finite element modeling and of cantilever wafer test · 2017. 3. 26. · probing experiment factors...

24
Finite Element Modeling and Characterization of Cantilever Probe Tips Used in Wafer Test Levi W. Hill 1,2 Noelle L. Blaylock 1 Stevan Hunter PhD 1,2 1 Brigham Young University Idaho 2 ON Semiconductor This work supported by ON Semiconductor

Upload: others

Post on 26-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Finite Element Modeling and Characterization of Cantilever Probe Tips Used in Wafer Test

    Levi W. Hill1,2

    Noelle L. Blaylock1

    Stevan Hunter PhD1,21Brigham Young University Idaho 

    2ON SemiconductorThis work supported by ON Semiconductor

  • Probing Experiment Factors• Input factors 

    – 3 probe cards (Standard force,  Large tips,  High force)– 3 wafers (Pad Al thickness:  0.7um, 0.9um, 3.0um)– No. of probe touchdowns (1 or 2)

    • Wafer stayed aligned between touches 

    – Chuck overdrive • 50um,  100um

    • Probe mark measurements– Length of probe travel (scrub)– (Total Area) Scrub area + Prow area– Depth (Remaining Al thickness) 

    2Hill, Blaylock, Hunter

  • Probe Tip Characteristics per Card

    3Hill, Blaylock, Hunter

    Probe Card 1 Probe Card 2 Probe Card 3

    Tip Diameter .8 mil 1.2 mil 0.8 mil

    Force standard standard high

    Example probe tip surfaces after use

  • Probing Experiment (3 wafers)

    4Hill, Blaylock, Hunter

    2 touch  2 mil overdriveProbe Card 11 touch  2 mil overdrive

    1 touch  4 mil overdrive

    2 touch  2 mil overdrive1 touch  2 mil overdrive1 touch  4 mil overdrive

    2 touch  2 mil overdrive

    2 touch  4 mil overdrive

    1 touch 2mil overdrive

    Probe Card 2

    Probe Card 3

  • Probe Marks:  1 Touch @ 2mils OD• Standard Force Tip

    • Large Tip

    • High Force

    5Hill, Blaylock, Hunter

    0.7um Al

    0.7um Al

    0.7um Al

    0.9um Al

    0.9um Al

    0.9um Al

    3.0um Al

    3.0um Al

    3.0um Al

  • Probe Marks:  2 Touch @ 2mils OD

    6Hill, Blaylock, Hunter

    • Standard Force Tip

    • Large Tip

    • High Force

    0.7um Al

    0.7um Al

    0.7um Al

    0.9um Al

    0.9um Al

    0.9um Al

    3.0um Al

    3.0um Al

    3.0um Al

  • Probe Marks:  1 Touch @ 4mils OD

    7Hill, Blaylock, Hunter

    • Standard Force Tip

    • Large Tip

    • High Force (2 touches)

    0.7um Al

    0.7um Al

    0.7um Al

    0.9um Al

    0.9um Al

    0.9um Al

    3.0um Al

    3.0um Al

    3.0um Al

  • Pad Al Remaining, Prow Height

    8Hill, Blaylock, Hunter

    Remaining Al vs.Overdrive

    Measured Al Pileup Vs.Overdrive

  • Coincident Touches, and Overdrive

    • Both Length and Area increase slightly with 2nd coincident probe touch

    • Both Length and Area increase significantly with increased Overdrive

    Tip

    Trav

    el (u

    m)

    Mar

    k A

    rea

    (um

    2 )

    9Hill, Blaylock, Hunter

    Scrub length vstouch count

    Scrub length vsOverdrive (mils)

    Mark area vstouch count

    Mark area vsOverdrive (mils)

  • Pad Al Thickness, and Probe Tip

    • Scrub Length decreases with pad Al thickness, while Area decreases

    • Larger tip doesn’t change Scrub Length, but increases the Area• High force probes increase Length and Area

    Tip

    Trav

    el (u

    m)

    Mar

    k A

    rea

    (um

    2 )

    10Hill, Blaylock, Hunter

    Scrub length vsProbe card #

    Mark area vsProbe card #

    Scrub length vsPad Al Thickness

    Mark area vs Pad Al Thickness

    0.7um 0.9um 3.0um

    0.7um 0.9um 3.0um

    0.8mil 1.2mil 0.8mil, hf

    0.8mil 1.2mil 0.8mil, hf

  • Finite Element Models of Probe Tips• Student‐created probe tip models are used to simulate the scrub motion of probing

    • Experimental data above is used to check the validity of modeling

    • Objective is to learn from modeling how to reduce probe mark size and probe longevity without causing pad or bondability issues

    • Preliminary results follow:

    11Hill, Blaylock, Hunter

  • Finite Element Model of Probe

    12Hill, Blaylock, Hunter

  • Probe Model Used in These Simulations

    13Hill, Blaylock, Hunter

    Probe tip has a slight relief on the heel so it will continue to make contact as it slides forward on the pad surface

    Material properties of W are used for the probe

  • Larger Tip Probe Model

    14Hill, Blaylock, Hunter

    Shortened tip length, as if the probe has been worn during use, with larger tip resulting

  • Cantilever Probe Model

    15Hill, Blaylock, Hunter

    Probe tip model under stress

    Example finite element “mesh”

  • Probe Tip Models Under Stress

    16Hill, Blaylock, Hunter

    The bond pad’s upwards movement strains the tip, with the shank as a spring

  • Probe tips on Thin and Thick Pad Al 

    17Hill, Blaylock, Hunter

    0.7um pad Al thickness 3.0um pad Al thickness

  • High Force Probe Tip

    18Hill, Blaylock, Hunter

    Low Overdrive High Overdrive

  • Overdrive Effect: Measure, Model

    19Hill, Blaylock, Hunter

    • Overdrive is easiest to model and simulate• Slope matches, but need offset adjustment in model

    Measured SimulatedScrub length vs

    OverdriveScrub length vs

    Overdrive

  • Probe Tip Effect: Measure, Model

    20Hill, Blaylock, Hunter

    • Model has small offset but matches slope for small and large tips

    • Model is off for high force tip – insufficient force applied, compared to actual probes

    Measured SimulatedScrub length vs

    Probe tipScrub length vs

    Probe tip

    0.8mil 1.2mil 0.8mil, hf0.8mil 1.2mil 0.8mil, hf

  • Pad Al Thk Effect: Measure, Model

    21Hill, Blaylock, Hunter

    • Insufficient interaction with the pad Al in the model, so the scrub length doesn’t drop enough

    • Recommend more tip contact area in the model

    Measured Simulated

    0.7um 3.0um 0.7um 3.0um

  • Other Probe Models

    22Hill, Blaylock, Hunter

    Higher angle probe

    Lower angle probe

  • Other Probe Models (cont)

    23Hill, Blaylock, Hunter

  • Summary• Experiment to create various probe marks

    – 3 pad Al thicknesses– 3 different probe tip conditions– 2 different overdrives– 1 and 2 touches

    • Created FEM models of various probe tips• Ran simulations to attempt matching with experiment data

    • Lots more work to do…

    24Hill, Blaylock, Hunter

    SW Test 2014 Workshop ProceedingsSW Test 2014 Corporate SupportersSW Test 2014 Program "At A Glance"SW Test 2014 ExhibitorsSW Test 2014 Technical Program OverviewMonday, June 9

    Technical Program - MondayMonday, June 9, 2014Welcome to SW Test 2014Characterizing the Touchdown and the DamageFinite Element Modeling and Characterization of CantileverProbe Tips Used in Wafer TestTransverse Load Analysis for Semiconductor ApplicationsILD study contact/deprocessing methodology comparison

    High Voltage, High Temperature, High CurrentCost Effective 1,000V High Voltage Parametric Test TechniqueHigh pulsed current wafer probing in high temperature conditions:comprehensive framework for vertical and cantilever probe designA Study on CCC of fine pitch vertical probe;Simplified CCC formula and its verification

    Design of Advanced ProbecardsDescription of the MEMS CIS probe card - electricalcharacteristics, parallelism & probing propertiesCan testers and probe cards keep up withspeed requirements for image sensors?Improving Signal Integrity through Advanced Probe CardDesign and Probe Card MetrologyHow to extend the lifetime of your current probe card analyzer

    Advanced Vertical TechnologiesConductive Paste-Based Interconnect Technologyfor High Performance Probe CardChallenges and Solutions in future designs of Vertical Probe CardsAnalysis of Design Parameters that Affect thePerformance of Multi-site Vertical Probe Cards

    Characterizing the Touchdown and the DamageFinite Element Modeling and Characterization of CantileverProbe Tips Used in Wafer TestTransverse Load Analysis for Semiconductor ApplicationsILD study contact/deprocessing methodology comparison

    High Voltage, High Temperature, High CurrentCost Effective 1,000V High Voltage Parametric Test TechniqueHigh pulsed current wafer probing in high temperature conditions:comprehensive framework for vertical and cantilever probe designA Study on CCC of fine pitch vertical probe;Simplified CCC formula and its verification

    Design of Advanced ProbecardsDescription of the MEMS CIS probe card ‐ electricalcharacteristics, parallelism & probing propertiesCan testers and probe cards keep up withspeed requirements for image sensors?Improving Signal Integrity through Advanced Probe CardDesign and Probe Card MetrologyHow to extend the lifetime of your current probe card analyzer

    Advanced Vertical TechnologiesConductive Paste‐Based Interconnect Technologyfor High Performance Probe CardChallenges and Solutions in future designs of Vertical Probe CardsAnalysis of Design Parameters that Affect thePerformance of Multi‐site Vertical Probe Cards

    42 Full-size ExhibitsSave the Date - June 7 to 10, 2015