IMSPEGEIJS % iU:Rx> \

    mA

  • 7/30/2019 fisiologa en ambientes calurosos

    2/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97I .MPORTANCEOF TISSUETEMPERATURE II.ODYTEMPERATURESANDHEAT TRANSFERINTHE BODY

    A.oretemperatureB.kin temperature

    I I I .ALANCE BETWEEN HEAT PRODUCTION AND HEAT LOSSA.eatproduction

    1 .etabolicrateandsitesofheatproductionatrest2.easurementofmetabolicrate3 .keletalmusclemetabolismandmuscularworkB.eatexchangewiththeenvironment1 .lothing

    C.eatstorageIV .EAT DISSIPATION

    A.vaporationB.kincirculationanddry (convectiveandradiative)heatexchange1 .ole ofskinbloodflowinheattransfer2.ympatheticcontrolofskincirculation V .HERMOREGULATORYCONTROL

    A.ehavioralthermoregulationB.hysiologicalthermoregulationC.ntegrationofthermalinformation1 .elationofeffectorsignalstothermoregulatory setpoint

    2.on-thermalinfluencesonthermoregulatoryresponses

  • 7/30/2019 fisiologa en ambientes calurosos

    3/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97D.hysiologicalandpathologicalchangestothethermoregulatorysetpointE.eripheralmodificationofskinvascularandsweatglandresponses

    VI.HERMOREGULATORYRESPONSESDURING EXERCISEA.hallenge ofexerciseintheheattocardiovascularhomeostasis1 .mpairmentofcardiacfilling2.ompensatorycardiovascularresponses

    V I I .ACTORS THATALTERHEATTOLERANCEA.eatAcclimatization

    1 .cquisitionandloss2.hangesinthermoregulatory responses3 .on-thermoregulatorychanges4.ffectsonheatdisorders

    B.hysicalfitness,age,drugs,anddiseaseVIII.EFERENCESIV .UGGESTEDREADING

  • 7/30/2019 fisiologa en ambientes calurosos

    4/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97IMPORTANCEOFTISSUETEMPERATURE

    Extremetemperaturesinjuretissuedirectly.Aprotein'sbiologicalactivitydependsonthelocationofelectricalchargesinthemoleculeandonitsoverallconfiguration.Many physicochemicalprocessescanalteraprotein'sconfigurationandchargedistribution,andthuschangeitsactivity,withoutaffecting thesequenceofaminoacids.Suchalterationofaproteiniscalleddenaturation:andby inactivatingacell'sproteins,denaturationinjuresor killsthecell.Hightemperature candenatureproteins,andafamiliarillustrationof thiseffectisthecoagulationofthealbumininthewhiteof acookedegg.Iflivingtissueisheated,injuryoccursattemperatureshigherthanabout45 C ,whichisalsothetemperatureatwhichheatingtheskincausespain.The degreeofinjurydependsonboth temperatureanddurationoftheheating1 .

    Asawater-basedsolution freezes,crystalsofpureice form.Thusallthedissolvedsubstancesareleftbehindintheliquidwhichhasno tyetfrozen,andwhichbecomesmoreandmoreconcentratedasmoreiceforms.Freezingdamagescellsthroughtw omechanisms.First,icecrystalsthemselvesprobablydisruptthecellmembranesmechanically.Second,theincreaseinsoluteconcentrationofthecytoplasmasice formsdenaturestheproteinsby removingtheirwaterofhydration,by increasing theionicstrengthofthecytoplasm,andby otherchangesinthephysicochemicalenvironmentinthecytoplasm.

    Mammals,includinghumanbeings,arehomeotherms,or warm-blooded animals,andregulatetheirinternalbodytemperatureswithinanarrow bandnear37C(Fig.),inspiteofwidevariationsinenvironmentaltemperature.Tissuesandcellscan toleratetemperaturesfrom justabovefreezingtonearly 45 Carangefarwiderthanthelimitswithinwhichhomeothermsregulatebodytemperature.Whatbiologicaladvantagedohomeothermsgainby maintainingsuchastablebody temperature?

    Temperatureisafundamentalphysicochemicalvariablethatprofoundly affectsmany biologicalprocesses,boththroughspecificeffectsonsuchspecializedfunctionsaselectricalpropertiesandfluidity ofcellmembranes,andthroughageneraleffectonmostchemicalreactionrates.Mostreactionratesvaryapproximatelyasan exponentialfunctionof temperature(T )withinthephysiologicalrange,andincreasingTby 10Cincreasesthereactionrateby afactorof2to3 .oranyreaction,theratioof thereactionratesattw otemperatures0C apartiscalledtheQ _ ,0forthatreaction,andtheeffectoftemperatureonreaction rateiscalledtheQ ,neffect.Theconceptof

  • 7/30/2019 fisiologa en ambientes calurosos

    5/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97Q ]0isoftengeneralizedtoapplytoagroupofreactions thatare thoughtofascomprisingaphysiologicalprocessbecausetheyshareameasurableoveralleffectsuchas02consumption.heeffectofbody temperatureon metabolicprocessesisclinically importantincaringforpatientswithhighfeverswho are receivingfluidandnutritionintravenously,andanoft-usedrulestatesthateachC offeverincreasesapatient'sfluidandcalorieneeds3% 2.

    BODY TEMPERATURES AND HEAT TRANSFER I N THE BODY

    CoreTemperature

    The bodyisdividedintoawarminternalcoreandanoutershellYFig.2) ,whosetemperatureisstronglyinfluencedby theenvironment.Althoughshelltemperatureisno tregulatedwithinnarrow limitstheway internalbody temperatureis,thermoregulatoryresponsesdo stronglyaffectthetemperatureof theshell,andespeciallyitsoutermostlayer,theskin.Theshell'sthicknessdependson theenvironmentandtheneedtoconservebodyheat.Inawarmenvironment,theshellmay belessthan mthick;bu tinasubjectconservingheatinacoldenvironment,itmay extendseveralcentimetersbelowtheskin.Theinternalbodytemperaturethatisregulatedisthetemperatureofthevitalorgansinsidetheheadandtrunkwhich,togetherwithavariableamountofothertissue,comprisethewarminternalcore.

    Thoughheatisproducedthroughoutthebody,itislostonlyfrom tissuesincontactwiththeenvironment,mostlyskinandrespiratory passages.Sinceheatflowsfromwarmerregionstocoolerregions,thegreatestheatflowswithinthebodyare thosefrommajorsitesofheatproductiontotherestof thebody,andfromcoretoskin.Withinthebody,heatistransportedby twomeans:conduction through thetissues;andconvectionby theblood,theprocessby whichflowingbloodcarriesheatfromwarmertissuestocoolertissues.

    Heatflowby conductionisproportionaltothethermalconductivity ofthetissues,thechangeoftemperaturewithdistanceinthedirectionofheatflow,andthearea(perpendiculartothedirectionofheatflow)throughwhichthe heatflows(seeSanteeandMatthew).AsTable hows,thetissuesare ratherpoorheatconductors.

  • 7/30/2019 fisiologa en ambientes calurosos

    6/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97Heatflowby convectiondependsontherateofbloodflowandthetemperaturedifferencebetweenthe

    tissueandthebloodsupplying thetissue.Becausethecapillarieshavethinwallsand,takentogether,alargetotalsurfacearea,thecapillarybedsare thesiteswhereheatexchangebetweentissueandbloodismostefficient.

    Sincetheshellliesbetweenthecoreandtheenvironment,allheatleaving thebody viatheskinmustfirstpassthroughtheshell.Thustheshellinsulatesthecorefromtheenvironment.Inacoolsubjectskinbloodflowislow,sothatcore-to-skin heattransferisdominatedby conduction;andthesubcutaneousfa tlayeraddstotheinsulationvalueoftheshell,becauseitaddstothethicknessoftheshellandbecausefa thasaconductivityonlyabout0.4timesthatofdermisormuscle(Table1).Inawarmsubject,ontheotherhand,theshellisrelatively thin,andthusprovideslittleinsulation.Furthermoreawarmsubject'sskinbloodflow ishigh,sothatheatflowfromthecoretotheskinisdominatedby convection.Inthesecircumstancesthesubcutaneousfa tlayerwhichaffectsconductionbu tno tconvectionhaslittleeffecton heatflowfromcoretoskin.

    Coretemperaturevariesslightlyfromonesitetoanotherdependingonsuchlocalfactorsasmetabolicrateandbloodsupply,andthetemperaturesofneighboringtissues.Howeverthenotionofasingleuniform coretemperatureisausefulapproximation, sincetemperatures atdifferentplacesinthecoreareallclosetothetemperatureof thecentralblood,andtendtochangetogether.Siteswherecoretemperatureismeasuredclinically includethemouth,thetympanicmembrane,therectum,andoccasionally theaxilla.Nositeisidealineveryrespect,andeachhascertaindisadvantagesandlimitations(Seetextbox).

    [INSERTst(CLINICALMEASUREMENTOF TEMPERATURE) AND2nd(BRAINEMPERATURE)TEXT BOXESABOUTHERE.]

    The valueof98.6F thatisoftengivenasthenormallevelofbodytemperaturemay suggestthatbodytemperatureisregulatedsoprecisely thatitisno tallowedtodeviateevenafew tenthsof adegree.Infact,98.6FissimplytheFahrenheitequivalentof37C;and,asFig. ndicates,bodytemperaturedoesvary.Theeffectsofheavyexerciseandfeverarequitefamiliar.Inadditionvariationamongindividualsandsuchfactors4astimeofday(Fig.3 ),phaseofthemenstrualcycle5'6,andacclimatizationtoheatcan causedifferencesofuptoabout C incoretemperatureinhealthysubjectsatrest.The thermoregulatory systemreceivesinformationaboutthelevelofcore

  • 7/30/2019 fisiologa en ambientes calurosos

    7/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97temperatureprovidedby temperature-sensitive neuronsandnerveendingsintheabdominalviscera,greatveins,spinalcord,andespecially thebrain78.Laterinthechapterwe discusshow thethermoregulatory systemprocessesthisinformation,andusesittomaintaincoretemperaturewithinanarrow range.

    SkinTemperature

    Skintemperatureisimportantinheatexchangeandthermoregulatorycontrol.Mostheatisexchangedbetweenthebodyandtheenvironmentattheskinsurface.Skintemperatureismuchmorevariablethancoretemperature,andisaffectedby thermoregulatoryresponsessuchasskinbloodflow andsweatsecretion,by thetemperaturesofunderlyingtissues,andby environmentalfactorssuchasair temperature,airmovement,andthermalradiation.Skintemperature,inturn,isoneofthemajorfactorsdetermining heatexchangewiththeenvironment.For thesereasons,skintemperatureprovidesthethermoregulatorysystem withimportantinformationabouttheneedtoconserveorlosebodyheat.Manybarenerveendingsjustundertheskinarevery sensitivetotemperature.Dependingontherelationofdischargeratetotemperature,they are classifiedaseitherwarmor coldreceptors 7 - 9(Fig.4).rom therelativedensitiesofcold-andwarm-sensitivespotsinhumanskin'0,coldreceptorsappeartobe roughlytentimesasnumerousaswarm receptorssince,asarule,asinglecoldorwarmfiberinnervatesasinglecold-orwarm-sensitivespot".Withheating oftheskin,warmreceptorsrespond withatransientburstofactivity,whilecoldreceptorsrespondwithatransientsuppression;andthereversehappenswithcooling.Thesetransientresponsesatthebeginningofheatingorcoolinggivethecentralintegratoralmostimmediateinformationaboutchangesinskintemperature,andmayexplain,forexample,theintense,briefsensationofbeing chilledthatoccursduringaplungeintocoldwater.

    Skintemperatureusuallyisno tuniformoverthebodysurface,sothatameanskintemperature(T^)isfrequently calculatedfromskintemperaturesmeasuredatseveralselectedsites,usuallyweightingthetemperaturemeasuredateachsiteaccordingtothefractionofbodysurfaceareathatitrepresents.Itwouldbeprohibitivelyinvasiveanddifficulttomeasureshelltemperaturedirectly.Instead,therefore,skintemperaturealsoiscommonlyusedalongwithcoretemperaturetocalculateameanbodytemperatureandtoestimatechangesintheamountofheatstoredinthebody.

  • 7/30/2019 fisiologa en ambientes calurosos

    8/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97BALANCEBETWEENHEATPRODUCTIONAND HEATLOSS

    Allanimalsexchangeenergywiththeenvironment.Someenergyisexchangedasmechanicalwork,bu tmostisexchangedasheat,by conduction,convection,andradiation;andaslatentheatthroughevaporationor (rarely)condensationofwater(Fig.5).If thesumofenergy productionandenergy gainfromtheenvironmentdoesnotequalenergyloss,theextraheatis"stored"in,orlostfrom,thebody.Thisissummarizedintheheatbalanceequation

    M=E+ R + C + K+W+S 1) whereMismetabolicrate;Eisrateofheatlossby evaporation;R andCare ratesofheatlossby radiationandconvection,respectively;Kistherateofheatlossby conduction(onlytosolidobjectsinpractice,asexplained later);W israteofenergylossasmechanicalwork;andSisrateofheatstorageinthebody,whichtakestheformofchangesintissuetemperatures'213.

    Misalwayspositive,bu ttheothertermsineq. may beeitherpositiveornegative.E,R ,C,K,andW are positiveifthey representenergylossesfromthebody,andnegativeif they representenergygains.WhenS = 0,thebodyisinheatbalanceandbodytemperatureneitherrisesnorfalls.Whenthebodyisnotinheatbalance,itsmeantissuetemperatureincreasesifSispositive,anddecreasesif Si snegative.Thiscommonly occursonashort-term basisandlastsonlyuntilthebodyrespondstochangesinitstemperature withthermoregulatoryresponsessufficienttorestorebalance;bu tif thethermalstressistoogreatfo rthethermoregulatory systemtorestorebalance,thebodywillcontinuetogainorloseheat,untileitherthestressdiminishessothatthethermoregulatorysystemcanagainrestorethebalance,ordeathoccurs.[INSERT 3 rdTEXTBOX(HEAT UNITS)ABOUTHERE.]HeatProduction

    Metabolicenergyisrequiredforactivetransportviamembranepumps,formuscularwork,andfo rchemicalreactionssuchasformationofglycogenfromglucoseandproteinsfromaminoacids,whoseproductscontainmoreenergythanthematerials thatenteredintothereaction.Mostof theenergyusedintheseprocessesis

  • 7/30/2019 fisiologa en ambientes calurosos

    9/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97transformedintoheatwithinthebody.The transformationmaybealmostimmediate,aswithenergyusedinactivetransportorwithheatproducedasaby-productofmuscularcontraction.Inotherprocessestheconversionofenergy toheatisdelayed,aswhentheenergy thatwasusedtoformglycogenorproteinisreleasedasheatwhentheglycogenisconvertedbackintoglucose,ortheproteinbackintoaminoacids.

    MetabolicRateandSitesofHeatProductionat Rest

    Metabolicrateatrestvarieswithbodysize,andisapproximately proportionaltobodysurfacearea.Inafasting youngmanitisabout45W/m2(Fig.6)(81W or70kcal/hfo r1.8m2bodysurfacearea(Table3 ), correspondingtoan02consumptionofabout24 0ml/min.)Atrestthetrunkvisceraandbrainaccountfo rabout70% ofenergyproduction,eventhoughthey comprise only about3 6% ofthebodymass(Table2) .Al ltheheatrequiredtomaintainheatbalanceatcomfortableenvironmentaltemperaturesissupplied asaby-productofmetabolicprocessesthatserveotherfunctions,thoughinthecoldsupplementalheatproduction may be elicitedto maintainheatbalance.

    Factorsotherthanbodysizethataffectmetabolismatrestincludesexandage(Fig.6) ,hormones,anddigestion.Anon-pregnantwoman'smetabolicrateis5 to0% lowerthanthatof amanofthesameageandsurfacearea,probablybecausethefemalebodyincludesahigherproportionoffat,atissuewithalow metabolicrate.(Howeverthegrowingfetus'senergyrequirementsincreaseapregnantwoman'smeasuredmetabolicrate.)

    Catecholaminesandthyroxinearethehormoneswiththelargesteffectonmetabolicrate.Catecholaminesstimulatemanyenzymesystems,thusincreasingcellularmetabolism;andhypermetabolismoccursinsomecasesofpheochromocytoma, asecretingtumorof theadrenalmedulla.Thyroxinemagnifiesthemetabolicresponsetocatecholaminesandstimulatesoxidationinthemitochondria.Hyperthyroidismmaydoublethemetabolicrateinseverecases,althoughanincreaseto45% abovenormalismoretypical;andmetabolic rateistypically 25% below normalinhypothyroidism,bu tmaybe45% below normalwithtotallackofthyroxine.

    Metabolicrateatrestincreasesafteramealasaresultof thethermiceffectoffood(or"specificdynamicaction",theolderterm).heincreasevariesaccording tothecompositionofthemealandthephysiologicalstate,

  • 7/30/2019 fisiologa en ambientes calurosos

    10/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97includingthelevelofnutrition,of thesubject14.nawell-nourishedsubjecttheincreaseistypically 10-20%.he effectlastsseveralhoursandappearstobeassociatedwithprocessingtheproductsofdigestionby theliver.

    Measurementof MetabolicRate

    Heatexchangewiththeenvironmentcanbemeasureddirectly withahumancalorimeter15,aspeciallyconstructedinsulatedchamberthatallowsheattoleaveonlyintheair ventilatingthechamberor,often,inwaterflowingthroughaheatexchangerinthechamber.Fromaccuratemeasurementsof theflowofair andwater,andtheirtemperaturesasthey enterandleavethechamber,onecancomputethesubject'sheatlossby conduction,convectionandradiation;andfrommeasurementsof themoisturecontentofair enteringandleavingthechamberonecanalsodetermineheatlossby evaporation.Directcalorimetrv .asthistechniqueiscalled,issimpleinconcept,butdifficultandcostlyinpractice.Thereforemetabolicrateisoftenestimatedby indirectcalorimetrv16basedon measurementsof02consumption,sincevirtuallyallenergyavailabletothebodydependsultimately on reactionsthatconsume02.Consumptionofoneliterof02isassociated withreleaseof21 .lk J(5.05kcal)if thefueliscarbohydrate,9.8kJ(4.74kcal)ifthefuelisfat,and8.6kJ(4.46kcal)if thefuelisprotein.For metabolismofamixeddiet,anaveragevalueof20.2kJ(4.83kcal)perliterof02isoftenusedTable3 ).TheratioofC02produced to02consumedinthetissues,calledtherespiratoryquotient(RQ),is.0fo roxidationofcarbohydrate,0.71or oxidationoffat,and0.80for oxidationofprotein.Inasteady statewhereC02isexhaledatthesameratethatitisproducedinthetissues,RQ isequaltotherespiratoryexchangeratio,R;andtheaccuracy ofindirectcalorimetrycanbeimprovedby alsodeterminingR,andeitherestimatingtheamountofproteinoxidizedusually smallcomparedtofat andcarbohydrateor calculatingitfromurinary nitrogenexcretion.

    SkeletalMuscleMetabolismandMuscularWork

    Evenduringverymildexercisethemusclesare thechiefsourceofmetabolic heat,andduring heavy exercisetheymay accountforupto90% (Table2) .Ahealthy bu tsedentary youngman performingmoderately intenseexercisemayincreasehismetabolicrateto600W (incontrasttoabout80W atrest);andatrainedathlete

  • 7/30/2019 fisiologa en ambientes calurosos

    11/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97performingintenseexercise,to400W ormore.Exercisingmusclesmay be nearlyC warmerthanthecore,becauseoftheirhighmetabolicrate.Bloodiswarmedasitperfusesthesemuscles,andtheblood,inturn,warmstherestofthebodyandraisescoretemperature.Likeenginesthatburnfossilfuels,musclesconvertmostof theenergy inthefuelsthattheyconsumeintoheatratherthanmechanicalwork.WhenADPisphosphorylatedtoform ATP,58% of theenergyreleasedfromthefuelisconvertedintoheat,andonlyabout42% iscapturedintheAT Pthatisformed.ThenwhenATPishydrolyzedduringamusclecontraction,someoftheenergyintheATPisconvertedintoheatrather thanintomechanicalwork.The efficiencyofthisprocessvariesenormously,andiszeroinisometriccontraction,inwhichamuscle'slengthdoesno tchangewhileitdevelopstension,sothatthemuscledoesnoworkeventhoughitconsumesmetabolicenergy.Finallysomemechanicalworkisconvertedby frictionintoheatwithinthebodyas,forexample,happenstothemechanicalworkdoneby theheartinpumping blood.Atbest,nomorethanonequarterofthemetabolicenergyreleasedduringexerciseisconvertedintomechanical work"outsidethebody,andtheremainingthreequartersor moreisconvertedintoheatwithinthebody17 .

    [INSERT4thTEXT BOX (MILITARY TASKS)ABOUT HERE.]

    HeatExchangewiththeEnvironment

    Convection,radiation,andevaporationare thedominantmeansofheatexchangewiththeenvironment(SeealsoSanteeandMatthew).oth theskinandtherespiratorypassagesexchangeheatwiththeenvironmentby convectionandevaporation,butonlytheskinexchangesheatby radiation.nsomeanimalspecies,pantingisan importantthermoregulatoryresponse,whichcanproducehighratesofheatloss.nhumans,however,respiration usuallyaccountsforonly aminorfractionoftotalheatexchangeandisnotpredominantlyunderthermoregulatory control,althoughhyperthermicsubjectsmayhyperventilate.ThereadershouldrefertoSanteeandMatthewfo rmoredetaileddiscussionofallaspectsofheatexchangethanisprovidedinthissection.)

    Convectionistransferofheatduetomovementofafluid,eitherliquidorgas.nthermalphysiology thefluidisusuallyair orwaterintheenvironment,orbloodinsidethebody,asdiscussedearlier.luidsconductheatinthesameway assolidsdo,andaperfectlystillfluidtransfersheatonlyby conduction.inceair andwaterareno t

  • 7/30/2019 fisiologa en ambientes calurosos

    12/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97goodconductorsofheat(Table),perfectlystillair orwaterisno tveryeffectiveinheattransfer.luids,however,are rarelyperfectlystill,andevennearlyimperceptiblemovementproducesenoughconvectiontocausealargeincreaseintherateofheattransfer.husalthoughconductionplaysaroleinheattransferby afluid,convectionso dominatestheoverallheattransferthatwerefertotheentireprocessasconvection.Theconductionterm( A T )ineq. 1sthereforerestrictedtoheatflowbetweenthebodyandothersolidobjects,andusually representsonlyasmallpartof thetotalheatexchangewiththeenvironment.

    Convectiveheatexchangebetweentheskinandtheenvironmentisproportionaltothedifferencebetweenskinandambientairtemperatures,asexpressedby theequation

    C=hc-A-k-Ta) 2) whereAisthebodysurfacearea,X kandT aare meanskinandambienttemperatures,andhcistheconvectiveheattransfercoefficient.hcincludestheeffectsofallthefactorsbesidestemperatureandsurfaceareathataffectconvectiveheatexchange (SeeSanteeandMatthew).orthewholebody,themostimportantofthesefactorsisair movement,andconvectiveheatexchange(andthushc)variesapproximately asthesquarerootof theair speed(Fig.7)unlessair movementisveryslight.

    Everysurfaceemitsenergyaselectromagnetic radiationwithapoweroutputthatdependsonitsarea,itstemperature,anditsemissivitv(e),anumberbetween0and1thatdependson thenatureofthesurfaceandthewavelengthoftheradiation.heemissivityofanysurfaceisidenticaltoitsabsorptivity ,i.e.,thefractionofincomingradiantenergythatthesurfaceabsorbsratherthanreflects.(Forthispurposetheterm"surface"hasabroadermeaningthanusual,sothat,forexample,aflameandtheskyaresurfaces.)uchradiation,calledthermalradiation,hasacharacteristicdistributionofenergyasafunctionofwavelength,whichdependsonthetemperatureof thesurface.orasurfacethatisno tho tenough toglowthisradiationisintheinfraredpartof thespectrum,andatordinarytissueandenvironmentaltemperatures virtuallyalloftheemittedenergyisatwavelengthslongerthan3 microns.ostsurfacesexceptpolished metalshaveemissivities near nthisrange,andthusbothemitandabsorbradiationatnearly thetheoreticalmaximumefficiency.sasurface'stemperatureincreases,however,theaveragewavelengthofitsthermalradiationdecreases,andmostoftheenergyinsolarradiationisinthenearinfraredandvisiblerange,fo rwhichlightsurfaceshavelowerabsorptivitiesthandarkones.

  • 7/30/2019 fisiologa en ambientes calurosos

    13/80

    HumanAdaptationtoHotEnvironments(TMM)/20/970Iftw osurfacesexchangeheatby thermalradiation,radiationtravelsinbothdirections;bu tsinceeach

    surfaceemitsradiationwithanintensitythatdependsonitstemperature,thene theatflowisfrom thewarmertothecoolerbody.adiativeheatexchangebetweentw osurfacesis,strictly,proportionaltothedifferencebetweenthefourthpowersofthesurfaces'absolutetemperatures.oweverif thedifferencebetweenT^andthetemperatureoftheradiantenvironment(T r)ismuchsmaller thantheabsolutetemperatureof theskin,R isnearly proportionalto(T*_Tr)-Somepartsof thebodysurface(e.g.,innersurfacesofthethighsandarms)exchangeheatby radiation withotherpartsof thebodysurface,sothatthebodyexchangesheatwiththeenvironmentasif ithadanareasmallerthanitsactualsurfacearea.Thissmallerareaiscalledtheeffective radiatingsurfacearea(A r),anddependson theposture,beingclosesttotheactualsurfaceareaina"spreadeagle" posture,andleastinsomeonecurledup .Radiativeheatexchangecanbe representedby theequation

    /? =h r-e sk -A r-(Vr ) 3) wherehristheradiantheattransfercoefficient,6.43W/(m2-C)at28C;andeskistheemissivityof theskin.

    Whenagramofwaterisconvertedintovaporat30C ,itabsorbs2425J(0.58kcal)Table3 ),thelatentheatofevaporation ,intheprocess.Whentheenvironmentishotterthantheskinasitusuallyiswhentheenvironmentiswarmerthan36Cevaporationisthe body'sonlyway toloseheat,andmustdissipateno tonlytheheatproducedby thebody'smetabolism,bu talsoanyheatgainedfromtheenvironmentby R andC.Mostwaterevaporatedintheheatcomesfromsweat;buteveninthecold,waterdiffusesthroughtheskinandevaporates.Evaporationofthiswateriscalledinsensibleperspiration918,andoccursindependentlyofthesweatglands. isnearlyalwayspositive(representinglossofheatfromthebody);bu titisnegativeinunusualcircumstances,suchasinasteamroom,wherewatervaporcondensing on theskingivesup heattothebody.

    Evaporativeheatlossfromtheskinisproportionaltothedifferencebetweenthewatervaporpressureattheskinsurfaceandthewatervaporpressureintheambientair.Theserelationsaresummarizedinthefollowingequation:

    =he-A-(P,k-P.) 4)wherePskisthewatervaporpressureattheskinsurface,P aistheambientwatervaporpressure,andheistheevaporativeheattransfercoefficient.

  • 7/30/2019 fisiologa en ambientes calurosos

    14/80

    HumanAdaptationtoHotEnvironments(TMM)/20/971 Sincewatervapor,likeheat,iscarriedawayby movingair,airmovementandotherfactorsaffectEandheinjustthesameway thattheyaffectC andh c.If theskinsurfaceiscompletely wet,thewatervaporpressureattheskinsurfaceisthesaturationwatervaporpressure(Fig.8) atskintemperature,andevaporativeheatlossis max ,themaximumpossiblefo rtheprevailing skintemperatureandenvironmentalconditions.Thissituationisdescribedineq.5:

    ^max=ne'A"(Psl

  • 7/30/2019 fisiologa en ambientes calurosos

    15/80

    HumanAdaptationtoHotEnvironments(TMM)/20/972 toskintemperaturethanistheenvironmentoutsidetheclothing.Furthermore,sincethebodyisasourceofwatervapor,theair insidetheclothingismorehumidthanoutside.The conditionsinsidethismicroenvironmentairtemperature,watervaporpressure,andtemperatureof theinnersurfaceoftheclothingarewhatdetermineheatgainorheatlossby unexposedskin.Theseconditionsinturnaredetermined by theconditionsoutsidetheclothing,thepropertiesoftheclothing,andtherateatwhichthebody releasesheatandmoistureintothismicroenvironment.Thereforethelevelofphysicalactivity determinesboththeappropriatelevelofclothingfortheenvironmentalconditions,andthedegreeofheatstrainthatresultsfromwearingclothingthatistoowarmfo rtheconditions,asprotectiveclothing oftenis.

    Althoughclothing reducesheatexchangebetweencoveredskinandthe environment,ithaslittleeffecton heatexchangeofexposedskin.Thereforeespecially whenthe clothingisheavyandmostoftheskiniscoveredexposedskinmay accountforafractionof thebody'sheatlossthatfarexceedstheexposedfractionofthebody'ssurface.Thusinthecold,theheadmay accountforhalfoftheheatlossfromthebody 20;andinsomeoneexercisingwhilewearingNBC protectiveclothing withoutgasmaskandhood,donningthemaskandhoodwhilecontinuing toexercisemayleadtoadramaticincreaseinheatstrain21.

    HeatStorage

    Heatstorageisachangeinthebody'sheatcontent.Therateofheatstorageisthedifferencebetweenheatproduction/gain andheatloss(Eq.),andcanbedeterminedfromsimultaneousmeasurementsofmetabolismby indirectcalorimetryandheatgainorlossby directcalorimetry.Sinceheatstorageinthetissueschangestheirtemperature,theamountofheatstoredistheproductofbodymass,thebody'smeanspecificheat,andasuitablemeanbody temperature(T b).Thebody'smeanspecific heatdependsonitscomposition,especially theproportionoffat,andisabout3.39kJ/(kg-C)[0.81kcaI/(kg-C)](Table3 )forabodycompositionof16% bone,0% fat,and74% leansofttissue.EmpiricalrelationsofT btocoretemperature(T c)andT k ,determinedincalorimetricstudies,dependonambienttemperature,withTbvaryingfrom0.67-Tc+ 0.33 'Tkinthecoldto0.9-Tc+0.1-T sk intheheat9.TheshiftfromcoldtoheatintherelativeweightingofTcandX kreflectstheaccompanying changeinthethicknessof theshell(Fig.2) .

  • 7/30/2019 fisiologa en ambientes calurosos

    16/80

    HumanAdaptationtoHotEnvironments(TMM)/20/973 HEATDISSIPATION

    Figure9showsrectalandmeanskintemperatures,heatlosses,andcalculatedshellconductancesfornuderestingmenandwomenattheendof2-hourexposuresinacalorimetertoambienttemperaturesfrom 23 to36C.Shellconductancerepresentsthesum ofheattransferby tw oparallelmodes,i.e.conductionthroughthetissuesoftheshell,andconvectionby theblood;anditiscalculatedby dividing heatlossthroughtheskin(HF sk)i.e.,totalheatlosslessheatlossthroughtherespiratory tractbythedifferencebetweencoreandmeanskintemperatures,asfollows:

    C= HF sk/(T c- k) 7) whereCisshellconductance,andT cand\arecoreandmeanskintemperatures.

    Atambienttemperatures below 28Cthesesubjects'conductanceisminimal,becausetheirskinbloodflow isquitelow.incetheminimumattainablelevelofconductance dependschiefly onthesubcutaneousfatlayer,thewomen'sthickerlayerallowsthemtoattainalowerconductancethanmen.tabout28Cconductancebeginstoincrease,andabove30Cconductance continuestoincreaseandsweatingbegins.or thesenudesubjects,therange28-30Cisthezoneofthermoneutralitv.i.e.,therangeofcomfortableenvironmentaltemperaturesinwhichthermalbalanceismaintainedwithouteithershiveringorsweating12.nthiszoneheatlossismatchedtoheatproductionby controllingconductance,andthusT sk ,R ,andC.

    Evaporation

    I n Fig.9evaporativeheatlossisnearlyindependentofambienttemperaturebelow30C ,andis9-10W/m2.hiscorresponds toevaporationofabout13-15gm/(m 2-h),ofwhichabouthalfislostthroughbreathingandhalfasinsensibleperspiration.hisheatlossisnotunderthermoregulatory control.oachieveheatbalanceathigherambienttemperatures,thesubjectsinFig.9dependmoreandmoreonevaporationofsweat,whichinhumanscandissipatelargeamountsofheat.

    Thereare twohistological typesofsweatglands,eccrineandapocrine.nhumansapocrineglandsarefoundmostlyintheaxilla,inguinalregion,perianalskin,andmammaryareolae,andlessconsistently onotherparts

  • 7/30/2019 fisiologa en ambientes calurosos

    17/80

    HumanAdaptationtoHotEnvironments(TMM)/20/974of thetrunkandtheface22 .ccrinesweati sessentiallyadiluteelectrolytesolution,bu tapocrinesweatalsocontains fattymaterial.ccrinesweatglandsare widelydistributedandare themoreimportanttypeinhumanthermoregulation,andfunctionally activeeccrineglandsnumberabout2,000,000to3,000,000 23 .heyare controlledthroughpostganglionicsympatheticnerveswhichreleaseacetylcholine

    23ratherthannorepinephrine.healthymanunacclimatized toheatcansecreteupto.5litersofsweatperhour.lthoughthenumberoffunctionalsweatglandsisfixedbeforetheageofthree23 ,thesecretorycapacity of theindividualglandscanchange,especially withendurance exercise trainingandheatacclimatization;andaman wellacclimatizedtoheatcansecretemorethan2.5litersperhour24 - 25.Suchratescannotbemaintained,however,andthemaximumdailysweatoutputisprobablyabout1 5 liters26 .

    Sodiumconcentrationofeccrinesweatrangesfromlessthan5to60mEq/L27(versus35to145mEq/Linplasma);bu tevenat60mEq/L,sweatisthemostdilutebodyfluid.To producesweatthatishypotonic toplasma,'theglandsreabsorb sodiumfromthesweatductby activetransport.ssweatrateincreases,therateatwhichtheglandsreabsorbsodiumincreasesmoreslowly,sothatsodiumconcentrationinthesweatincreases.

    SkinCirculationandDry(ConvectiveandRadiative)HeatExchange

    Heatproducedwithinthebodymustbedeliveredtotheskinsurfacetobeeliminated.Whenskinbloodflowisminimal,core-to-skinthermalconductance(i.e.,the conductanceoftheshell)istypically5-9 W/C pe rm2ofbodysurface(Fig.9) . leanrestingsubjectwithasurfaceareaof1.8m2,minimalwhole-bodyconductanceof16W/C[i.e.,8.9W/(C-m2)x.8m 2]andametabolicheatproductionof80W,requiresatemperaturedifferencebetweencoreandskinof5C (i.e.,80W +6W/C)toallowtheheatproducedinsidethebodytobeconductedtothesurface.nacoolenvironment,T skmay easilybelow enoughfo rthistooccur.However,inanambienttemperatureof3 3 C T i< istypicallyabout35C;andwithoutanincreaseinconductance,coretemperaturewouldneedtoriseto40 Cahighthoughnotyetdangerouslevelfortheheattobe conductedtotheskin.utif therateofheatproductionwereincreasedto480W by moderateexercise,thetemperaturedifferencebetweencoreandskinwouldhavetoriseto30Candcoretemperaturetowellbeyondlethallevelstoallowalltheheatproduced tobeconductedtotheskin.nsuchcircumstancesalargeincreaseinconductanceisneededfo rthebodytore-

  • 7/30/2019 fisiologa en ambientes calurosos

    18/80

    HumanAdaptationtoHotEnvironments(TMM)/20/975 establishthermalbalanceandcontinuetoregulateitstemperature;andthisisaccomplishedby increasingskinbloodflow.

    RoleofSkinBloodFlowinHeatTransfer

    If weassumethatbloodonitsway to theskinremainsatcoretemperatureuntilitreachestheskin,comestoskintemperatureasitpassesthroughtheskin,andthenstaysatskintemperatureuntilitreturnstothecore,wecancomputetherateofheatflow(HF b)duetoconvectionby thebloodas:

    HF b=SkBF-(Tc-T sk)-3.85kJ/(L-C) 8) whereSkBF =rateofskinbloodflow,expressedinL/sratherthanthemoreusualL/min,tosimplifycomputingHF inW (i.e.,J/s);and3.85kJ/(L-C)[0.92kcal/(L-C)]= volumespecificheatofblood28Table3 ). Conductance duetoconvectionby theblood(C b)iscalculatedas:

    Cb= HF b/(Tc-Tsk)= SkBF-3.85kJ/(L-C) 9) Ofcourse,heatcontinuestoflowby conductionthroughthetissuesoftheshell,sothattotalconductanceisthesumofconductanceduetoconvectionby thebloodplusthatduetoconductionthroughthetissues;andtotalheatflowisgivenby :

    HF =(C b+C 0)-(T C-Tsk) 10 )inwhichC 0isthermalconductanceof the tissueswhenskinbloodflowisminimal,andthusisduepredominantlyto conduction throughthetissues.

    The assumptionsonwhicheq.8dependsrepresenttheconditionsformaximumefficiency ofheattransfer by theblood,andaresomewhatartificial.npracticebloodexchangesheatalsowiththetissuesthroughwhichitpassesgoingtoandfromtheskin.eatisexchangedwiththeseothertissuesmosteasilywhenskinbloodflowislow,andinsuchcasesheatflow totheskinmay bemuchlessthatpredictedby eq .8.owever,eq.8isareasonableapproximationinawarmsubjectwithmoderatetohighskinbloodflow.tisno tpossibletomeasurewhole-bodySkBFdirectly,bu ti tisestimatedtoreachnearly8 L/minduringmaximalcutaneousvasodilation2930.Maximalcutaneousvasodilationdoesnotoccurduringheavyexercise31,butSkBFstillmay reachseverallitersaminuteduringheavyexerciseintheheat29 .IfSkBF=1.89L/min(0.0315L/s), thenaccording toeq.9skinblood

  • 7/30/2019 fisiologa en ambientes calurosos

    19/80

    HumanAdaptationtoHotEnvironments(TMM)/20/97f :flowcontributesabout1 2 1 W/C totheconductanceoftheshell.fconductionthroughthetissuescontributes16W/C,totalshellconductanceis37W/C;andifT c=38.5CandT sk=35C ,thenthiswillproduceacore-to-skinheattransferof480W,theheatproductioninourearlierexampleofmoderateexercise.Thusevenamoderaterateofskinbloodflow canhaveadramaticeffectonheattransfer.

    Inapersonwhoisnotsweating,raisingskinbloodflowbringsskintemperaturenearerto bloodtemperature,andloweringskinbloodflowbringsskintemperaturenearer toambienttemperature.ntheseconditionsthebodycontrolsdry(convectiveandradiative)heatlossby varying skinbloodflow andthusskintemperature.ncesweatingbegins,skinbloodflowcontinuestoincreaseastheperson becomeswarmer,bu tnow thetendencyofanincreaseinskinbloodflowtowarm theskinisapproximatelybalancedby thetendencyofan increaseinsweatingtocooltheskin.hereforeaftersweatinghasbegun,furtherincreasesinskinbloodflow usuallycauselittlechangeinskintemperatureordry heatexchange,andserveprimarily todelivertotheskintheheatthatisbeingremovedby evaporationofsweat.kinbloodflow andsweatingthusworkintandemtodissipateheatundersuchconditions.

    SympatheticControlofSkinCirculation

    Bloodflowinhumanskinisunderdualvasomotorcontrol8'3032.Inmostof theskinthevasodilationthatoccursduringheatexposuredependsonsympatheticnervoussignalsthatcausethebloodvesselstodilate,andthisvasodilationcanbepreventedorreversedby regionalnerveblock33 .Sinceitdependson theactionofnervoussignals,suchvasodilationissometimesreferredtoasactivevasodilation.Activevasodilationoccursinalmostalltheskinexceptintheso-calledacralregionshands,feet,lips,ears,andnose34 .Intheskinareaswhereactivevasodilationoccurs,vasoconstrictoractivityisminimalatthermoneutraltemperatures;andasthebodyiswarmed,activevasodilationdoesnotbeginuntilclosetotheonsetofsweating3035.Thusskinbloodflowintheseareasisnotmuchaffectedbysmalltemperaturechangeswithinthethermoneutralrange34 .Theneurotransmitterorothervasoactivesubstanceresponsiblefo ractivevasodilationinhumanskinhasnotbeenidentified36 .However,sincesweatingandvasodilationoperateintandemintheheat,someinvestigatorshaveproposedthatthemechanismfo ractivevasodilationissomehowlinkedtotheactionofsweatglands3037.

  • 7/30/2019 fisiologa en ambientes calurosos

    20/80

    HumanAdaptationtoHotEnvironments(TMM)/20/977Reflexvasoconstriction,occurringinresponsetocoldandalsoaspartofcertainnon-thermalreflexessuch

    asbaroreflexes,ismediatedprimarily throughadrenergicsympatheticfiberswhicharedistributedwidelyovermostof theskin36 .Reducingtheflow of impulsesinthesenervefibersallowsthebloodvesselstodilate.Intheacralregions3036andinthesuperficialveins3 0,vasoconstrictor fibersare thepredominantvasomotorinnervation,andthevasodilation thatoccursduringheatexposureislargelyaresultofthewithdrawalofvasoconstrictoractivity 34 .Bloodflowintheseskinregionsissensitive tosmalltemperaturechangeseveninthethermoneutralrange,andmay be responsiblefo r"finetuning"heatlosstomaintain heatbalanceinthisrange.

    THERMOREGULATORYCONTROL

    Incontroltheorythewordsregulationandregulatehavemeaningsdistinctfromthoseofcontrol. controlsystemactsto minimizechangesintheregulatedvariable(e.g.,coretemperature)thatareproducedby disturbancesfromoutsidethesystem(e.g.,exerciseorchangesintheenvironment)by makingchangesincertainothervariables (e.g.,sweatingrate,skinbloodflow,metabolicrate,andthermoregulatorybehavior),whicharecalledcontrolledvariables.Humanbeingshavetw odistinctsub-systemstoregulatebodytemperature:behavioralthermoregulationandphysiologicalthermoregulation.Physiologicalthermoregulation iscapableoffairlypreciseadjustmentsofheatbalance,bu tiseffectiveonlywithinarelativelynarrow rangeofenvironmentaltemperatures.Ontheotherhandbehavioralthermoregulation,throughtheuse ofshelterandspaceheatingandclothing,enableshumanstoliveinthemostextremeclimatesonearth;bu titdoesno tprovidefinecontrolofbodyheatbalance.

    BehavioralThermoregulation

    Behavioralthermoregulationisgovernedby thermalsensationandcomfort.Sensoryinformationaboutbodytemperaturesisanessentialpartofbothbehavioralandphysiologicalthermoregulation.hedistinguishing featureofbehavioralthermoregulationisthedirectionofconsciousefforttoreducediscomfort.Warmthandcoldontheskinarefeltaseithercomfortableor uncomfortable,dependingonwhethertheydecreaseorincreasethephysiologicalstrain 38 .husashowertemperaturethatfeelspleasantafterstrenuousexercisemay beuncomfortably

  • 7/30/2019 fisiologa en ambientes calurosos

    21/80

    HumanAdaptationtoHotEnvironments(TMM)/20/978 coldonachillymorning.ecauseoftherelationbetweendiscomfortandphysiologicalstrain,behavioralthermoregulation,by reducingdiscomfort,alsoactstominimizethephysiologicalburdenimposedby astressfulthermalenvironment.or thisreasonthezoneof thermoneutrality ischaracterizedby thermalcomfortaswellasby theabsenceofshiveringandsweating.

    The processing of thermalinformationinbehavioralthermoregulationisno taswellunderstoodasinphysiologicalthermoregulation.owever,perceptions of thermalsensationandcomfortrespondmuchmorequickly thaneithercoretemperatureorphysiologicalthermoregulatoryresponsestochangesinenvironmentaltemperature3 9 - 40 ,andthusappeartoanticipatechangesinthebody'sthermalstate.Suchananticipatory featurepresumably reducestheneedfo rfrequentsmallbehavioraladjustments.

    PhysiologicalThermoregulation

    Physiologicalthermoregulationoperatesthroughgradedcontrolofheat-production andheat-loss responses.amiliarnon-livingcontrolsystems,suchasmostrefrigeratorsandheatingandair-conditioningsystems,operateatonlytw olevels,becausetheyactby turningadeviceon oroff.ncontrast,mostphysiologicalcontrolsystemsproducearesponsethatisgradedaccording tothedisturbanceintheregulatedvariable.nmanyphysiologicalsystemschangesinthecontrolledvariablesare proportional todisplacementsoftheregulatedvariablefromsomethreshold value,andsuchcontrolsystemsare calledproportionalcontrolsystems.

    Thecontrolofheat-dissipating responsesisanexampleof aproportionalcontrolsystem9.igure0showshow reflexcontrolofsweating andskinbloodflow dependsonbodycoreandskintemperatures.Eachresponsehasacore-temperaturethreshold,atemperatureatwhichtheresponse startstoincrease;andthesethresholdsdependon meanskintemperature.Thusatanygivenskintemperature,thechangeineachresponseisproportionalto thechangeincoretemperature;andincreasingtheskintemperaturelowersthethresholdlevelofcoretemperatureandincreasestheresponseatany givencoretemperature.nhumansachangeof1 C incoretemperatureelicitsaboutninetimesasgreatathermoregulatoryresponseasa C changeinmeanskintemperature8.(Besidesitseffecton thereflexsignals,skintemperaturehasalocaleffectthatmodifiestheblood-vesselandsweat-glandresponses,asdiscussedlater.)

  • 7/30/2019 fisiologa en ambientes calurosos

    22/80

    HumanAdaptationtoHotEnvironments(TMM)/20/979IntegrationofThermalInformation

    Thecentralnervoussystemintegratesthermalinformationfromcoreandskin.eceptorsinthebodycoreandtheskintransmitinformationabouttheirtemperatures throughafferentnervestothebrainstem,andespeciallythehypothalamus,wheremuchof theintegrationoftemperatureinformationoccurs 41.he sensitivityofthethermoregulatory responsestocoretemperatureallowsthethermoregulatory system toadjustheatproductionandheatlossto resistdisturbancesincoretemperature.heirsensitivity tomeanskintemperatureallowsthesystem to respondappropriately tomildheator coldexposurewithlittlechangeinbodycoretemperature,sothatenvironmentallyinducedchangesinbody heatcontentoccuralmostentirelyintheperipheraltissues,asshowninFigure2.For example,theskintemperatureofsomeonewhoentersaho tenvironmentrisesandmay elicitsweatingevenifthereisnochangeincoretemperature.Ontheotherhand,anincreaseinheatproductionduetoexerciseelicitstheappropriateheat-dissipating responsesthroughariseincoretemperature.

    Coretemperaturereceptorsinvolvedinthecontrolof thermoregulatory responsesareconcentratedespeciallyinthehypothalamus 42 ,bu ttemperaturereceptorsinothercoresites,includingthespinalcordandmedulla,alsoparticipate42 .Theanteriorpreoptic areaofthehypothalamuscontainsmany neuronswhichincreasetheirfiringrateeitherinresponsetowarmingorinresponsetocooling,andtemperaturechangesinthisareaofonly afew tenthsof 1 C elicitchangesinthethermoregulatoryeffectorresponsesofexperimentalmammals.Thermalreceptorshavebeenreportedelsewhereinthecore,including the heart,pulmonary vessels,andspinalcord;bu tthethermoregulatory roleofcorethermalreceptorsoutsidethecentralnervoussystemisno tknown8.

    Le tusconsiderwhathappenswhenadisturbancesay,anincreaseinmetabolicheatproductiondueto exerciseupsetsthethermalbalance.eatisstoredinthebody,andcoretemperaturerises.Thethermoregulatory controller receivesinformationaboutthesechangesfromthethermalreceptors,andrespondsby callingforthappropriateheat-dissipating responses.Coretemperaturecontinues torise,andtheseresponsescontinuetoincrease,untiltheyare sufficienttodissipateheatasfastasitisbeingproduced,thusrestoringheatbalanceandpreventingfurtherincreasesinbodytemperatures.Theriseincoretemperaturewhichelicitsheat-dissipating responsessufficienttore-establishthermalbalanceduringexerciseisanexampleofaloaderror9;aloaderrorischaracteristicofanyproportionalcontrolsystemthatisresistingtheeffectofsomeimposeddisturbance or"load".lthoughthe

  • 7/30/2019 fisiologa en ambientes calurosos

    23/80

    HumanAdaptationtoHotEnvironments(TMM)/20/970disturbanceinthisexamplewasexercise,parallelargumentsapplyif thedisturbanceisachangeintheenvironment,exceptthatmostof thetemperature changewillbeintheskinandshellratherthaninthecore.

    RelationofEffector SignalstoThermoregulatorySetPoint

    Bothsweating andskinbloodflowdependoncoreandskintemperaturesinthesameway,andchangesinthethresholdforsweatingare accompaniedby similarchangesinthethresholdforvasodilation4.Wemay thereforethinkofthecentralintegrator(Fig.1)asgeneratingon ethermalcommandsignalforthecontrolofbothsweating andskinbloodflow.Thissignalisbasedon theinformation aboutcoreandskintemperaturesthattheintegratorreceives,andon thethermoregulatorysetpoint4 .Wemay thinkofthesetpointasthetargetlevelofcoretemperature,or thesettingofthebody's"thermostat".Intheoperationofthethermoregulatorysystem,itisareference pointwhichdeterminesthethresholdsofallthethermoregulatoryresponses.

    Non-thermal Influences onThermoregulatoryResponses

    Eachthermoregulatoryresponse may beaffectedby otherinputsbesidesbodytemperaturesandfactorsthataffectthethermoregulatorysetpoint.on-thermalfactorsmay produceaburstofsweatingatthebeginningofexercise41'4 ,andtheinvolvementofsweatingandskinbloodflowinemotionalresponsesisfamiliartoeveryone.Of thethermoregulatoryresponsethatareimportantduringheatstress,skinbloodflowismostaffectedby non-thermalfactorsbecauseofitsinvolvementinreflexeswhichfunction tomaintaincardiacoutput,bloodpressure, andtissue02deliveryduring heatstress,posturalchanges,andhemorrhage,andsometimesduringexercise,especiallyintheheat.

    PhysiologicalandPathologicalChanges totheThermoregulatorySe tPoint

    Severalphysiologicalandpathologicalinfluenceschangethethermoregulatorysetpoint.everelevates coretemperature atrest,heatacclimatizationdecreasesit,andtimeofdayandphaseofthemenstrualcyclechange

  • 7/30/2019 fisiologa en ambientes calurosos

    24/80

    HumanAdaptationtoHotEnvironments(TMM)/20/971it inacyclicalfashion4 " 6.Coretemperatureatrestvarieswithtimeofdayinanapproximatelysinusoidalfashion,reachingaminimumatnight,severalhoursbeforeawaking,andamaximumwhichis0.5to C higherin thelateafternoonorevening(Fig.3 ).lthoughthispatterncoincideswithpatternsofactivity andeating,itisindependenton them,occurringevenduringbedrestandfasting.Thispatternisanexampleofacircadian rhythm,i.e.,arhythmicpatterninaphysiologicalfunctionwithaperiodofabouton eday.uringthemenstrualcyclecoretemperatureisatitslowestpointjustbeforeovulation,andoverthenextfew daysrises0.5toC andremainselevatedfo rmostofthelutealphase.achof thesefactorsfever,heatacclimatization, thecircadianrhythm,andthemenstrualcycleaffectscoretemperatureatrestby changingthethermoregulatory set point,thusproducing correspondingchangesinthethresholdsfo rallthethermoregulatory responses.

    PeripheralModificationofSkinVascularandSweatGlandResponses

    Theskinistheorganmostdirectlyaffectedby environmentaltemperature,andskintemperatureaffectsheatlossresponsesno tonlythroughthereflexactionsshowninFig.0bu talsothroughdirecteffectsontheeffectorsthemselves.Localtemperaturechangesactonskinbloodvesselsinatleasttwoways.irst,localcoolingpotentiates(andheatingweakens)theconstrictionofbloodvesselsinresponsetonervoussignalsandvasoconstrictor substances36 .econd,inskinregionswhereactivevasodilationoccurs,localheatingdilatesthebloodvessels(andlocalcoolingconstrictsthem)throughadirectactionthatisindependentofnervoussignals 45 - 46 .Thiseffectisespeciallystrongatskintemperaturesabove35 C 46 ;andwhentheskiniswarmerthantheblood,increasedbloodflowhelpstocooltheskinandprotectitfromheatinjury.heeffectsoflocaltemperatureon sweatglandsparallelthoseonbloodvessels,sothatlocalheatingmagnifies(andlocalcoolingreduces) thesweatingresponsetoreflexstimulationor toacetylcholine 37 ,andintenselocalheatingprovokessweatingdirectly,eveninsympathectomizedskin47 .uringprolonged(severalhours)heatexposurewithhighsweatoutput,sweatratesgraduallydiminishandthesweatglands'responsetolocallyapplied cholinergicdrugsisreducedalso.he reductionofsweat-glandresponsivenessissometimescalledsweat-gland"fatigue".Wettingtheskinmakesthestratumcorneumswell,mechanically obstructing thesweatductandcausing areductioninsweatsecretion,an effectcalledhidromeiosis48 .heglands'responsiveness canbeatleastpartlyrestoredif theskinisallowedtodry

  • 7/30/2019 fisiologa en ambientes calurosos

    25/80

    HumanAdaptationtoHotEnvironments(TMM)/20/972(e.g.,byincreasing airmovement49 ),bu tprolongedsweatingalsocauseshistologicalchanges,includingdepletionofglycogen,inthesweatglands50 .

    THERMOREGULATORY RESPONSES DURINGEXERCISE

    Exerciseincreasesheatproductionsothatitexceedsheatlossandcausescoretemperaturetorise.he increaseincoretemperature,inturn,elicitsheat-lossresponses,bu tcoretemperaturecontinuestoriseuntilheatlosshasincreased enoughtomatchheatproduction,sothatheatbalanceisrestoredandcoretemperatureandtheheat-lossresponsesreachnewsteady-statelevels.Sincetheheat-lossresponsesare proportional to theincreaseincoretemperature,theincreaseincoretemperatureatsteadystateisproportionalto therateofheatproduction,andthustothemetabolicrate.

    Achangeinambienttemperature changesthelevelsofsweatingandskinbloodflowthatareneededto maintainany givenrateofheatdissipation.oweverthechangeinambienttemperatureisaccompaniedby askin-temperaturechangethatelicits,viabothdirectandreflexeffects,muchof therequired changeintheseresponses. Foranygivenrateofheatproduction,thereisarangeofenvironmentalconditions(sometimescalledthe"prescriptivezone"-seeSawkaandPandolf schapter)withinwhichambient-temperaturechangeselicitthenecessarychangesinheat-dissipatingresponsesalmostentirelythroughtheeffectsofskin-temperaturechanges,withvirtuallynoeffectoncoretemperatureatsteadystate51.(Thelimitsofthisrangeofconditionsdependontherateofheatproduction,andsuchindividualfactorsasskinsurfaceareaandstateofheatacclimatization.)Withinthisrange,coretemperaturereachedduringexerciseisnearlyindependentofambienttemperature;andfo rthisreasonitwasoncebelievedthattheincreaseincoretemperature duringexerciseiscausedby anincreaseinthethermoregulatory setpoint52,justasduringfever.sstatedpreviously,however,theincreaseincoretemperaturewithexerciseisanexampleofaloaderrorratherthananincreaseinset point.nFig.2notethesedifference betweenfeverandexercise:irst,althoughheatproductionmay increasesubstantially(throughshivering) whencoretemperatureisrisingearlyduringfever,itdoesno tneedtostayhightomaintainthefever,bu tinfactreturnsnearly topre-febrilelevelsoncethefeverisestablished;duringexercise,however,anincreaseinheatproductionno tonlycausestheelevationincoretemperature,butisnecessary tosustainit.econd,whilecoretemperatureis

  • 7/30/2019 fisiologa en ambientes calurosos

    26/80

    HumanAdaptationtoHotEnvironments(TMM)/20/973 risingduring fever,rateofheatlossis,if anything,lowerthanbeforethefeverbegan;bu tduringexercise,theheat-dissipatingresponsesandtherateofheatlossstarttoincreaseearlyandcontinueincreasingascoretemperaturerises.Althoughfeverinthischaptermeansspecifically anelevationincoretemperaturedu etopyrogensandoccurringinconnection withinfection orotherinflammatory process,someauthorsusefevermorelooselytomeananysignificant elevationofcoretemperature.)

    ChallengeofExerciseintheHeattoCardiovascularHomeostasis

    As pointedou tearlier,skinbloodflowincreasesduringexerciseinordertocarryalloftheheatthatisproducedto theskin.nawarmenvironment,wherethetemperaturedifferencebetweencoreandskinisrelativelysmall,thenecessaryincreaseinskinbloodflowmay beseverallitersperminute.

    ImpairmentofCardiacFilling

    Whiletheworkofsupplyingtheskinbloodflowrequiredfo rthermoregulationintheheatmay representaheavyburdenforapatientwithcardiovascular disease53 ,inhealthy subjectstheprimarycardiovascularburdenofheatstressresultsfromimpairmentofvenousreturn2930'54 .sskinbloodflowincreases,bloodpoolsinthelarge,dilatedcutaneousvascularbed,thusreducingcentralbloodvolumeandcardiacfilling(Fig.3 ).incestrokevolumeisdecreased,ahigherheartrateisrequiredtomaintaincardiacoutput.heseeffectsare aggravatedby adecreaseinplasmavolumeif thelargeamountsofsaltandwaterlostinthesweatare no treplaced.incethemaincationinsweatissodium,disproportionately muchofthebodywaterlostinsweatisattheexpenseofextracellularfluid,includingplasma,althoughthiseffectismitigatedif thesweatisdilute.

    CompensatoryCardiovascularResponses

    Severalreflexadjustmentshelptomaintaincardiacfilling,cardiacoutput,andarterialpressureduringexerciseandheatstress.he cutaneousveinsconstrictduringexercise;andsincemostof thevascularvolumeisin

  • 7/30/2019 fisiologa en ambientes calurosos

    27/80

    HumanAdaptationtoHotEnvironments(TMM)/20/974 theveins,constrictionmakesthecutaneousvascularbedlesscompliant,andreducesperipheralpooling. Splanchnicandrenalbloodfloware reducedinproportiontotheintensityoftheexerciseor heatstress.hisreductionofbloodflow hastwoeffects.irst,itallowsacorresponding diversionofcardiacoutputtoskinandexercising muscle.Second,sincethesplanchnic vascularbedsare verycompliant,adecreaseintheirbloodflow reducestheamountofbloodpooledinthem 29 '3 0(Fig.3 ),helpingtocompensate fordecreasesincentralbloodvolumecausedby reducedplasmavolumeandbloodpoolingintheskin.ecauseoftheessentialthermoregulatoryfunctionofskinbloodflow duringexerciseandheatstress,thebodypreferentiallycompromises splanchnic andrenalflow tomaintain cardiovascularhomeostasis55.boveacertainlevelofcardiovascularstrain,however,skinbloodflow tooiscompromised.

    Despitethesecompensatoryresponses,heatstressmarkedlyincreasesthethermalandcardiovascularstrainthatexerciseproducesinsubjectsunacclimatized toheat.nFig.456,acomparisonofresponseson thefirstdayofexerciseintheheatwiththoseoncooldaysshowssomeeffectsofunaccustomedenvironmentalheatstressontheresponsestoexercise.nthefirstdayintheheat,heartrateduringexercisereachedalevelabout40beats/minhigherthaninthecoolenvironment,tohelpcompensatefortheeffectsof impairedcardiacfillingandtomaintaincardiacoutput;andrectaltemperatureduring exerciserose C higherthaninthecoolenvironment.thereffectsofexercise-heatstressmay includeheadache,nauseaandvomitingsecondary tosplanchnicvasoconstriction, dizziness,cramps,shortnessofbreath,dependentedema,andorthostatichypotension.

    Duringprolongedexercise thereisagradual"drift"inseveralcardiovascular andthermoregulatory responses.hismayincludeacontinuousriseinheartrate,accompaniedby afallinstrokevolumeandreductionsinaortic,pulmonaryarterial,andrightventricularend-diastolic pressures".owellnamedthesechanges"cardiovascular drift",andthoughtofthemasappearingasearlyasafter1 5 minofexercise57 .HeandJohnson 57 -58 emphasized theroleofthermoregulatoryincreasesinskinbloodflowinproducingcardiovasculardrift.oweverlaterauthors(e.g.,59-61)havedescribed,aspartofthepictureofcardiovascular drift,anupwardcreepincoretemperature,whichmay beginonlyafteraperiodofapparentthermalsteadystate(e.g.,after30-60minofexercise).nsomeofthesestudies,mostbu tno tallofthechangesincardiovascularandthermoregulatory responsescouldbe preventedby replacingfluidlostinsweat,suggestingthatthesechangesweremostlysecondary tochangesinplasmavolumeandosmolality andplasmaduetosweating.therfactorsthatmay affect

  • 7/30/2019 fisiologa en ambientes calurosos

    28/80

    HumanAdaptationtoHotEnvironments(TMM)/20/975cardiovascularandthermoregulatoryfunctionduringprolongedexerciseincludechangesinmyocardialfunction (c.f.Tibbits,62);changesinbaroreceptorsensitivity or peripherala-adrenergicreceptorresponsiveness(seeRaven63);oranupwardadjustmentof thethermoregulatorysetpoint64 ,presumablyduetosomesortofinflammatoryresponse,andperhapselicitedby productsofmuscleinjury64 .heseeffectshaveno tbeeninvestigatedextensively,andverylittleisknownabouttheunderlying physiologicalorpathologicalmechanisms.Someoftheseeffectshavebeenreported onlyafterseveralhoursofexerciseornearexhaustion,andlittleisknownabouttheconditionsofexercise durationandintensity requiredtoproducethem,andtheirpersistenceaftertheendofexercise.lthoughtheirfunctionalsignificanceis,asyet,onlypoorly understood,thesechangesmay be importantinlimiting performanceduringprolongedstrenuousactivity,suchasforcedmarches.

    FACTORS THAT ALTER HEAT TOLERANCE

    HeatAcclimatization

    Prolongedorrepeatedexposuretostressfulenvironmentalconditionselicitssignificantphysiological changes,calledacclimatization ,whichreducethephysiologicalstrainthatsuchconditionsproduce.(Thenearlysynonymoustermacclimationisoftenappliedtosuchchangesproducedinacontrolledexperimentalsetting 12.)Figure4illustratesthedevelopmentof thesechangesduringa10-day programofdailytreadmillwalksintheheat.Overthe10days,heartrateduringexercisedecreasedby about40beats/min,andrectalandmeanskintemperaturesduringexercisedecreasedmorethanC .Sinceskintemperatureislowerafterheatacclimatizationthanbefore,dry(non-evaporative)heatlossisless(or,if theenvironmentiswarmerthantheskin,dryheatgainisgreater).Tocompensatefo rthechangesindryheatexchange,evaporativeheatloss,andthussweating,increases.Thelowerheartrateandcoretemperatureandhighersweatrateduring exercise-heat stressare thethreeclassicalsignsofheatacclimatization.therchangesincludeanincreasedability tosustainsweatproductionduringprolongedexercise-heatstress,whichisessentialtoincreasing tolerancetime;decreased soluteconcentrationsinsweat;redistributionofsweatingfrom trunktolimbs;increasesintotalbodywaterandchangesinitsdistribution;metabolicandendocrinechanges;andotherpoorlyunderstoodchangesthatprotectagainstheatillness.Theoveralleffectofheat

  • 7/30/2019 fisiologa en ambientes calurosos

    29/80

    HumanAdaptationtoHotEnvironments(TMM)20/976acclimatizationonperformancecanbequitedramatic,sothatacclimatizedsubjectscaneasilycompleteexerciseintheheatwhichpreviously wasdifficultorimpossible(cf.65).

    At anygivenair temperature,increasing thehumidity impedesevaporationofsweat(Eq.6).oallow sweattoevaporaterapidlyenoughtomaintainheatbalance,thewettedareaofskinmustincrease.Thedistributionofsweatingmay changetoallowmoreof theskinsurfaceareatobewetted,bu twetterskinalsofavorsdevelopmentofhidromeiosis,limiting tolerance timeby hamperingmaintenanceofhighsweatrates.Althoughheatacclimatizationinadryenvironmentconfersasubstantialadvantageinhumidheat6667,acclimatizationinhumidheatproducessomewhatdifferentphysiologicaladaptations,correspondingtothecharacteristicphysiologicalandbiophysicalchallengesofhumidheat.

    AcquisitionandLoss

    Adegreeofheatacclimatizationisproduced eitherby heatexposurealoneorby regularstrenuous exercise,whichraisescoretemperatureandprovokesheat-lossresponses.ndeed,thefirstsummerheatwaveproducesenoughheatacclimatizationthatafterafew daysmostpeoplenoticeanimprovementintheirfeelingsofenergyandgeneralwellbeing.However,theacclimatization responseisgreaterifheatexposureandexercisearecombined,causingagreaterriseof internaltemperatureandmoreprofusesweating.ptoapointthedegreeofacclimatizationacquiredisproportionaltothedailyheatstressandtheamountof sweatsecretedduring acclimatization 68,bu tfulldevelopmentofexercise-heatacclimatization doesno trequirecontinuousheatexposure.Continuous,daily100-minperiodsofheatexposurewithexerciseare widelyconsideredsufficienttoproducean optimalheatacclimatizationresponseindryheat.oweverthisnotionisbasedchieflyononestudy69 ,inwhichsubjects'responseswereevaluatedonly during00-minheatexposures,whichprovidelittleinformationabouttheirabilitytosustainheat-lossresponsesovertime.nadequateassessmentofheattolerancemay,infact,requireaexposurelastingseveralhours.orexample,StrydomandWilliams comparedresponsesof tw ogroupsofsubjectsduring fourhoursofexerciseinhumidheat.Althoughthegroups'responseswereindistinguishable duringthefirsthour,theresponsesof themoreheat-tolerant groupwereclearlydifferentfromthoseofthelessheat-tolerantgroupduringthethirdandfourthhours.

  • 7/30/2019 fisiologa en ambientes calurosos

    30/80

    HumanAdaptationtoHotEnvironments(TMM)/20/977Severalfactorsaffectthespeedofdevelopmentofheatacclimatization.However,mostof the

    improvementinheartrate,skinandcoretemperatures,andsweatratetypicallyisachievedduringthefirstweekofdailyexerciseinaho tenvironment,although thereisnosharpendtotheimprovement7 1 .Heartrateshowsthemostrapidreduction

    7274,mostofwhichoccursinfourtofivedays72 .Aftersevendays,thereductioninheartrateis

    virtuallycompleteandmostof theimprovementinskinandcoretemperatureshasalsooccurred 73 - 75;andthethermoregulatoryimprovementsare generallybelievedtobecompleteafter10-14daysofexposure65.Theimprovedsweating response7275andeaseofwalking7375reportedduringheatacclimatizationmay takeamonthtodevelopfully,andresistancetoheatstrokemay takeuptoeightweeks76 .Experimental heatacclimation developsmorequicklyinwarmweather67,probablybecausesubjectsarealreadypartlyacclimatized.

    Highaerobicfitnesshastensdevelopmentofacclimatization7377.erobic exerciseelevatescoretemperatureandelicitssweating eveninatemperateenvironment,andaerobictrainingprogramsinvolvingexercis'eat70% ofmaximaloxygenuptake(V o 2max)or more7879producechangesinthecontrolofsweatingsimilartothoseproducedby heatacclimatization.herehas,however,beenmuchdisagreement astowhetherorno taerobictraininginatemperateenvironmentinducestrueheatacclimatization.Inacriticalreviewoftheevidenceandargumentsonbothsidesof theissue,GisolfiandCohen80concludedthatexercisetrainingprogramslastingtw omonthsormoreinatemperateenvironmentproducesubstantialimprovementinexercise-heat tolerance.oweverexercisetrainingaloneno tbeenshowntoproduceamaximalstateofexercise-heattolerance.

    Thebenefitsofacclimatizationarelessenedorundoneby sleeploss,infection,andalcoholabuse72 - 81,saltdepletion 72 ,anddehydration72 - 82 - 83 .ea tacclimatizationgraduallydisappears withoutperiodicheatexposure,althoughpartiallossesdu etoafew days'lapseareeasilymadeup 81.Theimprovementinheartrate,whichdevelopsmorerapidly,alsoislostmorerapidlythanare thethermoregulatoryimprovements69 - 77 - 84 - 85 .Howeverthereismuchvariabilityinhowlongacclimatizationpersists.nonestudy,forexample,acclimatizationalmostcompletely disappearedafter7dayswithoutheatexposure86 ;bu tinanotherstudy,approximately threequartersoftheimprovementinheartrateandrectaltemperaturewasretainedafter1 8 dayswithoutheatexposure 77.Physicallyfit subjectsretainheatacclimatizationlonger66 -77;andwarmweathermay67ormay not85favorpersistenceofacclimatization,althoughintermittentexposure tocoldseemsnottohastenthelossofheatacclimatization 87.

  • 7/30/2019 fisiologa en ambientes calurosos

    31/80

    HumanAdaptationto Hot Environments(TMM)8/20/978ChangesinThermoregulatoryResponses

    Afteracclimatization,sweatingduringexercise startsearlierandthecoretemperaturethresholdfo rsweating islowered.cclimatizationalsoincreasesthesweatglands'responsetoagivenincrementincoretemperature andalsotheirmaximum sweatingcapacity.heselatterchangesreflectchangesintheindividualglandsrather thaninthenervoussignalsto theglands,sinceafteracclimatizationtheglandsalsoproducemoresweatwhenstimulatedwithmethacholine 88 '89 ,which mimicstheeffectofacetylcholine.

    Inan unacclimatizedperson,sweatingismostprofuseon thetrunk;butduringacclimatizationin humidheat,thefraction ofsweatsecretedon thelimbsincreases9093,enablingan acclimatizedpersonto makebetteruseoftheskinsurfacefo revaporationandachievehigherratesofevaporativeheatloss.uringaheatstresslastingseveralhours,sweatratesthatwerehigh initially tendgraduallyto declineastheheatstresscontinues.houghseveralmechanismsmay contributeto thedecline,much of thedeclineisdueto hidromeiosis,associatedwithwetnessof theskin,andthedeclineismostpronouncedinhumidheat.fteracclimatizationto humidheat,thisdeclineofsweatrateoccursmoreslowly68(Fig.5),sothathighersweatratescanbe sustainedandtolerancetimeisprolonged.hi seffectofacclimatizationappearsto ac tdirectly on thesweatglandsthemselves,andduringacclimatizationtodryheatitcanbe producedselectively on on earm by keepingthat arminahumidmicroclimateinsideaplasticbag94 .

    Sinceheatacclimatizationisan exampleofaset-pointchange4 - 95 ,thresholdsfo rsweatingandcutaneousvasodilationbotharereducedin suchaway thatvasodilation andtheonsetofsweating accompanyeachotherafteracclimatizationin thesameway asbefore 96,andheattransferfromcoretoskinismaintained at thelowerlevelsofcoreandskintemperaturethatprevailafteracclimatization.hesechangesby themselves say nothingabouttheeffectofacclimatizationon thelevelsofskinbloodflow reachedduringexercise-heat stress.nmanystudies(e.g.,56 - 97 ,especially thoseusingdry heat,heatacclimatizationwasfound to widenthecore-to-skintemperaturegradient,presumablyallowing heatbalance to be reached withalowerlevelofskinbloodflow andalessercardiovascularstrain.owever,suchawidening of thecore-to-skin temperaturegradientdoesnotalwaysaccompanyacclimatization(e.g.,73 ).

  • 7/30/2019 fisiologa en ambientes calurosos

    32/80

    HumanAdaptationtoHotEnvironments(TMM)/20/979Non-T/termoregulatoryCh anges

    On thefirstdayofexerciseintheheat,heartratereachesmuchhigherlevelsthanintemperateconditions(Fig.4) ,andstrokevolumeislower.Thereafter,heartratedecreases(Fig.4)andstrokevolumeusually,bu tnotalways,increases.rthostatictolerancealsoimproveswithheatacclimatization95 .everalmechanismsparticipateinthesechanges,buttheirrelativecontributionsare no tknownandprobably vary.lasmavolumeatrestexpandsduringthefirstweekofacclimatizationandcontributestothereductioninheartrateandcirculatorystrain;howeverifacclimatization continues,plasmavolumeatrestreturnstowardcontrollevelsafteraweekortw o74 '98 " 100 ,whiletheimprovementsincardiovascular functionpersist.naddition,itislikely thatadecreaseinperipheralpoolingofbloodhelpstosupportcardiovascular functioninacclimatizedsubjects.Whenitoccurs,adecreaseinskinbloodflow (allowedby awidenedcore-to-skintemperature gradient)presumablydecreasesperipheral poolingofblood.Inaddition,anincreaseinvenoustonemightsubstantiallydecreasepooling ofblood,sincevenoconstriction canmobilizeup to25% of thebloodvolume98 .heinformationavailableaboutsuchchanges'01" 103 ,however,isvery limitedandisfa rfrombeingconclusive.

    Heatacclimatizationincreasestotalbody water,bu tthereismuchvariabilitybothinthetotalincreaseandinitsdistributionamongthevariousfluidcompartments95 . uchoftheincreaseisaccountedfo rby anexpansionofplasmavolumeatrest,whichdevelopsrapidlyatfirstandcontinuesmoreslowlyforaboutaweek.Theresultingincreaseinbloodvolumerangesfromof1 2 to27% 1 04 .Themechanismsresponsiblefo rthisexpansionare unclear,butmayincludeanincreaseinextracellularfluidrangingfrom6 to6% 104duetosaltretention,andane tfluidshiftfrominterstitialspacetoplasma,duetoanincreaseinthemassofproteinintheplasma105 - 106.

    Atthestartofacclimatization,secretionofadrenocorticotrophic hormone(ACTH)increasesinresponse tothecirculatory straincausedbyheatstress.he adrenalcortexrespondstoACTHby increasing secretionofcortisolandaldosterone.fsaltintakeisinsufficienttoreplacelossesinsweat,theresultingsodiumdepletionalsoactsviatherenin-angiotensin systemtoincreasealdosteronesecretion.ortisolandaldosteronebothcontributetosodiumretentionbythekidneyswithinafew hours,andby thesweatglandsafter to2days.xerciseandheatstressalsoelicitsecretionofaldosterone 107108throughtherenin-angiotensinsystem.Withinafewdaysthesodium-conservingeffectsofaldosteronesecretedviathispathway are sufficientto restoreandmaintainsodiumbalance,andACTHsecretionreturnstonormal.ependingonsodiumintake,thekidneysmay eventually"escape" the

  • 7/30/2019 fisiologa en ambientes calurosos

    33/80

    HumanAdaptationtoHo tEnvironments(TMM)/20/970effectsofaldosteroneandexcreteasmuchsodiumasneededtomaintainsodiumbalance.he sweatglands,however,do no tescape,butcontinuetoconservesodiumaslongasacclimatization persists.

    Anunacclimatizedpersonmay secretesweatwithasodiumconcentration ashighas60mEq/L,correspondingto3.5gofNaClpe rliter,andcanloselargeamountsofsaltinthesweat(Fig.6).Withacclimatization,thesweatglandsconservesodiumby secreting sweatwithasodiumconcentration aslowas5 mEq/L27 .cclimatized men inwhom sodiumconservationismaximallydevelopedcansweatup to9literspe rday andstayinsaltbalanceon5 gramsofNaClpe rday109110.Maximaldevelopmentofsodium-conservingcapacity wasaccomplishedwithaprogramthatcombinedgradualreductionofdietarysodiumintakewithdailyexerciseintheheat.owevermostCaucasianswhoare no tsecretinglargevolumesofsweatandareinsaltbalancewithan intakeof10gNaClpe rday(a typicalintakeforawesterndiet)havehighsweatsodium concentrations'".fsuddenlyrequiredtosecretelargevolumesofsweat,they may undergoasubstantialne tlossofsodium beforetheirmechanismsforsodium conservationbecomefullyactive.hereforesubjectswho areexercisinginahot environmentandareeitherunacclimatized or notconsuminganormaldietshould receive10gramsofsupplementalsaltpe rdayunlesswaterisinshortsupply 1".Howeversaltsupplementsareno trecommendedfo racclimatizedsubjectsperformingheavy exerciseintheheatif they are eatinganormaldietandare notsaltdepleted.

    The mineralocorticoids aldosteroneanddesoxycorticosterone havebeenadministered tosubjectsjustbeforeorduringheatacclimatization programs98104"2"3.Mineralocorticoidadministrationproducedsomeresponsescharacteristicofheatacclimatization,bu tneitherproducedastateequivalenttowhatthesubjectsattainedasaresultofundergoingheatacclimatization,norreducedthetimenecessary toreachthatstate.oweverbecauseof theway thesestudiesweredesigned,theirresultsdonotsupportdefiniteconclusionsabouttheroleofendogenousaldosteroneinheatacclimatization95.

    EffectsonHeatDisorders

    Theharmfuleffectsofheatstressoperatethrough cardiovascularstrain,fluidandelectrolyteloss,and,especiallyinheatstroke,tissueinjurywhosemechanismisnotwellunderstood bu tevidentlyinvolvesmorethansimplyhightissuetemperatures(seeHubbard,"4andGaffin,Hubbard,andWenger'schapterfo rfurtherdiscussion).

  • 7/30/2019 fisiologa en ambientes calurosos

    34/80

    HumanAdaptationtoHotEnvironments(TMM)/20/971Heatsyncopeisatemporarycirculatoryfailureduetopoolingofbloodintheperipheralveinsandthe

    resultingdecreaseindiastolicfillingof theheart.lthoughalargeincreaseinthermoregulatory skinbloodflowisthedirectcauseof theperipheralpooling,aninadequatebaroreflexresponseisprobablyanimportantcontributingfactor.ea tacclimatization rapidly reducessusceptibility toheatsyncope,asexpectedfromtheimprovementinorthostatictolerance1 01"-"6,notedearlier.

    Likeheatsyncope,heatexhaustionisthoughttoresultfromadecreaseindiastolicfilling.owever,dehydrationwithresulting hypovolemia hasamajorroleinthedevelopmentofheatexhaustion;andthebaroreflexresponsesusually arestrongenoughtopreventsyncope,andalsoaccountfo rmuchof thesymptomatology.ittleisknownabouttheeffectofacclimatization onsusceptibility toheatexhaustion.

    Heatstrokeisthemostsevereheatdisorder,andwithoutpromptappropriatetreatment,mortalitymay be high.Victimsoftheexertionalform,inwhichahighrateofmetabolicheatproductionisaprimary pathogenic factor,typicallyare athletesor military personnelespecially recruits.uringthesecondWorldWar,theincidence offatalheatstrokewaslowaftereightweeksoftraining76,by whichtimetherecruitswerewellacclimatized.Muchoftheprotectiveeffectofacclimatization presumablyowestothermoregulatoryimprovement,bu tacclimatizationandphysicalconditioningmay alsoprotectinwaysthatare poorlyunderstood,sincesomelong-distance runnerstoleratehighcoretemperatureswithoutapparentilleffect(e.g., 117118).

    Asmallproportionofapparently healthyindividualscannotacclimatizetoheat"9120.nSouthAfricangoldminingrecruits(thepopulationstudiedmostextensivelyinthisregard)individualswhodo no tacclimatizeare,onaverage,smaller,older,andlessaerobicallyfitthanthosewhodo 120.

    PhysicalFitness,Age,Drugs,andDisease

    Lowphysicalfitness,variousdiseases,andageingdecreaseheattoleranceandthesensitivityofthesweatingresponse. anydrugsinhibitsweating,mostprominently thoseusedfo r theiranticholinergiceffects,suchasatropineandscopolamine.ntramuscularinjectionof2mg atropine(thedoseinoneautoinjectorforacutetreatmentofexposuretonerveagent)inhibitssweatingsufficiently tocauseanoticeableimpairmentofthermoregulationduringwalkingindryheat121.omedrugsusedforotherpurposes,suchasglutethimide(asleep

  • 7/30/2019 fisiologa en ambientes calurosos

    35/80

    HumanAdaptationtoHotEnvironments(TMM)/20/972medicine),tricyclicantidepressants,andphenothiazines(tranquilizersandantipsychoticdrugs)alsohavesomeanticholinergic action;andallof these,plusseveralothers,havebeenassociated withheatstroke 122123. 30-mg oraldoseofpyridostigminebromide(thedosegiventhricedailyforpre-treatment againstnerveagent)reducedthermoregulatoryvasodilationduringmoderate exerciseinawarmenvironment124 ,andmay potentiallyimpairthermoregulationundermoresevereheat-stressconditions.

    Neurologicaldiseasesinvolvingthethermoregulatory structuresinthebrainstemcanimpairthermoregulation.lthoughhypothermia may result,hyperthermiaismoreusual,andtypicallyisaccompaniedby lossofsweatingandthecircadianrhythm.Severalskindiseasesimpairsweatingsufficientlythatheatexposure,especially combinedwithexercise,may producedangerouslyhighbodytemperatures.Ichthyosisandanhidroticectodermaldysplasiacanprofoundlylimittheabilitytothermoregulateintheheat.Inaddition,heatrash(miliariarubra)125andevenmildsunburn126impairsweatingandmayreducetolerancetoexerciseintheheat.he thermoregulatory effectsofheatrashmay persistforaweekorlongeraftertheappearanceoftheskinhasreturnedtonormal125 .

  • 7/30/2019 fisiologa en ambientes calurosos

    36/80

    References,HumanAdaptation to Hot Environments(TMM)/19/97 Bibliography

    1 .MoritzAR ,HenriquesFC ,Jr .Studiesof thermalinjury II.The relativeimportanceoftimeandsurfacetemperaturein thecausationofcutaneous burns.AmJPathol.947;23:695-720.

    2.DuBoisEF .FeverandtheRegulation ofBodyTemperature.pringfield,IL :C.C.Thomas;948.

    3 .AschoffJ,WeverR.KernundSchaleimWrmehaushaltdesMenschen.Naturwissenschaften.958;45:477-485.

    4 .GisolfiCV ,WengerCB.Temperatureregulationduring exercise:old concepts,new ideas.ExercSportSeiRev .1984;12:339-372.

    5.HessemerV ,BrckK.Influenceofmenstrualcycleon shivering, skinbloodflow,andsweating responsesmeasuredatnight.JApplPhysiol.985 ;59:1902-1910.

    6.KolkaMA.Temperatureregulationinwomen.MedExercNutrHealth.992;1:201-207.

    7.HenselH. Neuralprocessesin thermoregulation.PhysiolRev.1973;53:948-1017.

    8.SawkaMN,WengerCB. Physiologicalresponsestoacuteexercise-heatstress.In: PandolfKB,SawkaMN,GonzalezRR,eds.HumanPerformancePhysiologyandEnvironmental MedicineatTerrestrialExtremes.Indianapolis:BenchmarkPress;1988:97-151.

    9.HardyJD .Physiologyof temperatureregulation.PhysiolRev.961;41:521-606.

    10.HenselH.ThermoreceptionandTemperatureRegulation. New York:AcademicPress;981:18-32.

  • 7/30/2019 fisiologa en ambientes calurosos

    37/80

    References,HumanAdaptationto Hot Environments(TMM)/19/9711.HenselH.ThermoreceptionandTemperatureRegulation.New York:AcademicPress;1981:33-63.

    12.BlighJ,JohnsonKG.Glossary of termsfo rthermalphysiology.JApplPhysiol.973;35:941-961.

    13 .GaggeAP,Hardy JD ,RappGM.Proposed standard system ofsymbolsfo rthermalphysiology.J ApplPhysiol.1969;27:439-446.

    14.JamesWPT.FromSDA toDITtoTEF.In:Kinney JM ,TuckerHN,eds.EnergyMetabolism:TissueDeterminantsandCellularCorollaries.New York:RavenPress;992:163-186.

    15.WebbP. HumanCalorimeters.NewYork:Praeger;985.

    16.FerranniniE. Equationsandassumptionsofindirectcalorimetry:somespecialproblems.In: KinneyJM ,TuckerHN,eds.EnergyMetabolism:TissueDeterminants andCellularCorollaries. New York:RavenPress;992:1-17.

    17.strandP-O,RodahlK.TextbookofWorkPhysiology.New York:McGraw-Hill;1977:523-576.

    18.KunoY.HumanPerspiration.Springfield,IL :C.C.Thomas;956:3-41.

    19.GaggeAP,GonzalezRR.Mechanismsofheatexchange:biophysicsandphysiology.In: FreglyMJ, Blatteis CM,eds.HandbookofPhysiology.Section4 .Environmental Physiology.New York:OxfordUniversityPressfo rtheAmericanPhysiologicalSociety;1996:45-84.

    20 .FroeseG,BurtonAC .Heatlossesfrom thehumanhead.JApplPhysiol.957;10:235-241.

    21 .WengerCB,SanteeWR.Physiologicalstrainduringexercise-heat stressexperiencedbysoldierswearing

  • 7/30/2019 fisiologa en ambientes calurosos

    38/80

    References,HumanAdaptationto HotEnvironments(TMM)/19/97candidatechemicalprotectivefabricsystems.Natick,MA:U.S.Army ResearchInstituteofEnvironmentalMedicine;1988.SARIEM TechnicalReportT16/88.

    22 .Hurley HJ ,Shelley WB.TheHumanApocrineSweatGlandin Health andDisease.Springfield,IL :C .C .Thomas;960:6-26.

    23 .KunoY.HumanPerspiration.Springfield,IL:C.C.Thomas;956:42-97.

    24 .Eichna LW ,AsheWF,BeanWB,Shelley WB.The upperlimitsofenvironmentalheatandhumiditytoleratedby acclimatizedmen workinginhot environments.JIndustHygToxicol.945;27:59-84.

    25 .LadellWSS.Thermalsweating.BritMedBull.945;3:175-179.

    26 .KunoY.HumanPerspiration.Springfield,IL :C.C.Thomas;956:251-276.

    27 .RobinsonS,RobinsonAH.Chemicalcompositionofsweat.PhysiolRev.1954;34:202-220.

    28. strandP-O,RodahlK.TextbookofWorkPhysiology.New York:McGraw-Hill;977:129-140.

    29 .RowellLB .Cardiovascularaspectsofhumanthermoregulation.Circulation Res .983;52:367-379.

    3 0.RowellLB .Cardiovascularadjustmentsto thermalstress.In:Shepherd JT ,Abboud FM,eds.Handbook ofPhysiology,section2:TheCardiovascularSystem,ol3 eripheralCirculation andOrganBloodFlow.Bethesda,MD:Am .Physiol.Soc.983:967-1023.

    3 1.RowellLB .Cardiovascularadjustments to hyperthermia andexercise.In:ShirakiK,YousefMK,eds.Man in

  • 7/30/2019 fisiologa en ambientes calurosos

    39/80

    References,HumanAdaptationto HotEnvironments(TMM)/19/97StressfulEnvironments:ThermalandWork Physiology.Springfield,IL :C.C.Thomas;1987:99-113.

    3 2.Fox RH ,EdholmOG.Nervouscontrolof thecutaneouscirculation.BritMedBull.963;19:110-114.

    3 3 .RowellLB .Activeneurogenic vasodilatationinman.In :VanhouttePM ,LeusenI,eds.Vasodilatation.NewYork:Raven;981:1-17.

    3 4 .RoddieIC .Circulation toskinandadiposetissue.In:ShepherdJT ,AbboudFM,eds.Handbook of Physiology,section2:heCardiovascular System,ol 3PeripheralCirculation andOrganBloodFlow.Bethesda,MD:Am.Physiol.Soc.983:285-317.

    3 5.LoveAHG,ShanksRG .The relationshipbetweentheonsetofsweatingandvasodilatation inth eforearmduringbodyheating.JPhysiol,London.962;162:121-128.

    3 6.JohnsonJM ,ProppeDW.Cardiovascularadjustmentsto heatstress.In:Fregly MJ, BlatteisCM,eds.Handbookof Physiology.Section4.EnvironmentalPhysiology. New York:OxfordUniversityPressfo rtheAmericanPhysiologicalSociety;996:215-243.

    3 7.SawkaMN,WengerCB, PandolfKB.Thermoregulatoryresponsesto acuteexercise-heatstressandheatacclimation.In:FreglyMJ, BlatteisCM,eds.Handbookof Physiology.Section4.EnvironmentalPhysiology.NewYork:OxfordUniversityPressfo rtheAmericanPhysiological Society;996:157-185.

    3 8.CabanacM.Physiologicalroleofpleasure.Science.971;173:1103-1107.

    3 9.HardyJD .Thermalcomfort:Skintemperatureandphysiologicalthermoregulation.In:HardyJD ,GaggeAP,Stolwijk JAJ,eds.PhysiologicalandBehavioralTemperatureRegulation.Springfield, IL :Chas.C.Thomas;

  • 7/30/2019 fisiologa en ambientes calurosos

    40/80

    References,HumanAdaptationtoHotEnvironments(TMM)/19/971970:856-873.

    40.CunninghamDJ,StolwijkJAJ,WengerCB.Comparativethermoregulatory responsesofrestingmen andwomen.JApplPhysiol.978;45:908-915.

    41.BoulantJA .Hypothalamicneuronsregulatingbody temperature.In:FreglyMJ,BlatteisCM,eds.Handbook ofPhysiology.Section4.EnvironmentalPhysiology. New York:OxfordUniversityPressfo rtheAmericanPhysiologicalSociety;996:105-126.

    42.JessenC.Interactionofbodytemperaturesincontrolofthermoregulatoryeffectormechanisms.In:FreglyMJ, BlatteisCM,eds.Handbook of Physiology.Section4.Environmental Physiology.New York:OxfordUniversityPressfortheAmericanPhysiologicalSociety;996:127-138.

    43 .StolwijkJAJ,NadelER .Thermoregulationduringpositiveandnegativeworkexercise.FederationProc. 1973;32:1607-1613.

    44 .V an BeaumontW,BullardRW .Sweating:itsrapidresponseto muscular work.Science.963;141:643-646.

    45.CrockfordGW,HellonRF ,ParkhouseJ.Thermalvasomotorresponsesinhumanskinmediatedby localmechanisms.JPhysiol,London.962;161:10-20.

    46.WengerCB,Stephenson LA ,DurkinMA.Effectofnerveblockon responseofforearmbloodflow tolocaltemperature.JApplPhysiol.986;61:227-232.

    47.KunoY.HumanPerspiration.Springfield,IL :C.C.Thomas;956:277-317.

  • 7/30/2019 fisiologa en ambientes calurosos

    41/80

    References,HumanAdaptationtoHotEnvironments(TMM)/19/9748.BrownWK,SargentF,II.Hidromeiosis.ArchEnvironHealth.965;11:442-453.

    49.NadelER ,StolwijkJAJ.Effectofskinwettednesson sweatglandresponse.JApplPhysiol.973;35:689-694.

    50.DobsonRL, FormisanoV ,LobitzWC,Jr.,BrophyD.Somehistochemicalobservationson thehumaneccrinesweatglands.III.The effectofprofusesweating.JInvest Dermatol.958;31:147-159.

    51.LindAR.A physiologicalcriterionforsettingthermalenvironmentallimitsforeverydaywork.JApplPhysiol.1963;18:51-56.

    52 .NielsenM.DieRegulationderKrpertemperaturbe iMuskelarbeit.SkandArch Physiol.938;79:193-230.

    53 .BurchGE, DePasqualeNP.Hot Climates,Man andHis Heart.pringfield,IL:C.C.Thomas;962.

    54 .RowellLB.Competitionbetweenskinand musclefo rbloodflow during exercise.In: NadelER ,ed.ProblemswithTemperatureRegulation DuringExercise.New York:AcademicPress;977:49-76.

    55 .WengerCB.Non-thermalfactorsare importantinthecontrolofskinbloodflow duringexerciseonly underhigh physiologicalstrain.YaleJBiolMed.986;59:307-319.

    56 .EichnaLW ,ParkCR, NelsonN,HorvathSM,PalmesED .Thermalregulationduringacclimatizationin ahot,dry(deserttype)environment. AmJPhysiol.950;163:585-597.

    57 .RowellLB. Humancardiovascularadjustmentstoexerciseandthermalstress.PhysiolRev .974;54:75-159.

    58 .JohnsonJM ,RowellLB.Forearmskinand musclevascularresponsesto prolongedlegexerciseinman.JAppl

  • 7/30/2019 fisiologa en ambientes calurosos

    42/80

    References,HumanAdaptation toHot Environments(TMM)/19/97Physiol.975;39:920-924.

    59 .HamiltonMT,Gonzalez-AlonsoJ, MontainSJ ,CoyleEF .Fluidreplacementandglucoseinfusionduringexercisepreventcardiovasculardrift.JApplPhysiol.991;71:871-877.

    60 .MontainSJ,CoyleEF .Influenceofgradeddehydrationon hyperthermia andcardiovasculardriftduringexercise.JApplPhysiol.992;73:1340-1350.

    61 .ShaffrathJD ,AdamsWC.Effectsofairflow and workloadon cardiovasculardriftandskinbloodflow.JApplPhysiol.984;56:1411-1417.

    62 .TibbitsGF.Regulation ofmyocardialcontractility inexhaustiveexercise.MedSeiSportsExerc.1985;17:529-537.

    63 .RavenPB ,StevensGHJ.Cardiovascularfunctionand prolongedexercise.In:LambDR, MurrayR,eds.Prolonged Exercise.Indianapolis:BenchmarkPress;1988:43-74.

    64 .HaightJSJ,KeatingeWR.Elevationinse tpointforbodytemperatureregulationafterprolongedexercise.JPhysiol,London.973;229:77-85.

    65 .PandolfKB,YoungAJ. Environmentalextremes andenduranceperformance. In :ShephardRJ, strandPO ,eds.EnduranceinSport.Oxford:BlackwellScientific Publications;1992:270-282.

    66 .BeanWB,EichnaLW .Performancein relationtoenvironmentaltemperature.Reactions ofnormalyoungmen tosimulateddesertenvironment. FederationProc.943;2:144-158.

  • 7/30/2019 fisiologa en ambientes calurosos

    43/80

    References,HumanAdaptation toHotEnvironments(TMM)/19/9767 .EichnaLW ,BeanWB,AsheWF,Nelson N.Performanceinrelation toenvironmentaltemperature.Reactionsofnormalyoungmen to hot,humid(simulated jungle)environment.BullJohnsHopkins Hosp.945;76:25-58.

    68 .Fox RH,Goldsmith R, KiddDJ,LewisHE. Acclimatizationtoheatinman by controlledelevationofbodytemperature.JPhysiol,London.963;166:530-547.

    69 .LindAR,BassDE.Optimalexposure timefo rdevelopment ofacclimatization toheat.FederationProc.1963;22:704-708.

    70.StrydomNB,WilliamsCG.Effectofphysicalconditioningon stateofheatacclimatizationofBantulaborers.JApplPhysiol.969;27:262-265.

    71.AdolphEF .Lifein deserts.In :VisscherMB,BronkDW,LandisEM ,IvyAC ,eds.PhysiologyofManintheDesert.NewYork:Interscience;947:326-341.

    72 .MachleW,HatchTF.Heat:man'sexchangesandphysiologicalresponses.PhysiolRev .947;27:200-227.

    73 .RobinsonS,TurrellES ,BeidingHS,HorvathSM.Rapidacclimatization to work inhotclimates.Am JPhysiol.1943;140:168-176.

    74 .WyndhamCH,BenadeAJA,WilliamsCG ,Strydom NB,GoldinA, HeynsAJA.Changesincentralcirculationandbodyfluidspacesduringacclimatizationtoheat.J ApplPhysiol.968;25:586-593.

    75 .HorvathSM,Shelley WB. Acclimatizationtoextremeheatanditseffecton theabilitytoworkinlesssevereenvironments.AmJ Physiol.946 ;146 :336-343 .

  • 7/30/2019 fisiologa en ambientes calurosos

    44/80

    References,HumanAdaptation toHot Environments(TMM)/19/9776.Schickele E.Environmentandfatalheatstroke.MilitSurg.947;100:235-256.

    77 .PandolfKB,BurseRL,GoldmanRF.Roleofphysicalfitnessin heatacclimatisation,decay andreinduction.Ergonomics.977;20:399-408.

    78 .HenaneR, FlandroisR, CharbonnierJP .Increaseinsweatingsensitivityby enduranceconditioninginman.JApplPhysiol.977;43:822-828.

    79 .NadelER ,PandolfKB,RobertsMF,StolwijkJAJ.Mechanismsof thermalacclimationtoexerciseandheat.JApplPhysiol.974;37:515-520.

    80 .GisolfiCV ,CohenJS .Relationshipsamongtraining,heatacclimation,andheattolerancein men andwomen:thecontroversyrevisited.MedSeiSports.979;11:56-59.

    81 .BassDE.Thermoregulatoryandcirculatoryadjustmentsduringacclimatization toheatinman.In:Hardy JD ,ed .Temperature,ItsMeasurementandControlinScience andIndustry,ol,part3,Biology andMedicine.New York:Reinhold;963:299-305.

    82 .SawkaMN,TonerMM,FrancesconiRP, PandolfKB.Hypohydrationandexercise:effectsofheatacclimation,gender,andenvironment.JApplPhysiol.983 ;55:1147-1153.

    83 .Senay LC ,Jr .Plasmavolumesandconstituents ofheat-exposedmen beforeandafteracclimatization.JApplPhysiol.1975;38:570-575.

    84 .RogersGG.Lossofacclimatizationtoheatinman duringperiodsof no heatexposure.So AfrMedJ1977;52:412(Abstract)

  • 7/30/2019 fisiologa en ambientes calurosos

    45/80

    References,HumanAdaptationtoHot Environments(TMM)/19/97085 .WilliamsCG ,WyndhamCH,Morrison JF .Rateof lossofacclimatization insummerandwinter.JApplPhysiol.967;22:21-26.

    86.ClelandTS,HorvathSM ,PhillipsM.Acclimatizationofwomentoheataftertraining.IntZAngewPhysiol. 1969;27:15-24.

    87 .SteinHJ,EliotJW ,BaderRA .Physiological reactionstocoldandtheireffectson theretentionofacclimatizationto heat.JApplPhysiol.949;1:575-585.

    88 .CollinsKJ,CrockfordGW,WeinerJS .The localtraining effectofsecretory activityon theresponseofeccrinesweatglands.JPhysiol,London.966;184:203-214.

    89 .KraningKK,LehmanPA ,GanoRG,WellerTS.Anon-invasivedose-response assayofsweatglandfunctionanditsapplicationinstudiesofgendercomparison,heatacclimationandanticholinergic potency.In:MercerJB ,ed.ThermalPhysiology1989.Amsterdam:Elsevier;989:301-307.

    90 .Fox RH,GoldsmithR, HamptonIFG,LewisHE.The natureof theincreaseinsweatingcapacityproducedbyheatacclimatization.JPhysiol,London.964;171:368-376.

    91 .HflerW.Changesinregionaldistributionofsweatingduringacclimatization to heat.JApplPhysiol. 1968;25:503-506.

    92 .LaaserU .PhysiologischeReaktionen whrendeinesfnfwchigenDaueraufenthaltesineinemknstlichenfeuchtheienKlima.IntZAngewPhysiol.968;25:279-302.

    93 .ShvartzE,BhattacharyaA,SperindeSJ ,BrockPJ ,SciaraffaD, V an BeaumontW.Sweatingresponsesduring

  • 7/30/2019 fisiologa en ambientes calurosos

    46/80

    References,HumanAdaptationtoHo tEnvironments(TMM)/19/971heatacclimationandmoderate conditioning.JApplPhysiol.979;46:675-680.

    94 .Fox RH, GoldsmithR,HamptonIFG,HuntTJ .Heatacclimatization by controlled hyperthermiainhot-dryandhot-wetclimates.JApplPhysiol.967;22:39-46.

    95 .WengerCB.Humanheatacclimatization.In:PandolfKB,SawkaMN,Gonzalez RR ,eds.HumanPerformancePhysiology andEnvironmentalMedicineatTerrestrial Extremes.Indianapolis:BenchmarkPress;988:153-197.

    96 .Fox RH,GoldsmithR,KiddDJ,LewisHE .Bloodflow andotherthermoregulatory changeswith acclimatizationtoheat.JPhysiol,London.963;166:548-562.

    97 .WyndhamCH.Effectofacclimatizationon circulatory responsesto highenvironmentaltemperatures.JApplPhysiol.951;4:383-395.

    98 .BassDE, HenschelA. Responsesofbodyfluidcompartmentsto heatandcold.PhysiolRev .956;36:128-144.

    99 .BassDE, KleemanCR,QuinnM,HenschelA,Hegnauer AH .Mechanismsofacclimatizationto heatin man.Medicine.955 ;34 : 323-380 .

    100.Shapiro Y,HubbardRW,KimbroughCM,PandolfKB. Physiologicalandhematologic responsestosummerandwinterdry-heatacclimation.JApplPhysiol.981;50:792-798.

    101.ScottJC ,BazettHC ,MackieGC .Climatic effectson cardiacoutputandthecirculation in man.AmJPhysiol.1940;129:102-122.

    102.WhitneyRJ .Circulatory changesintheforearm andhandofman withrepeatedexposure toheat.JPhysiol,

  • 7/30/2019 fisiologa en ambientes calurosos

    47/80

    References,HumanAdaptation toHot Environments (TMM)/19/972London.954;125:1-24.

    103.WoodJE ,BassDE.Responsesof theveinsandarteriolesof theforearmto walking duringacclimatizationto heatinman.JClinInvest.960;39:825-833.

    104.CollinsKJ,WeinerJS .Endocrinologicalaspectsofexposuretohighenvironmentaltemperatures.PhysiolRev .1968;48:785-839.

    105.HarrisonMH.Effectsofthermalstressandexerciseon bloodvolumeinhumans.PhysiolRev. 1985;65:149-209.

    106.Senay LC ,Jr .Changesinplasmavolumeandproteincontentduringexposuresofworkingmento varioustemperaturesbefore andafteracclimatizationto heat:separationof therolesofcutaneousandskeletalmusclecirculation. JPhysiol,London.972;224:61-81.

    107.FinbergJPM,KatzM,GazitH,BerlyneGM.Plasma reninactivity afteracuteheatexposurein nonacclimatizedandnaturallyacclimatizedman.JApplPhysiol.974;36:519-523.

    108.KosunenKJ, PakarinenAJ, KuoppasalmiK,AldercreutzH. Plasmareninactivity,angiotensinII ,andaldosteroneduringintenseheatstress.JApplPhysiol.976;41:323-327.

    109.ConnJW .The mechanism ofacclimatizationto heat.AdvIntMed.949;3 : 373-393 .

    110.ConnJW ,JohnstonMW.The functionofthe sweatglands intheeconomyofNaClunderconditionsofhardworkina tropicalclimate.JClinInvest1944;23:933(Abstract)

  • 7/30/2019 fisiologa en ambientes calurosos

    48/80

    References,HumanAdaptationto Hot Environments (TMM)/19/973111.LeitheadCS.Waterandelectrolytemetabolism intheheat.FederationProc.963;22:901-908.

    112.BraunWE, Maher JT ,ByromRF .Effectofendogen