final fall 2010 presentation november 30, 2010 team # 3 erica cosmutto hunter metzger joel ware...

25
INTEGRATION OF EXPERIMENTAL PROPULSION SYSTEMS IN MICRO AIR VEHICLES Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

Upload: alaina-evans

Post on 24-Dec-2015

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

INTEGRATION OF EXPERIMENTAL

PROPULSION SYSTEMS IN

MICRO AIR VEHICLES

Final Fall 2010 PresentationNovember 30, 2010

Team # 3

Erica Cosmutto

Hunter Metzger

Joel Ware

Kristina De Armas

Michael Isaza

Santiago Baus

Page 2: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

OVERVIEW Project Scope Product Specifications Project Goal Fixed vs. Varying Values Boundary Layer Ingestion Calculations Fuselage Designs Design of Experiments Cost of Materials Weight and Cost Analysis Future Work Plan

Page 3: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

PROJECT SCOPE

Integrate an electric ducted fan into the fuselage of a Micro Air Vehicle (MAV)

Focus on: Fuselage design Duct design Integrating electronics and fan into the fuselage

Goal: Design 3 fuselages

Inlet close to fan Inlet close to fan with rod Inlet away from fan

Each will demonstrate the effectiveness of the propulsion system and duct design

Page 4: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

PROJECT GOALThe team’s goal is to produce 3 fuselage

designs and be able to judge these designs based on the following:WeightFlight time (Efficiency)Maximum speedStability (Center of Gravity)

Page 5: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

FINAL COMPONENT SELECTION

76mm ID, 80mm OD22.2V391g55A

$129.50

TP8000-6S4PL22.2V8000mAh16C

$509.99

Smart Guide ESCUp to 44.4V100A

$120.00

Page 6: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

BOUNDARY LAYER INGESTION

P=Power (W)

T=Torque (N)

= Mass flow rate (kg/s)

V1= Incoming velocity(m/s)

or P=0.5T(2V1+∆V)

∆V=Change in velocity(m/s)

COMSOL Representation of Flow

•Incoming flow decreases, decreasing power required to obtain a certain thrust•Use boundary layer as slow velocity •∆V produces thrust

•Power required to accelerate slow moving air is less than the power needed to create the same acceleration in a faster incoming velocity

Page 7: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

Pressure Drop Across Fan

Force 4.456NPressure 2.315 10

3 PaPressureForce

area

Force Acting on the Fan Blades

FSA 0.00364m2 FSA = fan sweep area

Mass flow Velocityout FSA

Mass flow 0.269kg

s

Mass Flow Through Duct

Velocityout 2Pressure

Velocity After the Fan

Velocityout 62.532m

s

CALCULATIONS

Page 8: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

CALCULATIONS CONTINUED

Assume velocity outside of MAV is 30 m/s

Pressure atm 101325Pa

Pressure fan Pressure atm

1 Velocityfan2

2

Pressure fan 100.098kPa

Pressure inlet Pressure atm Velocityinlet

2

2 Pressure inlet 100.792kPa

Page 9: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

DESIGN 1: HOLE CLOSE TO FAN

COMSOL Representation of Flow

Velocity Profile

•Less losses due to duct•High velocity entering and exiting fan•High thrust•Air flow not fully developed•Not very efficient

Page 10: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

COMSOL Representation of Flow

Velocity Profile

•Air flow more fully developed •Lowest velocity•‘Feeds’ the fan more boundary layer•Increases efficiency

DESIGN 2: HOLE FARTHER AWAY FROM FAN

Page 11: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

Velocity Profile COMSOL Representation of Flow

•Rod attached to maximize flow that reaches blades•High velocity

DESIGN 3: ROB ATTACHED TO HUB

Page 12: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

FIXED VS. VARYING VALUES

Measurement ValueLength 32”Diameter 6”Inlet Area 5.412 in2

Exit Area 4.23 in2

Fuselage Distance From Inlet to Fan

Design 1 10.2282”Design 2 4.52098”Design 3 10.2282”

Fixed Values

Varying Values

Page 13: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

DESIGN OF EXPERIMENT 2k Factorial design

2 levels and 2 factors with 1 sampleResponse: Velocity exiting the fan

Factors:Distance of inlet from FanUse of rod at hub

Coded level table

Page 14: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

RESULTS Contrast, Beta and Test Statistic

Predictive model

Page 15: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

MORE RESULTS

Interaction Plot

50

55

60

65

70

75

80

85

X1 & X2 Interaction Plot

X2=+1X2=-1

X1

Response

Page 16: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

HOW TO INTERPRET THE RESULTS?

Distance from EDF to Inlet

Rod usage

Interaction between these factors

Page 17: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

VACUUM BAGGING PROCESS

Carbon fiber-reinforced polymer Low cost & desired results Mold construction provided by sponsor

Page 18: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

COST OF MATERIALS

Material Amount Cost ($)

Carbon Fiber 6 yards 301.50

Epoxy Resin 1 quart 22.25

Spray Adhesive 1 can 12.95

Peel Ply 2 yards 22.00

Breather Cloth 2 yards 16.00

Flow Media 2 yards 75.80

Nylon Bagging Film 2 yards 17.00

Vacuum Tubing 3 ft 4.35

Yellow Sealant Tape

2 rolls 27.80

TOTAL 499.65

Page 19: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

WEIGHT AND COST ANALYSIS

Component Cost ($)

EDF 129.95

Battery 509.99

Battery Charger 109.98

Woodworks LipoSack (Storage)

34.99

ESC 120.00

Transmitter/ Receiver

179.97

Industrial Strength Velcro

7.00

Fuselage Materials

$499.65

TOTAL 1591.53

Component Weight (lbs.)

EDF 0.862

Battery 2.05

ESC 0.242

Transmitter/ Receiver

0.033

Fuselage 1.977

TOTAL 5.164

Page 20: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

FUTURE WORK PLAN

Manufacture Fuselages Create Decision Matrix

Weight Measure using a scale

Efficiency How long will it run at full capacity in wind tunnel

Velocity Compare pressures using pitot-static tube

Page 21: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

ACKNOWLEDGEMENTS

1st Lieutenant Brewer Dr. Hovsapian Dr. Kosaraju Dr. Okoli Dr. Englander Dr. Ordonez Dr. Shih Dr. Horne Dr. Chuy Dr. Ahmed

Page 22: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

QUESTIONS

Page 23: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

RESOURCES "76mm Aluminum Alloy Electric Ducted Fan." Nitro RC Planes, Inc.

2010. Web. 05 Oct. 2010. <http://www.nitroplanes.com/lealalel76du.html>.

Cengel, Yunus A., and Robert H. Turner. Fundamentals of Thermal-fluid Sciences. 3rd ed. Boston: McGraw-Hill, 2001. Print.

Draganfly Innovations Inc. RCToys.com Sells RC Airplanes RC Blimps RC Helicopters & Parts. 2008. Web. 07 Oct. 2010. <http://www.rctoys.com/pr/category/rc-information/rc-hobby-parts-component-info/>.

"Electric Ducted Fan Jet." RC Hobby Universe Guide to RC Airplanes, Helicopters, Boats, Cars and Trucks! 2006. Web. 07 Oct. 2010. <http://www.rc-hobby-universe.com/electric-ducted-fan-jet.html>.

“Integrating GPS with MAVs.”<http://www.mil.ufl.edu/~number9/mav/>.

Marc De Piolenc, F. "Ducted Fan Design, Volume 1 (Revised)." Google Books. Web. 29 Nov. 2010. <http://books.google.com/books?id=YcAjcSSP4HMC&printsec=frontcover&dq=Ducted Fan Design Volume 1&source=bl&ots=WtfDi_ZHQZ&sig=4G6VIAKC63HnIZLlQMLFf56LTZ0&hl=en&ei=nYnoTID_GMP6lwewtLGcCw&sa=X&oi=book_result&ct=result&resnum=9&ved=0CEYQ6AEwCA#v=onepage&q=efficiency&f=false>.

“RC Hobby Universe.” <http://www.rc-hobby universe.com/electric-ducted-fan-jet.html>.

Page 24: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

Power Output

P 55A 22.2 V

P 1.221 103 W Peff P 0.8 Peff 1.31hp

1hp 745.7W 22.2V 1800rpm

V 3.996 10

4 rpm

Force on the Fan

Torque 33000Peff 2

Torque1 0.127N m

Dfan .0285mForce

Torque1

Dfan

area 0.001925m2

Force 4.456N

Pressure Drop across Fan

PressureForce

area Pressure 2.315 10

3 Pa 1.184kg

m3

Velocityout 2Pressure

Velocityout 62.532

m

s

Page 25: Final Fall 2010 Presentation November 30, 2010 Team # 3 Erica Cosmutto Hunter Metzger Joel Ware Kristina De Armas Michael Isaza Santiago Baus

Mass Flow through Duct

FSA 0.00364m2 FSA = fan sweep area

Mass flow Velocityout FSA

Mass flow 0.269kg

s

Velocity before Fan

Velocityfan

Mass flow

.005 m2

Velocityfan 45.523m

s

Velocity after the FanVelocity at Inlet

Velocityafter 62.53m

s

Velocityinlet 30m

s

Pressure Across Duct

Pressure atm 101325Pa

Pressure fan Pressure atm

1 Velocityfan2

2

Pressure fan 100.098kPa

Pressure inlet Pressure atm Velocityinlet

2

2 Pressure inlet 100.792kPa