final fossil energy r&d for clean power production 1c...advanced steam cycles in coal-based...

54
Robert Romanosky Crosscu’ng Research Technology Manager 10 April 2013 Fossil Energy Research and Development for Clean Power Produc>on Spring 2013 Clean Energy Seminars Penn State, EMS Energy Ins>tute Na;onal Energy Technology Laboratory

Upload: others

Post on 21-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Robert  Romanosky  Crosscu'ng  Research  Technology  Manager  

10  April  2013  

Fossil  Energy  Research  and  Development  for  Clean  Power  Produc>on  

 Spring  2013  Clean  Energy  Seminars  Penn  State,  EMS  Energy  Ins>tute  

Na;onal  Energy  Technology  Laboratory  

Page 2: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Development  Data  Group,  The  World  Bank.  2008;  Popula<on  Division  of  the  Department  of  Economic  and  Social  Affairs  of  the  United  Na<ons  Secretariat:  IEA  Sta<s<cs  Division  

Energy  Contributes  to  Quality  of  Life  

Eritrea  

Congo  Peru  

Bulgaria  

Mexico  

UK  

Bahrain  

U.S.   Qatar  

GDP

 per  Cap

ita  

(US$  /  person  /  yr)  

Annual  Energy  Consump>on  per  Capita  (kgoe  /  person  /  yr)  

China  

India  

South  Africa  

GDP vs. Energy Consumption

100

1,000

10,000

100,000

100 1,000 10,000 100,000

Page 3: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Gas 23%

Nuclear 6%

Renewables 14%

Oil 27%

Coal 30%

Gas  25%  

Nuclear  9%  

Renewables  14%  

Oil  32%  

Coal  20%  

Gas 21% Nuclear

6%

Renewables 13%

Oil 33%

Coal 27%

Gas  25%  

Nuclear  9%  

Renewables  8%  

Oil  37%  

Coal  21%  

Sources: U.S. data from EIA, Annual Energy Outlook 2012: World data from IEA, World Energy Outlook 2011

726 QBtu / Year 80% Fossil Energy

108 QBtu / Year 77% Fossil Energy

+ 14%

Energy Demand 2009 95 QBtu / Year

83% Fossil Energy

481 QBtu / Year 81% Fossil Energy

28,844 mmt CO2 43,320 mmt CO2

5,425 mmt CO2 8,806 mmt CO2

Energy Demand 2035

United States

World

+ 51%

Page 4: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

•  Only  government  owned  &  operated  DOE  na;onal  lab  •  Dedicated  to  energy  RD&D,  domes;c  energy  resources  •  Fundamental  science  through  technology  demonstra;on  

•  Unique  industry–academia–government  collabora;ons  

Na>onal  Energy  Technology  Laboratory  Where  Energy  Challenges  Converge  and  Energy  Solu3ons  Emerge  

West Virginia Pennsylvania Oregon

Page 5: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Core  Program  Components  Office  of  Coal  and  Power  R&D  

Total  FY  2012  Funding    ~  $333  Million  

•  Carbon  Capture  -­‐  $68.9  Million  

•  Carbon  Storage  -­‐  $115.4  Million  

•  Advanced  Energy  Systems-­‐  $99.9  Million  

–  Advanced  Combus;on    -­‐  $15.9  Million  

–  Gasifica;on  -­‐  $39  Million  

–  Turbines  -­‐  $15  Million  

–  Fuel  Cells  -­‐  $25  Million  

–  Fuels  -­‐  $5  Million  

•  Crosscucng  Research  -­‐  $49.1  Million  

Working  in  synergy,  these  programs  are  developing  technologies  to  increase  power  plant  efficiency,  lower  electricity  costs  and  mi>gate  GHG  emissions  in  both  exis>ng  and  advanced  power  facili>es  

Page 6: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

-­‐  Strong  likelihood  of  cap-­‐and-­‐trade  legisla>on.  

-­‐  EOR  applica>ons  seen  as  niche  opportunity  to  offset  some  cost;  

-­‐  Oil  $50  -­‐  $60/barrel;  -­‐  CCS  storage  focus  with  CO2  tax  support.  

-­‐  Natural  gas  -­‐  $11.25/MMBTU  

   Goal  by  2020:    +  35%  LCOE  

LCOE:  Levelized  Cost  of  Electricity    

 

Times  Have  Changed  Then  

-­‐  Cap-­‐and-­‐trade  legisla>on  unlikely  in  the  near  term.  

-­‐  No  deadlines  for  u>li>es,  no  reason  to  invest  in  carbon  capture  and  storage.  

-­‐  Oil  more  expensive  =  >$90/barrel;  global  compe>>on  stronger.  

-­‐  CCUS  has  been  successfully  developed  in  FE  demos.  

-­‐  Natural  gas  -­‐  $3.52/MMBTU  

Current  Capture  Cost:    $70-­‐90/Ton  Goal  R&D  Complete  by  2020:  $40/Ton  

Carbon  Capture  Cost  can  support  a  long-­‐term  business  case  to  invest.  

Now  

Page 7: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Gasifica>on  with  Cleanup  

Separa>on  

Crosscucng    Technologies    

for  Design,  Construc;on,    &  Opera;on  

Carbon  Capture,    

U>liza>on,  &  Sequestra>on  

Op>mized  Turbines  

Overview  Areas  of  Research  and  Development  and  Key  Technologies    for  Advanced  Power  Genera>on  and  Carbon  Management  

Oxy  Combus>on  

Computa>onal  Modeling  

Page 8: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Crosscucng  Research  Program  "   Improving  Plant  Maintainability  &  Availability  "   Advanced  Technology  Modeling  &  Prototyping  "   Increasing  Power  Systems  Efficiency  

Reflec>ve  of  industry  needs  and  drives  new  technology  

Bridge  the  gap  between  fundamental  &  applied  technology  

q Advanced  Materials  •  Ultrasupercri;cal  Boilers  &  Turbines  •  High-­‐strength  metallic  &  intermetallic  alloys  •  High  Performance  Materials  

q Sensors  and  Controls  •  High  Temperature  Material  &  Sensor  Designs  •  Sensors  Networks  and  Advanced  Control  

q Modeling  and  Simula>ons  •  High  fidelity  models  of  advanced  power  systems  •  Advanced  power  system  simula;ons  •  Carbon  Capture  Simula;on  Ini;a;ve  •  Na;onal  Risk  Assessment  Partnership  

q University  Training  and  Research  (UTR)    q Historically  Black  Colleges  &  Universi>es  (HBCU)  q Mercury  and  Water  Control  

Research  Focus  

Page 9: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Primary  Driver  for  Advanced  Sensing  •  Harsh  process  condi>ons  that  need  on-­‐line  &  con>nuous  monitoring  to  

achieve  &  maintain  efficiency    •  Monitoring  to  assess  condi>on  of  unit  or  system  so  total  cost  of  ownership  is  

low  via  predictable  reliability  &  high  plant  availability.    •  Improve  process  control  by  genera>ng  “ac>onable  informa>on”  

Gasifiers •  Up to 1600 °C •  Up to 1000 PSI •  Erosive, corrosive, &

highly reducing

Combustion Turbines •  Up to 1300 °C •  Pressure ratios of 30:1 •  Thermal shock, highly oxidative

Page 10: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Contribu>on  from  Sensors  and  Controls  Value  Derived  for  an  Exis<ng  Coal  Fired  Power  Plant  

1%  HEAT  RATE  improvement    Ø  500  MW  net  capacity  unit  

•  $780,000/yr  coal  cost  savings  •  1%  reduc;on  in  gaseous                                                                                                                                                      and  solid  

emissions  Ø  En;re  coal-­‐fired  fleet  

•  $340  million/yr  coal  cost  savings  •  Reduc;on  of  13.8  million                                                                                                                                                                                                          

metric  tons  CO2  per  year              1%  increase  in  AVAILABILITY  

Ø  500  MW  net  capacity  unit  44  million  kWh/yr  added  genera;on  •  Approximately  $2.6  million/yr  in  sales  (@  6  cents/kWh)  

Ø  En;re  coal-­‐fired  fleet  •  More  than  2  GW  of  addi;onal  power  from  exis;ng  fleet  

 

Analysis  based  on  2011  coal  costs  and  2011  coal-­‐fired  power  plant  fleet  (units  greater  than  300  MW)  

1%  Improvements/increases  are  easily  achievable.  Sensors  and  Controls  can  

enable  improvements  to  be  maintained  for  long  term.    

Coal  35,700  MMBTU/yr  $70  Million/yr  @  $2/MMBTU  

Power  3.5  Billion  kWh/yr  

@  80%  capacity  factor  

Page 11: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Availability  

Source:  Outage  Data  -­‐  NERC  GADS  Database  7/28/10  Accessed  4/18/11;    Avg.  Wholesale  Price  Data  –  EIA  h_p://www.eia.doe.gov/cneaf/electricity/wholesale/wholesale.html  Wholesale  Market  Data,  PJM  West,  NEPOOL,  ERCOT  Wtg.  Avg;  

2005-­‐2009  Average  Annual  Plant  Revenue  Loss  Due  to  Equipment  Forced  Outages  and  Derates  (2011  $)  

$0  

$5,000,000  

$10,000,000  

$15,000,000  

$20,000,000  

$25,000,000  

$30,000,000  

$35,000,000  

$40,000,000  

$45,000,000  

0-­‐100  MW   100-­‐199  MW  

200-­‐299  MW  

300-­‐399  MW  

400-­‐599  MW  

600-­‐799  MW  

800-­‐999  MW  

1000  MW  Plus  

Boiler   Balance  of  Plant   Steam  Turbine  Generator   Pollu;on  Control   Regulatory/Safety/Enviro.  

 $-­‐        

 $1,000,000    

 $2,000,000    

 $3,000,000    

 $4,000,000    

 $5,000,000    

 $6,000,000    

0-­‐100  MW  

100-­‐199  MW  

200-­‐299  MW  

300-­‐399  MW  

400-­‐599  MW  

600-­‐799  MW  

800-­‐999  MW  

1000  MW  Plus  

Revenue   Avoided  Maint.  Cost  

Poten>al  Revenue  Increase  and  Avoided  Maintenance  Costs  per  based  on  10%    Decrease  in  Forced  and  Unplanned  

Maintenance  Outages    

Page 12: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Distributed  Intelligence  Approach  

Advanced  Control    

Novel  Control  Strategies  

Sensor  Placement  

Smart  Actua>on  Smart  Sensors  

Safe  Tes>ng  Environment  

•  What  Types  and  How  Many,  and  Loca;ons  

•  Decrease  Redundancies  

•  Increase  Sensor  Life  

•  Use  Local  Informa;on  •  Reduce  Response  Time  to  

System  Changes  

•  More  Efficient  Data  Use  •  Data  Management  Algorithms  •  Reduce  or  Eliminate  Centralized  

Control  

•  Lower-­‐Level  Intelligence  

•  Sensor  Communica;on  

•  Know  When  and  What  to  Measure  

•  Computa;onal  Environments  

•  Mimic  Experimental  Facili;es  

•  Smooth  Transi;on  

•  Mi;gate  Risk  

Page 13: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Crosscucng  Research  Materials  Program  GOALS:  New  materials  need  to  be  developed  to  enable  advanced  fossil-­‐fueled    power  genera>on  technologies  to  achieve  market-­‐based  efficiency  and  cost  goals.    Evalua>on  and  characteriza>on  of  materials  will  ensure    ability  to  achieve  and  maintain  required  performance  over  the  planned  life>me  of  the  equipment  at  extreme  opera>ng  condi>ons  including  high  temperature,  high  pressure,  corrosive  and  erosive  environments.  

OBJECTIVES:  Develop  materials  that  can  maintain  structural  integrity  in  high  temperature  and  pressure,  and  extreme  corrosive  and  erosive  environments  thereby    enabling  improved  efficiency  ,  environmental  performance  and  plant  availability  of  coal  fired  power  plant  genera;on  fleet.    Shorten  material  development  ;me  through  computa;onal  methods  

Page 14: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Materials Program Increasing Power Systems Efficiency  

•  Evaluate and develop materials technologies that allow use of advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 °C (1400 °F) and 5,000 psi.

•  New novel materials can allow for increased temperature and pressure, resulting in power plant efficiencies of 45-47%, and CO2 emissions reduction of 15 to 20%.

•  Developing materials to enable an oxygen fired A-USC plant would lower balance of plant cost due to less coal handling and smaller pollution control components for the same net plant output.

•  Computational methods applied to the design, development, and optimization of materials accelerate creation of cost-effective, functional materials deployable with less repetitive testing; advanced plants go operational more rapidly.

•  US/UK research collaboration on advanced materials

Page 15: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

40

60

80

100

300

500

550 600 650 700 750 800

1100 1200 1300 1400

6

8

10

30

50

70

Stre

ss (M

Pa)

Average Temperature for Rupture in 100,000 hours (oC)

9-12Cr Creep-Strength Enhanced Ferritic Steels (Gr. 91, 92, 122)

Nickel-BasedAlloys

Std. 617CCA617

Inconel 740

Haynes 230

Advanced Austenitic Alloys (Super 304H, 347HFG, NF709, etc.)

Haynes 282

Average Temperature for Rupture in 100,000 hours (oF)

Stre

ss (k

si)

Materials  Limit  the  Current  Technology  

°  

Steels  =  USC  620°C  (1150°F)         Solid  Soln’  =  A-­‐USC  

~700°C  (1300°F)        

Age  Hardenable  =  A-­‐USC  760°C  (1400°F)        

Minimum  Desired  

Strength  at  Applica>on  Temperature  

Page 16: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Computa>onal  Materials  :  Approach  

•  An  integrated  mul;-­‐scale  computa;onal  approach,  complimented  with  a  focused  experimental  program,  emphasizing  the  design  &  op;miza;on  of  materials  for  advanced  combus;on  systems.    

–  Computa3onal  material  design  &      op3miza3on.  

–  Lab-­‐scale  synthesis  of  materials.  – Mechanical  &  chemical      assessment  of  materials    performance  in  real  environments  

–  Simula3on  of  component  life  in      conven3onal  &  oxy-­‐fuel    combus3on  environments.  

Page 17: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Computa>onal  Modeling  

Time  

fs   ps   ns   µs   ms   s   ks   Ms   Gs  

nm  

µm  

mm  

m  

km  

Mm  

Space  

Na>onal/Global  

Plant  Device  

Par>cles  

Atoms/molecules  

Molecular  Dynamical    Simula>ons  

Ab  ini>o  Calcula>ons  

Power  Plant  Simula>on  

Mul>phase  Flow  

Computa>onal  Fluid  Dynamics  

Page 18: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Simula>on-­‐Based  Engineering  to  support  Clean  Coal  Approach  

•  Goal  -­‐    Develop  and  apply  simula<on  and  visualiza<on  tools  for  designing/analyzing  zero-­‐emission,  fossil  energy  plants  of  the  future.  

•  Approach  -­‐  Integrate  experimental  and  computa<onal  sciences  at  mul<ple  scales,  to  generate  informa<on  beyond  the  reach  of  experiments  alone  

•  Benefits  –  Speeds  design,  reduces  risk,  and  saves  money  –  Barrier  issues  to  FE  program  can  be  addressed  in  a  cost  effec<ve  manner  

“If  you  cannot  model  the  process,  you  don’t  understand  it.    If  don’t  understand  it,  you  cannot  improve  it.    If  you  cannot  improve  it,  you  cannot  be  compe<<ve”  

Jim  Trainham,  ex-­‐VP,  Global  Technology,  DuPont  

Page 19: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Computa>onal    Research  

•  Mul>phase  Flow  Research  and  Model  Valida>on  –  Fundamental  R&D  in  model  development  and  

valida;on  for  dense,  reac;ng  mul;phase  flow  –  Apply  Models  to  Simulate  Gas-­‐Solids  Devices  

•  Gasifica;on  •  Syngas  Clean-­‐up  •  Carbon  capture  •  Sequestra;on  •  Chemical  Looping  

•  Experimental  program  for  Model  Valida>on  

•  Development  of  novel  measurement  techniques  •  Obtain  accurate  and  detailed  data  

MFIX  simula;on  of  pilot  scale  KBR/Southern  transport  gasifier  

Page 20: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

CCSI:  Accelera>ng  Technology  Development  

Na>onal  Labs   Academia   Industry  

Iden>fy    promising    concepts  

Reduce  the  >me    for  design  &  

troubleshoo>ng  

Quan>fy  the  technical  risk,  to  enable  reaching  larger  

scales,  earlier  

Stabilize  the  cost  during  commercial  deployment  

Page 21: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

CCS  Deployment  Challenge  

•  The  pathway  of  taking  energy  technologies  from  lab  to  power  plant  is  long,  20-­‐30  years  

•  President’s  plan  requires  that  barriers  to  the  widespread  deployment  of  CCS  be  overcome  within  10  years  

•  Therefore,  new  approaches  are  needed  for  taking  CCS  concepts  from  lab  to  power  plant,  quickly,  and  at  low  cost  and  risk  

•  Recent  advances  in  science-­‐based  simula>ons  will  be  brought  to  bear  on  the  problem  by  Carbon  Capture  Simula>on  Ini>a>ve  (CCSI)  

Bench  Research      ~  1  kWe  

Small  pilot                      <  1  MWe  

Medium  pilot            1  –  5  MWe  

Semi-­‐works  pilot  20-­‐35  MWe  

First  commercial  plant,  100  MWe  

Deployment,  >500  MWe,  >300  plants  

Page 22: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

CCSI  Example  of  Projected  Savings  in  the  Cost  &  Time  

•  Avoiding  rework  in  pilot  plants:  ~$18  MM  •  Increasing  scale-­‐up  size:  ~$100  MM  +  5  years  •  Accelerated  learning  during  deployment:  ~$3  B  

2011 2013 2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039

1 MWe

1 kWe

300 MWe

Development Progression and

Schedule with the CCSI Program

50 GWe of commercial deployments over 20 years

Learn at 30% during the first 2 doublings of cumulative installed capacity and 10% during the next 6 doublings

Avoiding rework in three ~10

MWe scale pilot plant à

~ $18 MM savings

Increase step size for next

scale demonstration à

~ $100 MM savings

5 years earlier to

commercial deployment

Accelerated learning during first 50 GWe of

commercial deployment

~$3 B savingsCCSI Program

Impacts

Net Present Value of

savings, using 10% discount

rate$560 MM

10 MWe

100 MWe

CCSI Development CCSI Toolset deployment for second gen & transformational technologies

500 MWe

Page 23: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Na>onal  Risk  Assessment  Program    (NRAP)  

Elucidate  key  fundamental  physics/chemistry  

Predict  behavior  of  cri>cal  components  

Predict  system  behavior  (reservoir  to  receptor)  over  

space  and  >me  

Quan>fy    risk  and  safety  rela>onships  

NRAP  Stakeholder  Group  

Wade,  LLC  

NRAP  Technical  Team  

Develop  a  defensible,  science-­‐based  methodology  and  plaxorm  for  quan>fying  risk  profiles  at  most  types  of  CO2  storage  sites  in  order  to  guide  decision  making  and  risk  management  by  reducing  uncertainty  in  the  business  case  for  long-­‐term  storage.  

Page 24: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Na>onal  Risk  Assessment  Partnership:  Leveraging  DOE’s  Science-­‐Based  Predic<on  Capability  to  Build  Confidence  in  Engineered–Natural  Systems  

•  How  effec;ve  is  geologic  storage  of  CO2  (e.g.,  will  it  leak)?  

•  What  is  the  value  of  poten;al  long-­‐term  liabili;es?  

•  What  is  the  most  effec;ve  and  efficient  approach  to    environmental  monitoring  post  injec;on?  

•  What  are  the  best  protocols  to  mi;gate  poten;al  for              induced  seismicity?  

Two  Key  Goals  •  develop  toolset  and  suppor;ng  data  for  science-­‐  based  risk  assessments  •  already  completed  the  first  genera>on  toolset  to  predict  leakage  impacts  and  poten>al  for  induced  seismicity  

•  build  confidence  in  key  storage-­‐security  rela;onships  to  support  decisions  •  ini>a>ng  phase  to  apply  first  genera>on  toolset  to  elucidate  storage-­‐security  rela>onships  

Page 25: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Early  es>mates  predicted  monitoring  would  be  a  minor  component  of  storage  costs,  but  Class  VI  requirements  drive  monitoring  costs  up.  

0  

5  

10  

US$  /  tC

O2  

IPCC  (2005)   EPA  (2010)  Prelim.  Forma>on-­‐Specific  Es>mates  NETL  (Morgan  et  al.,  in  progress)  

Opera>ons  Costs  

Monitoring/PISC  Costs  

Class  V

I  

• Primary  drivers  for  costs  to  meet  class  VI  include:  

•  long  ;me  frame  (50  yrs)  

•  large  area-­‐of-­‐review  •  large  bavery  of  techniques  

• EPA  is  re-­‐evalua>ng  class  VI  requirements  beginning  12/2013  

pre-­‐Class  V

I  

A  reduc>on  of  1-­‐2  $/ton  CO2  would  mean  a  savings  of  $50-­‐250  million  per  project.  

Page 26: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

R&D  Areas  Hydrogen  Turbine  Performance  

Cost  Power  

Efficiency  Emissions  

Combus>on  

Aerodynamics  &  Heat  Transfer  System  Design  

Materials  

Page 27: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Targeted  Areas  for  H2  Turbine  Improvement    Turbine  Improved  aerodynamics,  longer  airfoils  for  a  larger  annulus  /  higher  mass  flow  and  improved  internal  cooling  designs  to  minimize  cooling  flows  while  at  higher  temperatures  

Combustor    Combus;on  of  hydrogen  fuels    with  single  digit  NOx,  no  flashback  and  minimal  combus;on  instability  Compressor  

   Improved  compressor  efficiency  through  three  dimensional  aero  dynamics  for  higher  pressure  ra;o  

 Rotor    Increase  rotor  torque  for  higher  power  output  and  the  poten;al  for  lowering  capital  cost  ($/kW)  

Materials Improved  TBC,  bond  coats  and  base  alloys  for  higher  heat  flux,  thermal  cycling  and  aggressive  condi;ons  (erosion,  corrosion  and  deposi;on)  in  IGCC  applica;ons  

Leakage   Reduced  leakage  at  ;p  and  wall  interface  and  reduced  recircula;on  at  nozzle/rota;ng  airfoil  interface  for  higher  turbine    efficiency  and  less  purge  

Photo  courtesy  of  Siemens  Energy  

Exhaust Diffuser Improved  diffuser  designs  for  higher  temperature  exhaust,  lower  pressure  drop  with  increased  mass  flow  

Page 28: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Expected  Results  from  Advanced  H2  Turbine  Provides  the  Largest  Performance  Benefit  to  IGCC  w/CCS  

•  4.3  %  points  improvement  in  IGCC  efficiency  from  reference  case  (1.2,  1.6,  1.5)  •  Higher  power  and  efficiency  results  in  lower  capital  costs    ~  $645/kW  •  Cost  of  electricity  (COE)  is  reduced  by  $16  per  MWh  (~15%)  • With  a  two-­‐train  plant  (2  GT  with  one  steam  turbine)  at  a  capacity  of  ~1  GW,  results  in  $285/kW  addi>onal  decrease  in  TOC  and  8%  addi>onal  reduc>on  in  COE  

1600  

2000  

2400  

2800  

3200  

3600  

Refe

renc

e 225

0°F

Adv.

F 24

00°F

Co

al Pu

mp

85%

CF

WGC

U H2

Mem

bran

e H2

Turb

ine 2

550°

F IT

M H2

Turb

ine 2

650°

F 90

% C

F

25  

30  

35  

40  

45  

Refe

renc

e 225

0°F

Adv.

F 24

00°F

Co

al Pu

mp

85%

CF

WGC

U H2

Mem

bran

e H2

Turb

ine 2

550°

F IT

M H2

Turb

ine 2

650°

F 90

% C

F

Refe

renc

e 22

50o F

Adv.

F 24

00o F

Coal

Pum

p 85

% C

F W

GCU+

Selex

ol

WGC

U+Me

than

e

ITM

H 2 Tur

bine

2550

o F

H 2 Tur

bine

2650

o F 90

% C

F

60  

70  

80  

90  

100  

110  

120  

130  

Refe

renc

e 225

0°F

Adv.

F 24

00°F

Co

al Pu

mp

85%

CF

WGC

U H2

Mem

bran

e H2

Turb

ine 2

550°

F IT

M H2

Turb

ine 2

650°

F 90

% C

F

Efficiency  (%  HHV)  

 

Total  Overnight  Capital  (TOC)  ($/kW)  

 

Cost  of  Electricity  (COE)  ($/MWh)  

 Re

fere

nce

2250

o F

Adv.

F 24

00o F

Coal

Pum

p 85

% C

F W

GCU+

Selex

ol

WGC

U+Me

than

e

ITM

H 2 Tur

bine

2550

o F

H 2 Tur

bine

2650

o F 90

% C

F

Refe

renc

e 22

50o F

Adv.

F 24

00o F

Coal

Pum

p 85

% C

F W

GCU+

Selex

ol

WGC

U+Me

than

e

ITM

H 2 Tur

bine

2550

o F

H 2 Tur

bine

2650

o F 90

% C

F

Ref: Current and Future Technologies for Gasification-Based Power Generation Volume 2: A Pathway Study Focused on Carbon Capture Advanced Power Systems R&D Using Bituminous Coal, Revision 1, DOE/NETL-2009/1389

Page 29: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Transforma>onal  Technology  Advanced  turbine  technology  provides  significant  efficiency  

gains  reducing  COE  and  cost  to  capture  

•  Advanced  Gas  Turbines  (3,100  oF)  for  Fossil  Fuels  -­‐  Supply  the  next  genera;on  of  GT  technology  applicable  to  both  coal  and  NG  for  higher  efficiency  and  lower  cost.  

•  Supercri>cal  CO2  Power  Cycles  -­‐  Develop  new  turbo  machinery  for  a  low  cost  advanced  coal  op;on  (combus;on  and  IGCC)  with  CCS,  Advanced  NGCC,  and  other  fuels  and  heat  sources.  

•  Advanced  Steam  Turbines  -­‐  Develop  next-­‐genera;on  steam  turbine  technology  that  will  benefit  the  en;re  u;lity  industry  with  higher  efficiency  and  lower  carbon  capture  costs.    

•  Oxy-­‐fuel  Turbine  for  EOR  and  Power  -­‐  Demonstrate  the  building  blocks  of  an  integrated  and  modular  EOR  power  system  providing  CO2,  power  and  water  for  remote  /  stranded  EOR  opportuni;es.    

Page 30: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

•  Applica>on  poten>al:  nuclear,  heat  recovery,  concentrated  solar,  geothermal…and  fossil  with  CO2  capture  via  oxy-­‐fuel  

•  N2  separa>on  eliminates  most  thermal  NOx  •  Applicable  to  combus>on,  gasifica>on,  bozoming  cycles  

(NGCC),  SCO2  boilers  and  other  heat  sources  •  Provides  efficiency  gains  over  steam  based  cycles  

–  High  density  working  fluid  –  Expansion  done  at  high  temperature  –  Recuperated  

•  Smaller  turbo  machinery  •  Less  water  demand  (~  1/3)  •  CO2  is  a  good  working  fluid  

Supercri>cal  CO2  Power  Cycles    An  Emerging  Technology  for  All  Energy  Sources  

Sketch after Net Power From: “High Efficiency and Low Cost of Electricity Generation from Fossil Fuels while Eliminating Atmospheric Emissions, Including Carbon Dioxide, R.J. Allam et al, Energy Procedia, Elsevier, GHGT-11, 2012.

Page 31: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

1.   Energy  Penalty  •  20%  to  30%  less  power  output  

2.   Cost  •  Increase  Cost  of  Electricity  by  80%  •  Adds  Capital  Cost  by  $1,500  -­‐  $2,000/K  

3.   Scale-­‐up  •  Current  Post  Combus;on  capture    ~200  TPD  

•  550  MWe  power  plant  produces  13,000  TPD    

4.   Regulatory  framework  •  Transport  —  pipeline  network  

•  Storage  

5.   Economies  of  Scale  •  Land,  power,  water  use,  transporta;on,    

process  components,  …  

Deployment  Barriers  for  CO2  Capture    On  New  and  Exis>ng  Coal  Plants  Today  

Page 32: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Program  Mission  and  Overview    The  Carbon  Capture  program  is  focused  on  the  development  of  

cost-­‐effec3ve  CO2  capture  technologies  for  new  and  exis3ng  power  plants.      

                                     

Post–Combus>on  Capture  

(Conven;onal  Combus;on-­‐Based  

Power  Plants)  

                                   

Solvents  

Sorbents    

Membranes  

CO2  Compression  

Pre–Combus>on  Capture  

(Gasifica;on-­‐Based  Systems)  

Technology  Areas   Key  Technologies  

Page 33: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Fossil  Energy  CO2  Capture  Solu>ons  

Time  to  Commercializa>on  

Advanced  physical  solvents  Advanced  chemical  solvents  Ammonia  CO2  com-­‐  pression  

Amine  solvents    

Physical  solvents    

Cryogenic  oxygen  

Chemical  looping  OTM  boiler  Biological  processes  

 

Ionic  liquids  Metal  organic  frameworks  Enzyma>c  membranes  

Cost  Red

uc>o

n  Be

nefit  

PBI  membranes    Solid  sorbents  Membrane  systems  ITMs  Biomass  co-­‐  firing  

Post-­‐combus>on  (exis>ng,  new  PC)    Pre-­‐combus>on  (IGCC)    Oxycombus>on  (new  PC)    CO2  compression  (all)      

2020  2015  2010  

OTM  –  O2  Transport  Membrane  (PC)  ITM  –  O2  Ion  Transport  Membrane  (PC  or  IGCC)  

Page 34: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Advanced  CO2  Capture  Technologies  Leveraging  an  “integrated  development”  approach  

MIXED-­‐MATRIX  COMPOSITES  

CHEMICAL/PHASE  CHANGE  SOLVENTS  

Novel solvent

H2O

ConventionalSolvent

(selexol)

Changes in processconditions results

in CO2-release

Similar CO2Capacity

AAIL nano-layers

CRYOGENIC/MEMBRANE  

Page 35: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Breakthroughs  Needed  in  Mul>ple  Areas         Technology  Development  

Employs  Integra>on  of    Best-­‐in-­‐Class  Chemistry,  Components  

and  Processes    Examples:  •  State  of  the  art  absorp>on  process  coupled  with  unconven>onal  stripping  and  advanced  solvent  

•  Pre-­‐concentra>on  of  CO2  to  improve  driving  force  for  low-­‐cost  separa>on  

•  Coupling  membrane  and  sorbent  technologies  to  capitalize  on  advantages  of  each  

•  Use  of  advanced  simula>on  to  link  engineered  solvents  or  sorbents  with  unconven>onal  processing  techniques    

Page 36: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Advanced  Combus>on  Power  Genera>on  Chemical  Looping  Advantages:  

•  Oxy-­‐combus;on  without  an  O2  plant  •  Poten;al  lowest  cost  op;on  for  near-­‐zero  emission  coal  power  plant  <20%  COE  penalty  

•  New  and  exis;ng  PC  power  plant  designs  

Key  Challenges:  •  Solids  transport  •  Heat  Integra;on  

Oxy-­‐Firing  without  Oxygen  Plant        •  Solid  Oxygen  Carrier  circulates  between  Oxidizer  and  Reducer  

•  Oxygen  Carrier:  Carries  Oxygen,  Heat  and  Fuel  Energy  •  Carrier  picks  up  O2  in  the  Oxidizer,  leaves  N2  behind  •  Carrier  Burns  the  Fuel  in  the  Reducer  •  Heat  produces  Steam  for  Power  

Key  Challenges:  •  Cryogenic  ASUs  are  capital  and  energy  intensive  •  Excess  O2  and  inerts  (N2,  Ar)  h  CO2  purifica;on  cost  •  Exis;ng  boiler  air  infiltra;on  •  Corrosion  and  process  control  

Advanced  Oxy-­‐combus>on  R&D  Focus  •   New  oxyfuel  boilers  

–   Advanced  materials  and  burners  –  Corrosion  resistant  

•   Low-­‐cost  oxygen    à  O2  Membranes    •   Retrofit  exis;ng  air  boilers  

–  Air  leakage,  heat  transfer,  corrosion  –   Process  control  

•   Reduced  emissions  (CO2  +  SOx,  NOx,  O2)  

Oxy-­‐Combus>on  Advantages  •  Poten;al  for  high  CO2  recovery  •  Applicable  to  new  or  exis;ng  plants  

–  New  -­‐  more  compact  design  –  Exis;ng  -­‐  familiar  design  and  opera;on  –  Applicable  to  CFB  as  well  as  PC  plants  

•  Trace  pollutant  benefits  –  Lower  NOx,  more  oxidized  Hg  –  May  not  need  to  clean  flue  gas  as  thoroughly  for  

sequestra;on  as  for  air-­‐fired  units  

Page 37: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

“Oxy-­‐combus>on”  Can  Power  America  

•  An  advanced  coal  combus>on  technology    –  Capable  of  retrofi'ng  or  repowering  an  

exis;ng  plant  ,  or    –  As  a  base-­‐load  technology  for  new  green  

field  applica;ons        

•  The  opportunity  for  Near-­‐Zero  Emissions    from  coal    –  Poten;al  for  99%  CO2  capture  without  

economic  penalty    –  Cleaner  than  conven;onal  natural      gas  with  less  CO2  emissions    

–  Significantly  lower  water      consump;on  than  conven;onal  CO2  amine  capture  system      

 

•  Mature  commercial  technology  cost  projected  to  be  lower  than  conven>onal  post-­‐combus>on  capture    

 

Advanced Oxy-combustion R&D Focus •  New oxyfuel boilers

-  Advanced materials and burners -  Corrosion

95-99% O2

PC Boiler(No SCR)

Steam

Bag Filter

WetLimestone

FGDCO2

Ash

ID FansCoal

ASURecycle

Compressor

CO2Compression

(15 – 2,200Psia)

Power

Page 38: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Chemical  Looping  Combus>on  

     Key  Challenges  •  Solids  transport  •  Heat  Integra>on  

Key  Partners  (2  projects):    Alstom  Power  (Limestone  Based),  Ohio  State  (Metal  Oxide)  

 Status    2010  Alstom  Pilot  test  (1  MWe)  ü  1000  lb/hr  coal  flow  ü  1st  Integrated  opera>on  ü  1st  Autothermal  Opera>on  

Red  1700F  

Ox  2000F  

CaS  

Air  

Fuel   CO2  +  H2O  

CaSO4  

MBHX   N2  +  O2  

Steam  

Fuel  Reactor  (Reducer)  CaSO4  +  2C  +  Heat  à  2CO2  +  CaS  CaSO4  +  4H2  +  Heat  à  4H2O  +  CaS  

 

Air  Reactor  (Oxidizer)  CaS  +  2O2  à  CaSO4  +  Heat  

Oxy-­‐Firing  without  Oxygen  Plant        

l  Solid  Oxygen  Carrier  circulates  between  Oxidizer  and  Reducer  

l  Oxygen  Carrier:  Carries  Oxygen,  Heat  and  Fuel  Energy  

l  Carrier  picks  up  O2  in  the  Oxidizer,  leaves  N2  behind  

l  Carrier  Burns  the  Fuel  in  the  Reducer  

l  Heat  produces  Steam  for  Power  

Chemical  Looping  Advantages:  •     Oxy-­‐combus>on  without  an  O2  plant        •  Poten3al  lowest  cost  op>on  for  near-­‐zero  emission  coal  power  plant  <20%  COE  penalty  

•     New  and  exis>ng  PC  power  plant  designs  

Page 39: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Gasifica>on  

• Gasifica;on  converts  any  carbon-­‐containing  material  into  synthesis  gas,  composed  primarily  of  carbon  monoxide  and  hydrogen  (referred  to  as  syngas)  

• Syngas  can  be  used  as  a  fuel  to  generate  electricity  or  steam,  as  a  basic  chemical  building  block  for  a  large  number  of  uses  in  the  petrochemical  and  refining  industries,  and  for  the  produc;on  of  hydrogen  

• Gasifica;on  adds  value  to  low-­‐  or  nega;ve-­‐value  feedstocks  by  conver;ng  them  to  marketable  fuels  and  products  

 

Page 40: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Overview  of  Energy  Systems  Op>ons  

Page 41: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

So  what  can  you  do  with  CO  and  H2  ?  

Clean  Electricity  

Transporta>on  Fuels  (Hydrogen)  

 

Building  Blocks  for  Chemical  Industry  

Ace>c  Anhydride  Ace>c  Acid  

•  Methanol  

•  Ammonia  

•  Fer>lizer  (Urea)  •  Liquid  Fuels  (Diesel)  

•  Hydrogen  

Syngas  

Page 42: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Fuel  Cell  Program  -­‐  Atmospheric  Pressure  IGFC  

CO2  to  CUS  

CO2    Compressor  

Exhaust  

N2  

Coal  

O2  

Syngas  

Expander/  Generator  

Cathode

Air  

O2  

Air    Blower    

Steam  

Cathode  Off-­‐Gas  Anode  Off-­‐Gas  

Desulfurizer  

Air  Separa>on  

Unit  

Steam    

SOFC  Module  (Power  Island)  

Coal    Gasifier  

Gas  Cleanup  

Electric  Power  

Electric  Power  

Heat  Recovery  

Heat  Recovery  Steam  Generator  

To  Gasifier    

Electric  Power  

Steam  Turbine  

Oxy-­‐  Combustor  

Anode

•  Atmospheric  SOFC  with  Conven>onal  Coal  Gasifica>on  

•  Moderate  -­‐Methane  (10vol%)  Syngas;  Moderate  SOFC  Cooling  Benefit  

•  Separated  Anode  &  Cathode  Off-­‐Gas  Streams;  Oxy-­‐Combus>on    

•  Cycle  Efficiency  (Net  AC/Coal  HHV):  

       ~47%  with  CO2  Compression  

   ~50%  w/out  CO2  Compression  

•  Atmospheric  SOFC  with  Conven>onal  Coal  Gasifica>on  

•  Moderate  -­‐Methane  (10vol%)  Syngas;  Moderate  SOFC  Cooling  Benefit  

•  Separated  Anode  &  Cathode  Off-­‐Gas  Streams;  Oxy-­‐Combus>on    

•  Cycle  Efficiency  (Net  AC/Coal  HHV):  Ø     ~47%  with  CO2  Compression  Ø   ~50%  w/out  CO2  Compression  

Development  of  low-­‐cost,  high-­‐efficiency  Solid  Oxide  Fuel  Cell  (SOFC)  power  systems  that  are  capable  of  simultaneously  producing  electric  power  from  coal  and  facilita>ng  carbon  capture  when  integrated  with  coal  gasifica>on.  

Page 43: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Carbon  Storage  Program      

Program Goals Account for 99% CO2

Improve Storage Efficiency Estimate Capacity +/- 30%

Best Practices Manuals

Benefits Mitigate GHG Emissions Credits for CO2 Storage

Increased Oil/NG Recovery Reduce Capital and O&M Costs Reduce Environmental Footprint

Page 44: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

MVAA  Technology  Area    

•  Atmospheric  Monitoring  and  remote  sensing  technologies  

•  Near  -­‐Surface  Monitoring  of  soils  and  vadose  zone  

•  Subsurface  Monitoring  in  and  near  injec<on  zone  

•  Intelligent  Monitoring  Systems  for  field  management  

Carbon  Storage  Program  Core  R&D  Key  Technology  Areas  

Geologic  Storage  Technology  Area  (Storage  Technologies  and                                                                                

Simula<on  and  Risk  Assessment)    

•  Wellbore  construc<on  and  materials  •  Mi>ga>on  technologies  for  wells  and  natural  pathways  

•  Fluid  flow,  reservoir  pressure,  and  water  management  

•  Geochemical    effects  on  forma<on,  brine,  and  microbial  communi<es  

•  Geomechanical  impacts  on  reservoirs-­‐  seals  and  basin-­‐scale  coupled  models;  microseismic  monitoring  

•  Risk  Assessment  databases  and  integra<on  into  opera<onal  design  and  monitoring  

CO2  Use/Reuse  Technology  Area    

•  Chemicals    •  Polycarbonate  plas>cs  •  Minerals  and  cements  (building  products)  •  EOR,  EGR,  and  ECBM    

Page 45: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

North American CO2 Storage Potential (Billion Metric Tons)

Sink Type Low High Saline Formations 1,653 20,213 Unmineable Coal Seams 60 117 Oil & Gas Fields 143 143

Available  for  download  at  hvp://www.netl.doe.gov/publica;ons/carbon_seq/refshelf.html  

U.S.  Emissions  ~  6  Billion  Tons  CO2/yr  all  sources  ~  2  Billion  Tons  CO2/yr  coal-­‐fired  power  plants  

Hundreds  of  Years  Storage  Poten>al  

Na>onal  Atlas  Highlights  -­‐  2010  

Saline  Forma3ons  Oil  and  Gas  Fields   Unmineable  Coal  Seams  

Conserva>ve  Resource  

Assessment  

Page 46: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

•  The  “Un-­‐Mined  Gold”  Story  for  Energy  and  Jobs  •  Benefits1  of  CO2-­‐EOR:  

–  $10  trillion  in  economic    ac;vity  over  30  years;  

–  2.5  million  jobs  –  30  –  40  percent  reduc;on    

in  imported  oil  

CO2-­‐Enhanced  Oil  Recovery  

Domes>c  Oil  Supplies  and  CO2  Demand  (Storage)  Volumes  from    “Next  Genera>on”  CO2-­‐EOR  Technology**    

1  Source:  U.S.  Carbon  Sequestra<on  Council  

Page 47: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Today      Future  

Oxy-­‐fuel  (~3000˚C)  

Combus<on  Engines  (~1700˚C)  

Steam  Turbines  (~700˚C)  

Specialized  Cycles*  (<700˚C)  

 

Propulsion   Electric  Power  and  Transporta<on   Geothermal  power  

Direct  Power  Extrac3on:  Making  oxy-­‐fuel  an  advantage  with  CO2  capture  

Pressure  Gain  Combus3on:  Increased  genera3ng  efficiency  offsets  carbon  capture  penal3es  

Electrochemical  Heat  Engines:  A  new  approach  to  heat  recovery  and  energy  storage  

Combined  fossil  and  renewabale  genera<on:  Low-­‐temperature  geothermal    with  high  performance  Natural  gas  and  concentrated  solar    

200  ˚C  3000  ˚C  

Thermal  Energy  Transforma>on  Technology  to  create  power  across  the  temperature  spectrum.    

•  Most  electric  power  originates  from  the  middle  of  the  temperature  “spectrum”  (below).  

•  This  ini>a>ve:    (1)  step-­‐increase  the  efficiency  mid-­‐spectrum  (2)  combine  with  new  technology  at  the  high  and  low-­‐temperatures  (3)  enable  fossil  and  renewable  genera;on  at  high  efficiency  

*Specialized  cycles  include  organic  rankine,  s<rling  engines,  supercri<cal  CO2  and  others        Figure  permi_ed  for  use  by  h_p://en.wikipedia.org/wiki/S<rling_engine  

Supercri<cal  CO2  cycles  Higher  efficiency  than  steam.  Very  compact.  

Page 48: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Making  Oxy-­‐fuel  an  Advantage  Oxy-­‐fuel  combus3on  produces  CO2  concentrated  flue  gas  –  at  a  cost.  

•  Producing  pure  oxygen  requires  a  lot  of  energy!  •  If  one  could  find  a  way  to  make  significant  extra  power  because  of  the  available  

oxygen,  oxy-­‐fuel  would  be  an  advantage.  •  Oxy-­‐fuel  already  provides  an  advantage  for  process  industries  that  benefit  from  high  

temperatures  (e.g.,  glass  making,  steel).  •  Oxy-­‐fuel  already  provides  advantages  in  propulsion  (rocket  engines)  •  How  can  you  make  oxy-­‐fuel  an  advantage  for  power  genera>on?  

Steel  produc;on  

Space  propulsion   Power  genera;on  

Page 49: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Direct  Power  Extrac>on  (via  MHD)  •  Magnetohydrodynamic  (MHD)  Power  Generator:    

Use  a  strong  magnet  and  convert  kine;c  energy  of  conduc;ve  gases  directly  to  electric  power    

•  Higher  plant  efficiency  –  works  at  higher  temperature  –  Need  to  use  in  combined  cycle  –  Synergy  w/  oxy-­‐fuel  for  CCUS  

•  oxy-­‐coal  COE  much  higher  than  baseline  COE  primarily  due  to  ASU  •  Legacy:  MHD-­‐steam  coal  has  ASU  (to  combust  to  higher  T)  but  COE  

lower  than  baseline  COE        

MHD  cycle  turns  having  an  ASU  from  efficiency  disadvantage  to  efficiency  advantage!  

Plot  from  Okuno  et.  al.  2007  

USSR  built  MHD  Generator  From  Petrick    and  Shumyatsky  (1978)  

MHD  generator  concept  proven  in  1980s  w/  grid  transferred  power  in  both  U.S.  and  USSR    

Page 50: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Pressure  Gain  Combus>on  Cycle  

•  Conven>on  gas  turbines  combus>on  results  in  a  pressure  loss  across  the  combustor  (Brayton  cycle)  

•  Pressure  gain  with  constant  volume  combus3on  (Humphrey  cycle)  –  Deflagra<on  or  detona<on  pressure  wave  

increases  pressure  and  peak  temperatures  at  turbine  inlet    -­‐  reduced  entropy  produc;on  during  combus;on.      

•  Advantage  of    pressure-­‐gain  combus>on  –  up  to  30  percent  fuel-­‐efficiency  

improvement  –  no  other  technology  with  theore>cal  

poten>al  –  first  applica;on  will  definitely  be  natural-­‐

gas,  land-­‐based  power  genera;on  plant  

ΔP  <  0  

C   T  ΔP  >  0  

C   T  

“If  we  can  turn  5%  pressure  loss  in  a  turbine  into  5%  pressure  gain,  it  has  the  same  impact  as  

doubling  the  compression  ra>o”  –  Dr.  Sam  Mason,  Rolls-­‐Royce  (2008)*  

Page 51: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Rota>ng  Detona>on  Wave  Combus>on  

*see  Kailasanath,  K.  (2011).  The  Rota<ng-­‐Detona<on  –Wave  Engine  Concept:  A  Brief  Status  Report  ,AIAA  2011-­‐580.  

•  Objec>ve:  detona>on  pressure  rise  with  ~  steady  output.  •  Rota>ng  detona>on  idea  has  been  in  the  literature    since  1950s.*  •  Recent  studies  have  demonstrated  new  poten>al  for  the  concept.  

Higher  pressure,    ~  steady  flow    

to  turbine  

Inlet  from    

compressor  

Rota;ng  Detona;on  

Simula;on  results  courtesy  K.  Kailasanath,  U.  S..  Naval  Research  Laboratory  

Experiment  at  AFRL  Courtesy  Fred  Schauer  

Page 52: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

 Technical  Challenges  &  Approaches  

Air

Fuel

Exhaust

- Fuel Injection- Fuel/Air Mixing- Backflow due to

detonation- DDT / Initiation

- Detonation wave directionality

- NOx Emissions- Maintain Pgain- Quasi-steady flow

- Unsteady heat transfer- Cooling flow NETL  combustor  rig  

planned  for    component  test  

Simula;on  of  wave  propaga;on    (I.  Celik,  NETL-­‐RUA,  WVU)  

Pressure  gain  combustor  

Fundamentals  of  detona;on  physics  with  natural  gas  (D.  Santavicca,  NETL-­‐RUA,  Penn  State)  

Detona;on  front  

Page 53: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

Conclusions  

•  The  U.S.  power  genera>on  industry  is  at  a  cri>cal  juncture  

–  Demand,  resources,  workforce,  reliability,  regula;on,  grid  integrity,  transmission,  etc.  

•  Compe>ng  demands  for  reliable,  low-­‐cost  energy  and  climate  change  mi>ga>on  appear  incongruent  

•  Uncertainty  of  regulatory  outcomes  and  rising  costs  impact  industry’s  willingness  to  commit  capital  investment,  endangering  near-­‐term  produc>on  capacity  

•  The  U.S.  must  foster  new  processes  that  address  conflic>ng  energy  objec>ves  simultaneously    

Page 54: Final Fossil Energy R&D for Clean Power Production 1c...advanced steam cycles in coal-based power plants operating at steam conditions of up to 760 C (1400 F) and 5,000 psi. • New

NETL www.netl.doe.gov

Contact  Informa>on  

Office of Fossil Energy www.fe.doe.gov

Robert  R.  Romanosky  304-­‐285-­‐4721  [email protected]