finite-dimensional and dynamic optimization in a ... · a.p. afanasyev, vladimir voloshinov, m.a....

58
Finite-dimensional and dynamic optimization in a distributed computing environment A.P. Afanasyev, Vladimir Voloshinov , M.A. Posypkin, A.S. Tarasov, Kurochkin I.I. Center of Grid-technologies & Distributed Computing Institute for System Analysis RAS 5 th International Conference "Distributed Computing and Grid-technologies in Science and Education" JINR, Dubna, 2012

Upload: others

Post on 02-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Finite-dimensional and dynamic optimization in a distributed computing

    environment

    A.P. Afanasyev, Vladimir Voloshinov, M.A. Posypkin, A.S. Tarasov, Kurochkin I.I.

    Center of Grid-technologies & Distributed Computing Institute for System Analysis RAS

    5th International Conference"Distributed Computing and Grid-technologies in Science

    and Education"

    JINR, Dubna, 2012

  • General lines of our team researchesSoftware & distributed computing algorithms for scientific researches ✔ Software toolkit for distributed computing systems

    (MathCloud, REST-services)✔ Toolkit for high-performance (parallel) global

    optimization (BNB-solver, *-grid, DesktopGrid)✔ Decomposable optimization problems (e.g. with

    block structure)✔ Unified optimization modeling REST-services (for

    description, solving and processing of results) based on existing standards (AMPL)

    ✔ Problem-specific distributed applications #2

  • Decomposition of computing process

    Mathematics, physics, chemistry, biology, ...Everywhere researches require integration of various existing domain-specific software

    #3

    Optimization Differential equations Statistical datamanipulation

    Data processing Other

  • 4

    ●Problems that we dealt with Optimization control problems with mixed constraints

    Quasi-analytic solution of polynomial differential equations Global & discrete optimization:

    knapsack problems, molecules clusters conformation (with Lennard-Jones & Morse potential models), charge distribution in DNA molecules, cryptanalysis of binary keys generator (A5/1)

    Combinatorial geometry problems Modeling of telecommunication networks Physical experiments data processing:

    Fine structure of carbon films deposited in thermonuclear reactor TOKAMAK T-10 by results of synchrotron X-ray scattering diffraction (in collaboration with National Research Centre, NRC "Kurchatov Institute")

    Geodesic data processing (in collab. with "Vernadsky Institute of Geochemistry and Analytical Chemistry RAS")

  • Roots of algebraic equations Solution of mathematical programming problems (LP,

    NLP, ...) Differential equation solution as explicit function of initial

    values (for polynomial equations via distributed symbolic computing of Taylor series)

    Symbolic computing resources Effective distributed compute of multivariate polynomial

    (by generalized "Horner rule")

    #5

    Dynamic optimization. Optimal control problem: Required software resources

  • Search solution of ODE as Taylor series

    #6

    Quasi analytical solution of Cauchy problem

    ))((=)( txfdt

    tdx00 )( xtx =

    !

    )()())((=)( 00

    )(00

    (1)0 s

    tttxtttxxtxs

    s −++−+

    Symbolic equation for ODE solution derivatives

    ) )(()( txftx =

    )()()(

    ))(()(

    )()()())(()(

    )()(

    01

    1)(

    20)2(

    00

    0

    0

    xfxfx

    xfxfdtdtx

    xfxfxxfxf

    dtdtx

    xftx

    sx

    ss

    s

    x

    =⋅∂

    ∂==

    =⋅∂

    ∂==

    =

    −−

  • Polynomial approximation of solution as a finite segment of Taylor series with "controllable" error bound (depending of radius of convergence R)

    #7

    Effective for polynomial ODE

    P1,i(x) - n-multivariate polynomial of m-order

    ))(()(

    ))(()(

    ))(()(

    ,1

    2,12

    1,11

    txPdt

    tdx

    txPdt

    tdx

    txPdt

    tdx

    nn =

    =

    =

    00 )( xtx =

    n

    RttCH

    −< 0

    2

    0 0 2 1 0 3 2 0 ( 1) 0

    ( 1) 0 0

    0

    ( , ) ( ) ( ) ( , , )2! !

    ( ) multvariate polynomial of of power ( 1)

    ( , , ) residual memberlength of seriessegment

    i

    m m i m i

    i m i

    t tx x t x T x t T x T H x T ki

    T x n x i m iR x T kk

    − − + −

    + −

    = + + + + + +

    − − + −

    −−

  • #8

    ●A number of important results for quasi-periodical solutions of ODE

    Classical Lorenz system

    3213

    31212

    121

    ,),(

    bxxxxxxxrxx

    xxx

    −=−−=

    −=

    σ

    σ=10, r=28,b =8/3

    Live demo in PPT

    The approach was verified via distributed computing based on Maxima computing algebra system. A generalized Horner rule for multivariate polynomial has been implemented

  • #9

    List of publicationshttp://dcs.isa.ru/drupal/ru/staff/apa/publicationsАфанасьев А.П., Дзюба С.М. О типичном поведении систем дифференциальных уравнений с периодической правой частью Дифференциальные уравнения, т.41, №11, 2005

    Афанасьев А.П., Дзюба С.М., Репина Ю.Е. Об обобщенно-периодических решениях автономных дифференциальных включений Дифференциальные уравнения. 2009. Т. 45. №1 с.3-7

    Афанасьев А.П., Тарасов А.С. Квазианалитическое решение систем дифференциальных уравнений с полиномиальными правыми частями Сб. трудов ИСА РАН «Проблемы вычислений в распределенной среде: распределенные приложения, коммуникационные системы, математические модели и оптимизация», / Под ред. С.В. Емельянова, А.П. Афанасьева – Т.14 - М.: КомКнига, 2006г

    Афанасьев А.П., Продолжение траекторий в оптимальном управлении М.: Эдиториал УРСС, 2005. 263 с.

    Афанасьев А.П., Дзюба С.М. Устойчивость по Пуассону в динамических и непрерывных периодических системах М.: Издательство ЛКИ, 2007.

  • ●Distributed computing software/hardware layers

    Computing resources

    Middleware Globus Toolkit, Condor, gLite, MPI ...

    REST-services, Zeroc Ice…

    High level services and toolkits

    Applications

    #10

    MathCloudREST-

    servicesDesktop

    Grid

    BNB(Solver,

    Grid,DG)

    jLite

  • Middleware Globus Toolkit, Condor, gLite, MPI ...

    REST-services, Zeroc Ice…

    Computing resources

    High level services and toolkits

    Applications

    jLite

    MathCloudREST-

    services

    #11

    ●Software Toolkits (BnB-global & discrete opt.)

    Desktop Grid

    BNB(Solver,

    Grid,DG)

  • BNB-Solver

    #12

    BNB-Solver provides a collection of C ++ classes for generic optimization algorithm schemes: branch-and-bound, heuristic methods, hybrid approaches.

    Currently the following solvers are implemented using BNB-Solver framework: Branch-and-Bound for Knapsack problem Branch-and-Bound for Traveling Salesman Problem Interval and Lipschitzian optimization for NLP and MINLP Basin-Hopping method for unconstrained global optimization Deterministic multiobjective optimization

    Supported platforms: Serial platform Shared memory platforms (POSIX threads) Distributed memory parallel clusters (MPI library)

  • BNB-Grid

    #13

    BNB-Grid framework organizes efficient cooperative work of different BNB-Solver library instances available via BNB-Service interfaceSupported platforms: Standalone computers Public supercomputers with batch

    systems Service grid CEs Desktop grids

  • BNB-Grid Applications

    #14

    Molecular clusters

    3-4 supercomputers (MVS-100 K from JSCC, SKIF-MGU and some less powerful clusters) were consolidated

    Results showed that general purposed optimization algorithm can efficiently cope with hard optimization problems providing the sufficient computational resources are employed.

    Deciphering of A5/1by reducing it to SAT problem (ISDCT of SB-RAS Semenov A.A. Zaikin O.S.) More than 1 week continuous computing with the number of

    cores from 1000 to 6000 (MVS-100K, SKIF-MGU, BlueGene from MSU etc.)

    3 test A5/1 problems were successfully deciphered

    ( ) min→−= ∑ ∑= +=

    n

    i

    n

    ij

    ji xxvxF1 1

    )()()(

  • Computing resources

    MiddlewareDesktopGridServiceGrid (EDGeS 3G Bridge)

    gLite, BOINC, XTremWeb

    High level services and toolkits

    Приложения

    jLite

    MathCloudREST-

    services

    #15

    Software Toolkits (DesktopGrids)

    BNB(Solver,

    Grid,DG)

    Desktop Grid

    ISA RAS participates in DEGISCO (FP7 project) and is a coordinator of http://desktopgridfederation.org in Russia

    http://desktopgridfederation.org/

  • 16

    DesktopGrid at Grid'2012 from our team18 July 2012Section Desktop grids (LIT conference hall)14.45-15.00 Using virtualization technology for the study of principles of operation of combined computing infrastructuresN.P. Khrapov

    16.30-16.45 Implementation of the distributed evolutionary algorithms for BOINC platformM.A. Posypkin, T.E. Vlasov

    16.45-17.00 A distributed branch and bound method for BOINC desktop gridsBo Tian, M.A. Posypkin

    20 July 2012Plenary (LIT conference hall)

    14.30-19.00 Tutorial (r. 407 LIT)Desktop grid computing (Eng/Rus)M.A. Posypkin, et al...

  • Optimization on Desktop Grids

    #17

    OPTIMA@home - a research project that uses Internet-connected computers to solve challenging large-scale optimization problems http://boinc.isa.ru/dcsdg/ More than 700 hosts connected Challenging 150-atomic Morse cluster was minimized

    Project SAT@home – another research project aimed at solving hard combinatorial problems reduced to SAT problemshttp://sat.isa.ru/pdsat/ (ISDCT of SB-RAS Semenov A.A. Zaikin O.S.) More than 5500 hosts connected More than 3 Tflops sustainable performance Deciphered several hard A5/1 instances

    Desktop Grid session – July 18, 14:30Plenary Talk July 20, 12.00: Russian chapter of international desktop grid federation: achievements, current state and prospective Desktop Grid Tutorial: July 20 14:30

    http://boinc.isa.ru/dcsdg/http://sat.isa.ru/pdsat/

  • MathCloud software toolkit (RESTful-services)

    Software platform for Service-Oriented Science providing tools for building, deployment, discovery

    and integration of distributed scientific services

    #18

    Service AService B

    Service CService D

    Users

    Applications

    Services

    Computing Resources

    MathCloud: from software toolkit to cloud platform for building computing servicesO.V. Sukhoroslov @ Section clouds and grid, 17 July 2012

  • http://dcs.isa.ru/drupal/ru/mathcloud ● Fast "conversion" existing application (including

    cluster and Grid ones) into RESTful-services● Visual programming of workflows available as new

    composite RESTful-services● Workflows running system● REST-style, implemented as RESTfull-services

    (REST, HTTP, JSON - JavaScript Object Notation)

    Open source, http://code.google.com/p/websolve/ Apache License, Version 2.0

    MathCloud features

    http://dcs.isa.ru/drupal/ru/mathcloud

  • JAX-RS(Jersey)

    Service-B

    Service-A

    Service-J (Python)

    Service-G

    Jobs/Results

    WAITINGRUNNINGDONEERROR

    ServerResource

    ServiceResource

    JobResource

    FileResource

    ServiceManager

    JobManager

    service.conf

    Java Adapter

    Console Adapter

    Grid Adapter

    Cluster Adapter

    Java App

    Console App

    gLite (EGGE)

    Port. Batch. Sys

    Web-сервер(Jetty)

    Service-C

    MathCloud toolkit. Service container Everest.

  • MathCloud toolkit. Workflow Management System (WFMS).

    Workfloweditor WUI(browser)

    WFMSeditor

    interfaceWFs as

    a services

    WF JSONdescriptor WF running

    engine

    WFMS service / server

    RESTService

    RESTService

    RESTService

  • Methodology, unification, unified REST-interfaces for solvers and modeling tools for complete "modeling cycle" (input data-> solve problem -> processing solution data -> ...inputs -> more complex opt. algorithms -> processing results) ,REST-services JSON-descriptors "templates" and implementation with MathCloud toolkit

    http://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServices

    Supported by Federal special purpose program “Research and development in the priority fields of Russian science and technology complex in 2007-2013" (Agreement # 07.514.11.4024)

    Unified optimization modeling REST-services

    On development of distributed optimization modeling systems in the REST architectural style V.V. Voloshinov @ Section clouds and grid (LIT, r. 407), 17 July 2012

  • http://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServices Support optimization modeling approaches in the practice of scientific researches

    ● Mathematical programming problems' solvers (LP/MILP, NLP/MINLP) as REST-services

    ● Translators of optimization modeling languages (AMPL, A Modeling Language for Math. Programming) - as REST-services

    ● Integration of all above and others utilities (e.g. visualization) into workflows - a new domain-specific distributed applications (available as REST-services)

    Support of scientific collaboration in Web2.0 style (e-Science) regarding "publication" of various solvers

    REST-services for optimization modeling. General purposes

  • Urgency of "service-oriented" optimizationSince 2004, project Optimization Services, www.optimizationservices.org, under the aegis of COIN-OR (IBM) www.COIN-OR.org/projects/OS.xml

    COIN solvers !!!AMPL, GAMS - !!!XML-RPC, WSDL, BPEL - ???

    http://www.optimizationservices.org/http://www.COIN-OR.org/projects/OS.xml

  • Our approachhttp://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServices

    REST - as an architectural styleRESTful-(web)-services - as a middle-wareHTTP as a transport protocol, JSON (JavaScript Object Notation) as a messages format (plain text), HTML+JavaScript for Web User Interface (WUI)

    MathCloud (aka WebSolve, http://code.google.com/p/websolve/) - as a middleware and software toolkit

    AMPL and GNU MathProg - optimization modeling and algorithms (high-level) description

    AMPL-compatible solvers (LP/MILP, NLP, MINLP), GNU MathProg (LP/MILP, GLPK, GNU LP Kit)

  • Optimization modeling standards

    Finite-dimension mathematical programming problems (LP/MILP, NLP/MINLP)

    f o p , x minx

    ,

    f i p , x0 i∈ I ,g j p , x =0 j∈J x∈Mp∈

    x - variables,

    p - parameters,

    I, J - indices,

    M - additional variables constraints (positive/negative, boolean, integer, ranges)Π - check constraints on parameters

    ∇ x f o p , x , ∇ x f i p , x i∈ I ,∇ x g j p , x j∈J ;∇ xx f o p , x ,∇ xx f i p , x i∈ I ,∇ xx g j p , x j∈J .

    Numerical methods (solvers) also requires procedures for first and second derivatives (Jacobians & Hessians):

    #26

  • The existing approach - usage of AML-system

    AML - Algebraic Model Languages.

    Common features:✔ Convenient (symbolic "TeX-like") description of object &

    constraints functions ✔ Separation of "symbolic/abstract" models and numerical

    data for multivariate computation (parameter sweeping)✔ Automatic differention (Jacobian & Hessian)✔ Support of "Lagrange formalism" - access to variables and

    duals found as a result of solution✔ Unified open-source (even for "commercial" AMLs) API for

    solvers' developers

    #27

  • There are a number of AMLs

    Incomplete list:

    AMPL - A Modeling Language for Mathematical Programming, AT&T Bell Laboratories, D.M. Gay, Brian W. Kernighan, since 1980- , http://www.ampl.comхGAMS - General Algebraic Modeling System, International Bank for Reconstruction and Development, since 1980-x, http://www.gams.com

    OPL - Optimization Programing Lang., IBM, ILOG CPLEX (LP, QP, ...), CP Optimizer, http://www-01.ibm.com/

    GNU MathProg - "subset" of AMPL for GLPK, GNU LP Kit, Andrey Makhorin, MAI, since 2000, http://www.gnu.org/software/glpk/

    Zimpl - since 2004, http://zimpl.zib.de/ (LP, MILP, NLP ?) Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

    #28

  • General scheme of AMLs usage

    "Symbolic" opt. model

    file *.mod

    f o p , xminx

    ,

    f i p , x0 i∈ I ,g j p , x=0 j∈J x∈M

    Parameters' values

    param p : ...;set I : ...;set J : ...;

    file *.dat

    AML-scriptmodel *.mod;data *.dat;option solver ipopt;solve;display _var, _dvar;printf ...

    AML-translator ampl.exegams.exe.

    Problem's data as a stub fileAMPL "stub", *.nl, *.sol

    GAMS data exch., *.gdx

    AML API

    AMPL/Solver interfaceLibrary

    GAMS....

    SolversCPLEXLpsolveMinosKnitroSnoptGurobiMosek...

    COIN-OPIpoptBonmin...

    AMPL and GAMS - most popular de-facto standards

    #29

    GLPK

  • Set of "atomic" RESTful-optimization services

    Atomic REST-services deployed in a single MathCloud Everest container

    Prepare input data & processing output (solution):ampl-stub - generate AMPL-stub from model and data ampl-pre-opt - more complex AMPL-stub generation (model, data, AMPL- script)ampl-post-opt - processing solution (model, data, solution AMPL- format, AMPL-script)

    Solver services (via LPSOLVE, IPOPT, BONMIN other AMPL-solvers):optimization-service-{command | cluster | grid} - to solve LP/MILP, NLP/MINLP problems presnted by their AMPL-stub, respectively on dedicated server, cluster, grid-node

    Set of GLPK services (GLPK includes GNU MathProg translator):glpk-{command | cluster | grid} - full scheme of optimization: model, data, pre opt. GMP script -> solution -> post opt. GMP respectively on dedicated server, cluster, grid-node

    #30

  • Web-interface of RESTful-optimization services

    #31

  • Set of "composite" RESTful-optimization serviceshttp://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServicesComposite services are implemented as Workflows of atomic ones."Full optimization cycle" services (ampl-pre-opt, optimization-*, ampl-post-opt):ampl-optimization-service-{command | cluster | grid} - full scheme of AMPL-optimization: model, data, pre opt. AMPL script -> solution -> post opt. AMPL respectively by solvers on dedicated server, cluster, grid-nodemcl-control - "enhanced" AMPL-translator, enables running any (!) AMPL-algorithm in distributed mode; all stubs are sent to a pool off optimization-service-* and solutions are brought back to AMPL (and so on); Includes simple task manager (Python) for load balanceIn more details - in our section report On development of distributed optimization modeling systems in the REST architectural style V.V. Voloshinov @ Section clouds and grid (LIT, r. 407), 17 July 2012

    http://dcs.isa.ru/drupal/ru/development/mathcloud/optimizationServices

  • Workflow for ampl-optimization-service-(command). MathCloud WF Editor

    #33

  • Auto generated web-interface for composite ampl-optimization-service-(cluster)

    #34

    Web-interface "inherits" WUI of atomic services

    Running progress (by WFMS)

  • Optimization in processing of experimental data

    #35

    Fine structure of carbon films deposited in thermonuclear reactor TOKAMAK T-10 by results of synchrotron X-ray scattering diffraction

    Experimental data (on scattering angles)

    =

    2sin4 xq θ

    λπ

  • Problem formulation (an idea)Modeling of scattering on amorphous uniform carbon structures (films, fullerenes, tubules, toroids, half-fragments etc.) massive parallel computing ==> optimization over every structure parts of weight to minimize discrepancy with experimental data

    #36

  • Optimization identification of parameters

    Z j (x , a ,b , A)=S exp(q j)−∑i=1

    n

    xi⋅S i(q j)−a⋅( f c(q j))2−A ∑

    k=1

    N impur

    αk ( f k (q j))2−b ,( j=1: m)

    Minimize error between experimental and model data (n ~ 1000, m ~ 500):

    Additional constraints:

    S exp q j−a⋅ f c q j2−A ∑

    k=1

    N impur

    k f k q j 2−b−0.5 , j=1: m ,∑

    i=1

    n

    x i+a=A , x i , a0

    Three criteria (on variables x, a, b, A):

    ∑j=1

    m

    ∣Z j(x , a , b , A)∣ →x ,a ,b , A minL1: (for Laplace distribution of experimental error)

    maxj=1: m

    ∣Z j( x , a , b , A)∣ →x , a ,b , A minLinf: (for uniform distribution ...)

    ∑j=1

    m

    (Z j(x , a ,b , A))2 →

    x ,a ,b , AminL2: (for Gaussian distribution ...)

    For L1 и Linf criteria LP_SOLVE, (http://lpsolve.sourceforge.net)

    For L2 - IPOPT (http://projects.coin-or.org/Ipopt)

  • MathCloud application as WF (Grid- & cluster- apps)

    #38

  • Unexpected interesting result

    #39

    Dominance of toroidal spatial forms of carbon has been revealed (7 toroidal form over ~500 candidates for all criteria !)A. B. Kukushkin, V. S. Neverov, N. L. Marusov, I. B. Semenov, B. N. Kolbasov, V. V. Voloshinov, A. P. Afanasiev, A. S. Tarasov, V. G. Stankevich, Svechnikov "Few-nanometer-wide carbon toroids in the hydrocarbon films deposited in tokamak T-10" // Chemical Physics Letters (14 March 2011) doi:10.1016/j.cplett.2011.03.036

  • 40

    Geodesic data processing via convex NLP (QP)Restore earth surface by isolines series given as an input data.In collaboration with "Vernadsky Institute of Geochemistry and Analytical Chemistry RAS"

    To find zy,x for the mesh (x,y) (heights for (x,y) coordinates) by "global" spline interpolation, i.e. minimization of

    with the following constraints:zy,x = ck for (x,y) ∈ Ik (k=1:K) sets of isolines points with fixed heights Typical mesh dimensions Nx, Ny ~ 1000, 600

  • 41

    Geodesic data processing REST-serviceREST-service (secured access) on the base on AMPL translator and Ipopt (NLP) solver

  • Program toolkit NetMax for modeling of telecommunication networks for the maximization of the general traffic.

    The analysis technique of the telecommunication networks, loading of networks revealing direct dependence on routing strategy is implemented.

    Primary goals● Check of efficiency of strategy of routing;● Determination of vulnerabilities in a telecommunication network; ● Modeling on a failure for determination of reliability of corporate

    networks; ● Execution of an estimation and the comparative analysis of various

    strategies of routing;● Visualization of network graph.

    NetMax – program toolkit of modeling of telecommunication networks

  • NetMax – toolkit

    Revelation of network bottleneck

  • Use in high-performance computing (HPC) and desktop-gridThe toolkit is implemented in the addition (toolbox) to

    Matlab environment. For hard computing tasks● the version for usage in multiprocessor systems

    (MATLAB)● the version for the distributed computing (on BOINC

    platform) is implemented.

    NetMax – toolkit

    Distributed simulation of telecommunication networks – NETMAX projectI.I. Kurochkin, A.I. Prun Section Desktop grids (LIT conference hall), 18 July 2012

  • 45

    Combinatorial geometry. Enumeration of irreducible graphsInspired by Tammes problem - optimal placement of N points on a sphere (to max min point-to-point distance)Well known hard global optimization problem (since XVII century, Isaac Newton, James Gregory)Irreducible graph is stable conformation of points on the sphere, i.e. corresponding local minima of energy of a molecule.Live demos http://dcs.isa.ru/taras/irreducible/seven1_int.htmlhttp://dcs.isa.ru/taras/irreducible/

    A.S. Tarasov, Enumeration of the irreducible graphsfor the Tammes problem using distributed calculations20 July, 15.15-15.30, r.310, LIT

    http://dcs.isa.ru/taras/irreducible/seven1_int.htmlhttp://dcs.isa.ru/taras/irreducible/

  • 46

    Scheme of Enumeration

    Generation of suitable planar graphs Solving LP problem for each graph Solving NLP problem for each graph by Branch

    and Bound method and LP problems.

    We use: Own cluster Cluster FUTURO ot UTB (Brownsville, USA)

  • Thank you for your attention.

    Questions?

    To apply our experience and available softwarewe are looking for problems requiring optimization modeling.

    And we are open for collaboration, http://dcs.isa.ru.

    Instead of conclusion

    http://dcs.isa.ru/

  • 48

    Задача оптимального управления со смешанными ограничениями

    - целевая функция, отвечающая за качество управления

    - управляемая динамическая система, записанная в форме системы ОДУ с функцией управления в правой части

    - краевые условия

    - множество допустимых управлений

    J [u ]=∫0

    T

    F 0 x t , u t dt min

    ẋ=F x t , u t

    x 0 , x T ∈Xu t ∈U t

    #48

  • BNB-Solver

    BNB-Solver – объектно-ориентированная библиотека для решения задач оптимизации на многопроцессорных вычислительных комплексах.

    Библиотека написана на Си++ и MPI, является переносимой, модульной и расширяемой.

  • BNB-Grid

    Internet

    Программный комплекс позволяет:

    проводить расчеты на разнородных, географически удаленных вычислительных ресурсах;

    решать различные задачи оптимизации точными и эвристическим методами;

    проводить расчеты в течение длительного времени с контрольными точками и устойчивостью к сбоям.

  • АРХИТЕКТУРА

    CSM

    CEM

    CEM

    CEM

    BNB-Solver

    BNB-Solver

    BNB-Solver

    ICE

    TCP/IP

    MPI

  • 52

    BNB-GRID: ПОИСК КОНФИГУРАЦИИ АТОМОВ С МИНИМАЛЬНОЙ ЭНЕРГИЕЙ ВЗАИМОДЕЙСТВИЯ

    ( ) min→−= ∑ ∑= +=

    n

    i

    n

    ij

    ji xxvxF1 1

    )()()(

    ( ) ( )i jx x− - расстояние между частицами i и j;

    )(rv - потенциал попарного взаимодействия;

    ( ) 61221rr

    rvLJ −= - Lennard-Jones potential;

    ( ) ( )2; )1()1( −= −− rrM eerv ρρρ - Morse potential.

  • 53

    Потенциал Число атомов

    Число начальных приближений

    Nmax Общее время расчетов (мин)

    Количество«попаданий»

    Найденный минимум

    Наилучший известный минимум

    Леннард- Джонс

    98 512 8192 43 8 -543.665361 -543.665361

    Морзе 85 512 8192 63 3 -405.246158 -405.246158

    Морзе 90 512 8192 91 74 -433.355380 -433.355380

    Морзе 100 512 8192 96 98 -488.675685 -488.675685

    Морзе 70 1024 8192 174 9 -292.462856 -292.462856

    Морзе 75 1024 8192 205 2 -318.407330 -318.407330

    Морзе 80 1024 8192 244 3 -340.811371 -340.811371

    Морзе 85 1024 8192 188 5 -363.891261 -363.893075

    Морзе 90 1024 8192 266 2 -388.401652 -388.401652

    Морзе 100 1024 8192 232 8 -439.070547 -439.070547

    Дзюгутов 50 1024 8192 175 2 -104.366189 -104.366189

    Дзюгутов 100 1024 8192 175 1 -218.678229 -219.523265

    Дзюгутов 100 1024 32758 371 1 -218.744395 -219.523265

    6=ρ

    6=ρ

    6=ρ

    14=ρ

    14=ρ

    14=ρ

    14=ρ

    14=ρ

    14=ρ

  • 54

    Криптоанализ генераторов Генератор двоичной последовательности

    (генератор) – дискретная функция : .

    – входная (инициализирующая) последовательность

    – выходная последовательность (ключевой поток)

    Задача криптоанализа: по известному алгоритму генератора (алгоритму, реализующему ) и фрагменту выходной последовательности требуется найти инициализирующую последовательность.

    { } *}1,0{}1,0{:, →= ∈ nnNnn fff

    nf

    ),...,( 1 nxxx =

    ),...,( 1 nxxx = ),...,( 1 myyy =

    ),...,( 1 myyy =

    nf

  • 55

    BNB-GRID: КРИПТОАНАЛИЗ ГЕНЕРАТОРА А5/1

    Решалась методом сведения к логическому уравнению. Далее решалась задача выполнимости (SAT).

    Распределенная среда:1.MVS-100k (МСЦ РАН) 2.СКИФ-МГУ (МГУ им. Ломоносова)3.Blue-Gene (МГУ им. Ломоносова)4.Кластер РНЦ (РНЦ «Курчатовский Институт»)

    Проводились длительные расчеты (неделя и более) на 1000-6000 вычислительных ядер одновременно. В результате были взломаны три тестовые задачи криптоанализа для генератора A5/1. На решение одной задачи было затрачивалось 2-4 суток расчетов.

  • Решение задач оптимизации в распределённой вычислительной среде А. П. Афанасьев ИСА РАН, МФТИSlide 2Slide 3Slide 4Задача оптимального управления: Требуемые ресурсыSlide 6Slide 7Slide 8Slide 9Программная инфраструктураMathCloud,BNB,jLiteSlide 12Slide 13Slide 14DesktopGridSlide 16Slide 17Slide 18MathCloud. Общее описание.MathCloud. КонтейнерMathCloud. СУСRESTopt-ideaRESTopt-genPurpCOIN OSxOur approachОпт. модельAMLAML-listОбщая схемаAtomic-RESToptWUIComposite-RESToptampl-opt-ser-WFampl-opt-srv-WUIСтрАн ПостановкаСтрАн Постановка 2Slide 37Slide 38Slide 39Slide 40Slide 41Slide 42Slide 43Slide 44Slide 45Slide 46Slide 47Постановка задачи оптимального управления со смешанными ограничениямиBNB-SolverBNB-GridАРХИТЕКТУРАBNB-GRID: ПОИСК КОНФИГУРАЦИИ АТОМОВ С МИНИМАЛЬНОЙ ЭНЕРГИЕЙ ВЗАИМОДЕЙСТВИЯSlide 53Криптоанализ генераторовBNB-GRID: КРИПТОАНАЛИЗ ГЕНЕРАТОРА А5/1Slide 56Slide 57Slide 58