filtekmultimedia.3m.com/mws/media/598060o/filtek-silorane... · 2012-02-06 · filtek tm silorane...

60
Filtek Low Shrink Posterior Restorative Study Booklet Silorane A Collection of Scientific Results

Upload: others

Post on 20-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

Filtek™

Low Shrink Posterior Restorative

Study Booklet

Silorane

A Collection of Scientific Results

Page 2: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

FiltekTM SiloraneIntroduction

Composite materials have been used in dental practices to restore teeth since the pioneering work of R. L. Bowen and the introduction of com-posites to the dental market by 3M in the early 1960s. Significant im-provements have been made since then. Composites are an essential part of today’s dentistry due to their versatile clinical use and high esthetics that allow the creation of virtually invisible restorations. It is striking that, over the years, polymerization shrinkage has been only incremen-tally reduced, and remains as one of the major drawbacks of composite materials. Shrinkage during curing results in stress which challenges the tooth/composite interface.

Previously, the main strategy to reduce shrinkage focused on increas-ing the filler loading. Significant improvements in filler technology have been achieved using nanotechnology which was introduced in 3M ESPE’s Filtek™ Supreme Universal Restorative product. However, shrinkage remains an intrinsic property of the methacrylate resin matrix which results in a dimensional change during polymerization.

We are very excited to introduce Filtek™ Silorane Low Shrink Posterior Restorative which uses a non-methacrylate resin matrix to realize a fundamental improvement in cure shrinkage.

Filtek™ Silorane resin is based on a new silorane chemistry comprised of ring-opening monomers that provide for low polymerization shrinkage. The new silorane system provides a direct solution to the long-standing customer need for low shrinkage.

During the development of the Filtek™ Silorane System researchers worldwide evaluated this break-through technology in numerous studies. More than 40 high quality studies have been performed proving Filtek™ Silorane’s excellent material properties, clinical performance and supporting its biocompatibility. Clinical studies continue to be carried out to investigate the long-term behavior.

Dr. Alfred Viehbeck Global Technical Director 3M ESPE

Page 3: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

3

FiltekTM SiloraneTable of Contents

Section Page

1. Introduction 4

�. Shrinkage and Stress 10

3. Tooth Deformation �4

4. Adhesion and Marginal Quality �7

5. Mechanical / Physical Properties 33

6. Biocompatibility and Bacterial Adhesion 48

7. Clinical Studies 55

Page 4: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

4

FiltekTM Silorane

1

1. Introduction

Rationale

Polymerization shrinkage and the resulting shrinkage stress, lead to microleakage which is among the major factors for composite material failures in the oral environment. Moreover, shrinkage stress can lead to tooth deformation, enamel cracks and stress-induced post-operative sensitivity (Figure 1). Materials which remain dimensionally stable upon polymerization, coupled with an advanced bonding to the enamel and dentin, will markedly enhance the stability of the restoration under functional stress.

Filtek™ Silorane Low Shrink Posterior Restorative is designed to mini-mize shrinkage and polymerization stress.

Figure 1: Clinical challenges associated with high shrinkage and polymerization stress.

adaptation

post-operative

sensitivity

marginal staining

microleakage

secondary caries

enamel micro-cracks

Page 5: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

5

FiltekTM Silorane

1

1. Introduction

Chemistry of the Resin System

The chemistry of dental restorative composites started in the late 1940s. Since then many technological developments have significantly improved the clinical performance of dental resin composites. However, the com-mon chemical basis for all restorative composites remained the radical polymerization of methacrylates or acrylates and nowadays composites practically all employ dimethacrylates such as TEGDMA, UDMA or Bis-GMA. The low-shrinking Filtek™ Silorane Low Shrink Posterior Restorative is based on the new ring-opening Silorane chemistry (Figure �) which is a totally new class of compounds for use in dentistry.

Figure 2: Silorane chemistry.

Outlined in detail by Weinmann et al. (�005) in a study cited on page 11, the name Silorane derives from its chemical building blocks siloxanes and oxiranes. Siloxanes are well known in industrial applications for their distinct hydrophobicity. By incorporating the siloxanes into the dental Silorane resin, this favorable property was transferred to the Filtek Silorane composite. Oxiranes have been used for a very long time in many technical fields, especially where high forces and a challenging physical environment are expected, such as in the manufacture of sports equipment like tennis rackets or skis, or in the automotive and aviation industries. The oxirane polymers are known for their low shrinkage and the outstanding stability toward many physical and chemophysical forces and influences. The combination of the two chemical building blocks of siloxanes and oxiranes provides the biocompatible, hydrophobic and low-shrinking Silorane base of Filtek Silorane Low Shrink Posterior Restorative. This innovative resin matrix represents the major difference of Filtek Silorane Low Shrink Posterior Restorative compared to con-ventional methacrylates. Also, the initiating system and the filler were adapted in order to provide the best performance of the new technology.

The Filtek™ Silorane System (bond, primer, restorative) was thoroughly evaluated for its biocompatibility and was found to be safe for its

Siloxane

Oxirane

Silorane

Page 6: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

6

FiltekTM Silorane

1

1. Introduction

intended use.We used industry standards and internationally-accepted guidelines to conduct our biocompatibility assessment on both the finished product and its ingredients. The assessment included a series of tests and a review of published toxicity literature on ingredients, in addition to characterization of product materials and performance. The biocompatibility of Filtek™ Silorane was confirmed by a variety of external studies. Some key studies you will find summarized in the sec-tion Biocompatibility and Bacterial Adhesion of this booklet.

Figure 3: Composition of Filtek™ Silorane Low Shrink Posterior Restorative.

Ring-Opening PolymerizationFigure 4 illustrates the reactive groups of the monomers for both meth-acrylates and siloranes.

The polymerization process of methacrylate-based resins occurs via radical addition reaction of their double bonds, which results in higher polymerization contraction compared to the cationic ring-opening polymerization of the siloranes.

The ring-opening step in the polymerization of the silorane resin compensates a significant amount of the polymerization shrinkage which occurs in the curing process. The reduced amount of shrinkage is illustrated schematically in Figure 4. During the polymerization process of methacrylates, molecules have to approach their “neighbors” to form chemical bonds. This process results in a loss of volume, namely polymerization shrinkage. In contrast to the linear-reactive groups of methacrylates, the ring-opening chemistry of the Siloranes starts with the cleavage and opening of the ring systems. This process gains space and counteracts the loss of volume which occurs in the subsequent step, when the chemical bonds are formed. In total, the ring-opening polymerization process yields a reduced volumetric shrinkage.

Page 7: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

7

FiltekTM Silorane

1

1. Introduction

Figure 4: Reactive sites of Silorane and methacrylates and corresponding shrinkage reduction upon polymerization.

Besides shrinkage, another parameter of paramount importance to the performance of a restorative material is polymerization stress. Poly-merization stress is generated when composites are cured in the bonded state and the polymerization shrinkage develops forces within the cavity walls. The rigid tooth structure will withstand these forces to a certain degree, however, these tensions can lead to marginal gaps or to damage of healthy tooth structure by its deformation. These forces or tensions are summarized under the term “polymerization stress.”

Silorane technology was developed to minimize shrinkage and for low stress development. The kinetics of the initiation and polymerization of the Filtek Silorane resin were optimized to provide very low polymer-ization stress. The minimal shrinkage and polymerization stress were evaluated extensively as reflected in the many studies on shrinkage and stress provided in this study booklet. The uniqueness of Filtek Silorane Low Shrink Posterior Restorative is nicely visualized for example by Prof. Watts in the study “Correlation of Shrinkage and Shrinkage Stress” (page 10). Prof. Bouillaguet modeled the impact of shrinkage stress on the tooth with a very sophisticated method that measures the movement of the cusps towards each other while the resin cures in the cavity (page �4).

Oxirane

Methacrylate

Silorane – Volumetric Shrinkage < 1%1

Methacrylate – Volumetric Shrinkage

Page 8: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

8

FiltekTM Silorane

1

1. Introduction

At the same time Filtek™ Silorane Low Shrink Posterior Restorative provides mechanical properties expected from a state-of-the art compo-site in terms e. g. flexural strength or E-modulus. Moreover, based on the Silorane network which is more hydrophic than that of meth-acrylates Filtek Silorane exhibits a very low water uptake and proved to be very stable against chemical challenges representive of the diet. Many studies illustrating these favorable properties can be found in the chapter „Mechanical Properties“ in this study booklet.

Initiator SystemOne component of the initiating system is the well established camphor quinone, which matches the light spectrum of Halogen and LED dental polymerization light sources. Unique components of the Filtek Silorane initiating system are iodonium salts and electron donors, which generate the reactive cationic species that start the ring-opening polymerization process.

The initiating system of Filtek Silorane Low Shrink Posterior Restor-ative was tailored so that the resulting polymerization kinetics leads to a minimized polymerization stress but provides another major advantage: it allows the practitioner to work longer under full operatory light than with any conventional methacrylate-based composite which is illustrated impressively by a study on page 46.

Filler TechnologyFiltek Silorane Low Shrink Posterior Restorative is filled with a com-bination of fine quartz particle and radiopaque yttrium fluoride. From the filler side, Filtek Silorane restorative is classified as a microhybrid composite. The quartz surface is modified with a silane layer which was especially adopted to the Silorane technology in order to provide the proper interface of the filler to the resin for long-term, excellent mechanical properties.

Figure 5: Initiation chemistry for Siloranes.

Page 9: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

9

FiltekTM Silorane

1

1. Introduction

Silorane System Adhesive – the one and only adhesive system for Filtek™ Silorane Low Shrink Posterior Restorative

Silorane System Adhesive has been specially designed to provide strong and long-lasting bonding of Filtek Silorane™ Low Shrink Posterior Restorative to enamel and dentin, providing the basis for excellent mar-ginal integrity of the restorations.

Filtek Silorane is more hydrophobic than conventional methacrylate resins. That means the Silorane System Adhesive has to bridge a larger gap between the hydrophilic tooth substrate and the hydropho-bic silorane material. Therefore, Silorane System Adhesive has been designed as a two-step adhesive:

• Silorane System Adhesive Self-Etch Primer is methacrylate-based and rather hydrophilic for good wetting of the tooth which provides the basis for strong and durable adhesion to the tooth.

• Silorane System Adhesive Bond is also methacrylate-based and optimized for wetting and adhering to the hydrophobic Filtek Silorane Low Shrink Posterior Restorative.

Chemical bonding between Silorane Self-Etch Adhesive and Filtek Si-lorane Low Shrink Posterior Restorative is ensured by hybrid molecules that can react with both methacrylates in the adhesive and the Siloranes in the restorative. These hybrid molecules are crucial for achieving high bond strength with the Silorane composite.

Due to the unique chemistry of Filtek Silorane it may only be used with its dedicated Silorane System Adhesive.

Figure 6: Mechanism of chemical bonding between Silorane System Adhesive Bond and Filtek Silorane Low Shrink Posterior Restorative.

Acidic Monomerof Silorane System

Adhesive Bond

Curingof Adhesive

OxiraneGroup

Applicationand Curing

of Filtek™ SiloraneRestorative

Chemical Bondbetween Adhesive

and Composite

Page 10: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

10

FiltekTM Silorane

2

�. Shrinkage and Stress

Volumetric Shrinkage and Polymerization Stress

Title: Correlation of Volumetric Shrinkage and Shrinkage Stress for Dental Composites Executed by: D. C. Watts, University of Manchester, UK Unpublished data

Aim of the study: Shrinkage stress during polymerization of dental composites can lead to marginal gaps, tooth deformation, enamel cracks and even tooth hypersensitivity. The aim of this study was to character-ize the development of volumetric shrinkage and shrinkage stress for Filtek Silorane in comparison to methacrylate based composites.

Results: Filtek™ Silorane Low Shrink Posterior Restorative revealed significantly lower volumetric shrinkage and polymerization shrinkage stress values than the methacrylate based composites tested.

Shrinkage Stress (Bioman method) and Polymerization Shrinkage (Bonded Disc Method)

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3

Shrinkage [%]

Stre

ss [M

Pa]

Filtek™ Silorane

Venus™

TPH®3EsthetX ®

CeramX™

Herculite XRV™Tetric EvoCeram®

Premise™ELS® Filtek™ P60

Estelite® Sigma

Quixfil™Grandio®

XtraFil™

Page 11: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

11

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Shrinkage

Title: Siloranes in dental composites Published by: W. Weinmann, C. Thalacker and R. Guggenberger, 3M ESPE, Seefeld, Germany Published in: Dental Materials (�005) �1, 68-74

Aim of the study: The purpose of this study was to compare the product profile of a Silorane-based composite which polymerizes by a cationic ring opening process with the product profile of different methacrylate based restoratives.

Results: The Silorane composite revealed with 0.94 vol% (bonded disc method) and 0.99 vol% (Archimedes method) the lowest polymerization shrinkage among all composites tested. Its reactivity was comparable to the reactivity of Tetric™ Ceram. However, the ambient light stability of >10 min for Silorane was higher than the ambient light reactivity of the other tested methacrylates (55–90 s). The ring opening chemistry of the Siloranes enables for the first time shrinkage values lower than 1 vol% and mechanical parameters as E-Modulus and flexural strength compa-rable to those of clinically well accepted methacrylate based composites.

Correlation of Polymerization Shrinkage (Bonded Disc Method and Archimedes Method)

0.5

1

1.5

2

2.5

3

3.5

4

0.5 1 1.5 2 2.5 3

Bonded disc shrinkage [%]

Arch

imed

es s

hrin

kage

[%]

Filtek™ Silorane

Filtek™ Z250

QuiXfil™

Aelite™ LS

Tetric™ Ceram

Spectrum® TPH®

Solitaire® 2

Note: The study summarized on page 46 shows that Filtek Silorane provides up to 9 min working time under operatory light illumination (ISO 4049)

Page 12: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

1�

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Shrinkage

Title: Determination of Volumetric Shrinkage by means of a Video Imaging Method (AccuVol) Executed by: J. Burgess, USA Unpublished data

Aim of the study: This study compared the volumetric shrinkage of Filtek Silorane with methacrylate-based composites by means of a video imaging method (AccuVol).

Results: Filtek™ Silorane Low Shrink Posterior Restorative revealed significantly lower polymerization shrinkage values than the methacry-late-based composites.

Polymerization Shrinkage (AccuVol Method)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filte

k™ S

ilora

ne

Helio

mol

ar®

Filte

k™ Z

250

Sure

Fil™

Z100

™He

rcul

ite X

RV™

Venu

s™

Esth

etX

®

Rena

mel

®M

iris

® Den

tinPo

int 4

Shrin

kage

[Vol

%]

Page 13: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

13

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Shrinkage

Title: Parameters Influencing the Shrinkage Determination by Mercury Dilatometry Published by: G. Rackelmann, W. Weinmann, J. Hansen and A. Anderski 3M ESPE AG, Seefeld, Germany Published at: IADR �006, Brisbane, Australia, Abstract #�461

Aim of the study: Polymerization shrinkage can be measured by mercury dilatometry. This study investigates the influence of sample weight and recording time on the shrinkage values as determined by mercury dilatometry.

Results: Shrinkage determination by mercury dilatometry is highly dependent on sample weight and recording time. Lower sample sizes result in higher shrinkage values. Even the 500 mg samples are very likely too small which results in unrealistic high shrinkage values. Recording time should be at least 1� h. Filtek Silorane revealed the lowest shrinkage within all sample weights, whereas QuiXfil and Filtek™ Z�50 showed the same higher shrinkage values. Filtek™ Silorane Low Shrink Posterior Restorative revealed the lowest within all sample weights and reaches its final shrinkage earlier than Filtek Z�50.

Sample weight and shrinkage (Mercury Dilatometry)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Silo

rane

Helio

mol

ar

Palfi

que

Z250

Sure

Fil

Z100

XRV

Herc

ulite

Venu

s

Esth

et X

Rena

mel

Miri

s De

ntin

Poin

t 4

Poly

mer

izatio

n Sh

rinka

ge [%

]

60

70

80

90

100

0 5 10 15 20 25 30time [h]

Rela

tive

shrin

kage

(24

h =

100%

) [%

]

Filtek™ Z250Filtek™ Silorane

Recording time and relative shrinkage (Mercury Dilatometry)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Abso

lute

vol

umet

ric s

hrin

kage

[%]

Filtek™ Silorane Filtek™ Z250

100 mg300 mg500 mg

Page 14: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

14

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Shrinkage

Title: Volumetric Shrinkage of “Low Shrinkage” Composite Resins Published by: T. M. Palmer, T. F. Gessel, C.C. Christensen, S. J. Melona-kos, and B. J. Ploeger, Clinical Research Associates, Provo, UT, USA Published at: IADR �005, Baltimore, USA, Abstract #0�96

Aim of the study: Compare volumetric shrinkage of conventional composite resins and an experimental silorane resin using mercury dilatometry.

Results: Filtek™ Silorane Low Shrink Posterior Restorative exhibited the lowest shrinkage of all materials tested.

Volumetric Shrinkage (Mercury Dilatometry)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

0.5

1.0

1.5

2.0

2.5

3.0

Filte

k™ S

ilora

ne

Nulit

e™He

liom

olar

®Es

telit

e® S

igm

a

Aelit

e™ ELS

Filte

k™ S

upre

me

Herc

ulite

XRV

™Sp

ectru

m® T

PH®

Tetri

c™ C

eram

Shrin

kage

[%]

Page 15: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

15

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Shrinkage

Title: Historical Evolution of Volumetric Polymerization Shrinkage of Restorative Composites Published by R. Guggenberger, W. Weinmann, O. Kappler, J. Fundings-land, and C. Thalacker, 3M ESPE AG, Seefeld, Germany Published at: IADR �007, New Orleans, USA, Abstract #0403

Aim of the study: The purpose of this study was to determine the poly-merization shrinkage of filling materials and analyze the importance of this shrinkage to dentistry. Therefore, volumetric shrinkage was deter-mined (Archimedes method) for composites introduced since 1993.

Results: The development over the last decade reveals that the manu-facturers are working on low shrink composites. However, only a slight decrease was achieved (average decrease 0.05 %/year), because meth-acrylates as the chemical basis for all available composites remained unchanged. In contrast Filtek™ Silorane Low Shrink Posterior Restor-ative with its ring opening polymerization monomer enables significant shrinkage reduction.

Material Manufacturer Shrinkage [%] (Deviation)* Year of Introduction

Herculite™ XRV Kerr 2.78(0.10)ef 1993

Tetric Ceram Ivoclar-Vivadent 2.98(0.08)fg 1996

Spectrum® TPH Dentsply 3.49(0.47)h 1996

Solitaire® Heraeus-Kulzer 3.71(0.09)h 1997

SureFil™ Dentsply 2.36(0.05)bcde 1998

Definite® Degussa/Dentsply 2.45(0.19)cde 1998

Alert Jeneric Pentron 2.48(0.16)cde 1998

Prodigy® Condensable® Kerr 2.54(0.15)de 1998

Filtek™ P60 3M ESPE 2.13(0.13)abcd 1999

Filtek™ Z250 3M ESPE 2.14(0.04)abcd 1999

In-TenS® Ivoclar-Vivadent 2.14(0.02)abcd 2001

Aelite™ LS Bisco 2.29(0.23)bcd 2002

Filtek™ Supreme 3M ESPE 2.32(0.03)bcd 2002

Venus™ Heraeus-Kulzer 3.05(0.06)fg 2002

EsthetX® Dentsply 3.37(0.26)gh 2002

Grandio® VOCO 2.10(0.23)abc 2003

QuiXfil™ Dentsply 2.12(0.13)abcd 2003

ELS (Extra Low Shrinkage) Saremco 2.39(0.32)bcde 2003

Solitaire 2 Heraeus-Kulzer 3.64(0.05)h 2003

Premise™ Kerr 1.80(0.22)a 2004

TPH3® Kerr 3.48(0.32)h 2004

Tetric™ EvoCeram® Ivoclar-Vivadent 2.03(0.02)ab 2005

Filtek™ Silorane 3M ESPE 0.99(0.07) future

* Volumetric shrinkage as determined by the Archimedes method. Identical superscript letter indicate no statistical difference.

Page 16: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

16

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress

Title: Polymerization Contraction Stress of Filtek Silorane and Methacrylate-based Composites. Executed by: T. DeGee and A. Feilzer, University of Amsterdam (ACTA), The Netherlands Unpublished data

Aim of the study: Contraction stress during polymerization of dental composites can lead to marginal gaps, tooth deformation, enamel cracks or even hypersensitivity. This study determined the polymerization shrinkage stress of Filtek Silorane and methacrylate based composites by means of a tensilometer. In this device the composite samples are bonded between a glass and a metal plate. During polymerization the shrinkage stress is recorded over time by a load cell connected to the metal plate.

Results: Filtek™ Silorane Low Shrink Posterior Restorative revealed significantly lower polymerization shrinkage stress than the methacry-late composites tested.

Polymerization Stress (Tensilometer Method)

0

2

4

6

8

10

12

14

16

18

0 300 600 900 1200 1500 1800

Time [sec]

Stre

ss [

MPa

]

Quixfil™

Spectrum® TPHTetric Ceram®

Filtek™ Z250Filtek™ SupremeFiltek™ Silorane

Page 17: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

17

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress

Title: Determination of polymerization shrinkage stress by means of a photoelastic investigation. Published by: C. P. Ernst, G. R. Meyer, K. Klocker and B. Willershausen, University of Mainz, Germany. Published in: Dent Mat �004;�0(4):313-�1

Aim of the study: This study examined the polymerization stress of different established and experimental composite resins which have been claimed to exhibit less polymerization shrinkage by means of a photo-elastic investigation.

Results: After 4 min and �4 h Filtek™ Silorane Low Shrink Posterior Restorative showed a significantly lower polymerization stress than the other materials tested. Except for Filtek Silorane all materials showed a statistically significant increase in polymerization force after �4 h. compared to the results after 4 min.

Polymerization Stress (Photoelastic Method)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

1

2

3

4

5

6

Tetri

c® C

eram

Esth

etiX

®

Filte

k™ Z

250

Clea

rfil®

AP-

XPr

odig

y® C

onde

nsab

leFi

ltek™

P60

Sure

Fil™

Clea

rfil®

Pho

to P

oste

rior

Solit

aire

® 2In

Ten-

Filte

k™ S

ilora

ne

Poly

mer

izat

ion

Stre

ss [M

Pa] t = 4 min

t = 24 hr

Page 18: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

18

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress

Title: Light-Source, Material and Measuring-Device Effects on Contraction Stress in Composites Published by: L. Musanje, R. L. Sakaguchi, J. L. Ferracane and C. F. Murchison, Oregon Health & Science University, Portland, USA Published at: IADR �005, Baltimore, USA, Abstract #0�94

Aim of the study: The aim of this study was to evaluate contraction stress values of three methacrylate composites and Filtek Silorane as a function of the light-source and testing device (closed-loop-servo-hydraulic testing system, Bioman, Low Compliance Device)

Results: Filtek™ Silorane Low Shrink Posterior Restorative showed significantly lower contraction stress values than the methacrylate based composites independent of the light-source in the low compliance test-ing device.

Polymerization Stress (Low Compliance Device) as determined with different curing lights

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

1

2

3

4

5

Stre

ss [M

Pa]

Tetric™ Ceram Filtek™ Z250 Heliomolar Filtek™ Silorane

VIP Freelight 2 contin. Freelight 2 ramp

Page 19: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

19

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress and Mechanical Properties

Title: Polymerization contraction stress in light-cured composite restorative materials Executed by: K. Gonczowski1, A.Visvanathan�, N. ILIE�, and K.-H. Kunzelmann�, 1Jagiellonian University, Krakow, Poland �University of Munich, Germany Published at: CED �005, Amsterdam, The Netherlands, Abstract #0346

Aim of the study: High contraction stress as well as early start of stress build-up and rapid contraction force development in the composite materials may be the reasons for failures of bond to tooth structure. The purpose of the present study was assessment of the polymerization stress and the mechanical properties of different types of composites.

Results: The results of the study indicate that the polymerization stress and mechanical properties of the silorane composite are generally supe-rior in maintaining the balance between the high mechanical resistance and good kinetic behavior compared to the other composite materials.

Polymerization Stress (Stress-Strain Analyzer)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

1

2

3

4

5

6

7

Stre

ss [M

Pa]

Filte

k™ S

ilora

neTe

tric™

Evo

Cera

m

Cera

mX

Filte

k™ S

upre

me

Filte

k™ Z

250

Dyra

ct™ X

tra

QuiX

fil™

Gran

dio™

Page 20: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�0

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress and Curing Lights

Title: Low shrinkage composite for dental application Published by: N. Ilie, E. Jelen and R. Hickel, University of Munich, Germany Published at: IADR �007, New Orleans, USA, Abstract #0398

Aim of the study: The purpose of this study was to analyse the shrink-age behaviour of an innovative composite material for dental restoration based on a monomer with a new chemical formulation – Silorane with a focus on the the influence of the irradiation regime.

Results: Filtek Silorane Low Shrink Posterior Restorative reveals low polymerization stress values in comparison to regular methacrylate composites; nevertheless stress due to thermal contraction after the end of the light exposure is not negligible and can be additionally reduced by applying the appropriate curing strategy.

Curing unit Regime Time [s] Energy density [J/cm²]

Polymerization stress [MPa]

Gradient m

Mini L.E.D. (Satelec) Serial No.:114-6064

Fast-cure

10 8.26 1.9abc(0.4)

1.0B(0.1) 20 1996 2.2bc(0.5)

40 1996 2.4c(0.2)

Pulse

12 1997 1.4a(0.2)

0.7A(0.2) 24 1998 1.8abc(0.2)

48 1998 2.3c(0.2)

Step-cure 20 1998 1.6ab(0.3) 0.7A(0.2)

Bluephase (Ivoclar Vivadent) Serial No.: 1547581

HIP (High Power)

10 1998 2.3c(0.5)

2.1C(0.3)* 20 1999 3.5d(0.4)

40 1999 4.4e(0.6)

*identical superscript letter indicate no statistical difference, ANOVA (· = 0.05) and post-hoc Tukey’s test.

Polymerization Stress in relation to different curing strategies

Page 21: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�1

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress

Title: Shrinkage stress of new experimental low shrinkage resin composites Published by: A. Schattenberg, G. R. Meyer, B. Willershausen, and C. P. Ernst, University of Mainz, Germany Published at: IADR �007, New Orleans, USA, Abstract #041�

Aim of the study: Low shrinkage resin composites are the focus of research in posterior resin composite restoratives. The aim of this study was to examine the polymerization shrinkage stress of experimental low shrinkage resin composites (K015�/Dentsply, NEUN/Heraeus, Hermes/3M ESPE) in comparison to new and established low shrinkage resin composites (Tetric EvoCeram/Ivoclar Vivadent, QuiXfil/ DENTSPLY, Xtrafil/VOCO).

Results: New low shrinkage resin composite formulations are able to show a significantly reduced shrinkage stress compared to most of the conventional resin composites investigated. After �4h, the experimental silorane restorative Hermes showed the lowest polymerization shrinkage stress.

Polymerization Stress (Photoelastic Investigation) of Low Shrinkage Composites

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

1

2

3

4

5

Shrin

kage

Str

ess

[MPa

]

Tetric™ EvoCeram

QuiXfil™ Xtrafil™ K0152 NEUN Hermes

Note: The material Hermes corresponds to Filtek™ Silorane.

Page 22: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

��

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress

Title: Shrinkage-Stress Kinetics of Silorane versus Dimethacrylate Resin-Composites Published by: D. C. Watts, and M. A. Wahbi, University of Manchester, UK Published at: IADR �005, Baltimore, USA, Abstract #�680

Aim of the study: Silorane-based monomers have been developed as an alternative to dimethacrylate monomers as the matrix phase of composites. The aim was to characterise the kinetics of polymerization shrinkage-stress for this silorane composite system.

Results: Filtek Silorane Low Shrink Posterior Restorative had signifi-cantly lower maximum-stress values (�.08 +/-0.03) than the methacry-late which ranged from 4.7 to 7.0 M.Pa. Maximum shrinkage-stress-rates for dimethacrylates were from 0.51 to 1.�8 M.Pa s-1, but only 0.07 M.Pa s-1 for the silorane. A considerable reduction in both shrinkage-stress magnitude and in peak-stress-rate was apparent with the silorane composite, as compared to established dimethacrylate materials. This class of material should be adequately irradiated – at or above, 500 mWcm-� – to achieve optimum properties of, and stress-transfer by the matrix.

Page 23: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�3

FiltekTM Silorane

2

�. Shrinkage and Stress

Polymerization Stress

Title: Simulation of Spatial Distribution of Polymerization Stress Executed by: A. Versluis, University of Minnesota, USA Unpublished data

Aim of the study: The purpose of this study was to compare the spatial distribution of polymerization stress of QuiXfil and Filtek Silorane by Finite Element Analysis.

Results: The simulation shows absence of high stress “gray” areas where enamel cracks and leakage at the margin can occur.

MPa 50

0

Restoration: Filtek™ Silorane Restoration: QuiXfil™

Most stress

Least stress

Finite element analysis of Filtek Silorane and QuiXfil restorations

Page 24: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�4

FiltekTM Silorane

3

3. Tooth Deformation

Cusp Movement during Polymerization

Title: ESPI Analysis of Tooth Deformation during Polymerization of Siloranes Published by: S. Bouillaguet1, J. Gamba�, J. Forchelet�, I. Krejci1 and J. C. Watanabe3, 1University of Geneva, Switzerland, �School of Engineer-ing, Yverdon, Switzerland, 3Medical College of Georgia, USA Published in: Dental Materials (�006) ��: 896-90�

Aim of the study: In the current study, electronic speckle pattern inter-ferometry (ESPI) was used to measure tooth deformation in response to polymerization of five resin composites with a range of polymerization shrinkage. The hypothesis was that composites with higher polymeriza-tion shrinkage should cause more cuspal strain as measured by ESPI.

Results: The rate of polymerization shrinkage appeared to mediate the development of cuspal strain. Filtek™ Silorane Low Shrink Posterior Restorative showed the lowest shrinkage value and induced the least tooth deformation.

Cusp Displacement (ESPI)

Note: The material Hermes corresponds to Filtek Silorane.

Cusp

Dis

plac

emen

t (m

icro

ns)

8

7

6

5

4

3

2

1

00 50 100 150 200

Time (sec)

Page 25: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�5

FiltekTM Silorane

3

3. Tooth Deformation

Cusp Movement

Title: Cusp Movement During Polymerization Using Experimental Low-Shrinkage Composites Published by: G. A. Laughlin and R. Sakaguchi, Oregon Health & Science University, Portland, USA Published at: IADR �005, Baltimore, USA, Abstract #06��

Aim of the study: One of the most significant adverse characteristics of currently used composite restorative materials is polymerization shrink-age. Materials formulated from novel monomer systems have been sug-gested as alternatives, and have produced significantly lower shrinkage and stress in various in vitro experiments. The objective of this study was to determine if trends observed in these experiments would be seen in a more clinically relevant application, such as in restoring extracted teeth.

Results: The findings were consistent with previous shrinkage and stress results for these composites. The relatively high shrinkage Bis-GMA composite caused more cusp deflection due to shrinkage than the experi-mental lower shrinkage composites. This preliminary study suggests that the reduction in polymerization shrinkage of new composite systems could result in dramatic differences in their clinical performance.

Cusp movement as determined by microstrain (µε) ten minutes after polymerization

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

–200

20406080

100120140160180200

Mic

rost

rain

Filtek™ Z250 Oxirane Filtek™ Silorane

Note: Oxirane is an experimental material not available on the market.

Page 26: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�6

FiltekTM Silorane

4

4. Adhesion and Marginal Quality

Tensile Bond Strength

Title: Bond Strength of Filtek™ LS System to Tooth Structure Published by: R. Yapp and J. M. Powers, Dental Consultants, Inc., USA Published in: The Dental Advisor 1�, August �007

Aim of the study: The purpose of this study was to evaluate the in-vitro bond strengths of Filtek™ LS Low Shrink Posterior Restorative in combination with its dedicated adhesive and other commercial resin composites with total-etch and self-etch bonding agents to human tooth structure.

Results: The Filtek LS System (Filtek LS Restorative / LS System Adhesive) bonded equally well in vitro to both human cut enamel and superficial dentin and had tensile bond strengths that were equal to or better than several commercial resin composites bonded with total-etch and self-etch bonding systems.

Strength of Adhesion (Tensile Bond Strength)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

5

10

15

20

25

Clea

rfil®

SE

Bond

/ Cl

earfi

l® A

PX

Optib

ond

® All-

in-O

ne /

Prem

ise™

LS S

yste

m A

dhes

ive /

Filte

k™ L

S

Prim

e &

Bond

® NT™

/ Es

thet

-X®

Adhe

SE® /

Tetri

c Ev

oCer

am®

Futu

rabo

nd N

R / G

rand

io®

Xeno

® III /

Qui

xFil™

Stre

ss [M

Pa]

Cut EnamelSuperficial Dentin

Note: Filtek LS System (Filtek LS Restorative / LS System Adhesive) corresponds to Filtek Silorane System (Filtek Silorane Restorative / Silorane System Adhesive)

Page 27: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�7

FiltekTM Silorane

4

4. Adhesion and Marginal Quality

Tensile Bond Strength

Title: Adhesion of Silorane System Adhesive to Enamel and Dentin Executed by: J. Fischer, B. Stawarczyk, University of Zurich, Switzerland Unpublished data

Aim of the study: The purpose of this study was to evaluate the adhe-sion of Silorane System Adhesive in combination with Filtek Silorane and methacrylate-based systems after water storage (H�O, �4 h) and thermocycling (TC, 1500 cycles, 5 °C / 55 °C).

Results: The adhesion of the Filtek Silorane Restorative System to enamel and dentin after water storage and thermocycling was in the range of clinically proven restorative systems.

Reliability of adhesion (tensile bond strength after water storage [H2O] and thermocycling [TC])

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

10

20

30

40

50

Bond

Str

engt

h [M

Pa]

Filtek™ Silorane/Silorane System Adhesive

Tetric™ EvoCeram/Adhese

Clearfil™ AP X/Clearfil™ SE

Enamel H2OEnamel TCDentin H2ODentin TC

Page 28: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�8

FiltekTM Silorane

4

4. Adhesion and Marginal Quality

Film Thickness

Title: Film Thickness of Adhesives for Silorane and Methacrylate Restorative Composites Published by: C. Thalacker, K. Dede, W. Weinmann, R. Guggenberger, T. Luchterhandt and O. Kappler, 3M ESPE AG, Seefeld, Germany Published at: IADR �007, New Orleans, #�003

Aim of the study: The goal of this study was to compare the film thickness of the filled two-step self-etch adhesive for a cationic curing Silorane based filling material with a polymerization shrinkage of <1% (Bonded Disc Method) to that obtained with filled adhesives for conven-tional methacrylate composites.

Results: Silorane Bond showed a comparable film thickness to Clearfil SE Bond and a significantly lower film thickness than Optibond FL. The filled adhesives investigated in this study provided relatively homo-geneous films.

Film Thickness of Silorane System Adhesive and Marketed Materials

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

10

20

30

40

50

60

Film

Thi

ckne

ss [M

Pa]

Filtek™ Silorane/Silorane Bond

Clearfil™ AP X/Clearfil™ SE

Premise™ /Optibond FL

Page 29: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

�9

FiltekTM Silorane

4

4. Adhesion and Marginal Quality

SEM Marginal Evaluation

Title: Chewing Simulation of Silorane and Methacrylate Restorations Published by: O. Kappler, H. Loll, W. Weinmann and C. Thalacker, 3M ESPE AG, Seefeld, Germany Published at: CED �007, Thessaloniki, # 0537

Aim of the study: The goal of this study was to compare the marginal integrity of a cationic curing silorane composite with a polymerization shrinkage of <1% (bonded disc method) in combination with its self-etching system adhesive with conventional methacrylate systems before and after chewing simulation.

Results: The combination Filtek™ Silorane Low Shrink Posterior Restorative/Silorane System Adhesive resulted in a significantly higher percentage of continuous margins before and after chewing simulation than the methacrylate systems tested.

Marginal Integrity before and after chewing simulation (thermocycling with cyclic loading)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

20

40

60

80

100

% c

ontin

uous

mar

gin

(ena

mel

and

den

tin)

Tetric™ EvoCeram/AdheSE

QuiXfil™/Xeno III Filtek™ Silorane/Silorane System Adhesive

beforeafter

Page 30: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

30

FiltekTM Silorane

4

4. Adhesion and Marginal Quality

SEM Marginal Evaluation

Title: Marginal Integrity of the Filtek Silorane System and self-etch adhesives in class I cavities Executed by: U. Blunck, Charité, Berlin, Germany Unpublished data

Aim of the study: Adhesive systems are used to improve the marginal seal of composite resin restorations at the interface to enamel and dentin. In the current study the marginal seal to enamel was tested in Class I cavities by SEM analysis of replicas. The Filtek Silorane System consisting of the self-etching Silorane System Adhesive and Filtek Silorane Restorative was compared to several current self-etch adhesives in combination with methacrylate-based composites.

Results: Filtek Silorane System showed only little gap formation before and after thermocycling in comparison to the reference materials. It can be concluded that the tested two-step self-etch adhesive, Silorane System Adhesive, in combination with Filtek Silorane Restorative is effective in the marginal adaptation in enamel of Class I restorations.

Marginal Gaps before and after thermocycling (TC)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0 0* 0* 0*

10

20

30

40

50

60

Mar

gina

l Gap

[%]

before TCafter TC

Filte

k™ S

ilora

ne S

yste

mG-

Bond

/ Gr

adia

™ D

irect

Pos

terio

rAd

hese

/ Te

tric™

Evo

Cera

mFu

tura

bond

NR

/ Gra

ndio

Xeno

™ II

I / Q

uixf

il™On

e up

Bon

d / E

stel

ite S

igm

a

* A value of “0” indicates that no gaps were detected

Page 31: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

31

FiltekTM Silorane

4

4. Adhesion and Marginal Quality

Microleakage

Title: Microleakage Evaluation of a New Low-shrinkage Composite Restorative Material Executed by: PCV Yamazaki, AKB Bedran-Russo, PNR Pereira, EJ Swift Jr Published in: Operative Dentistry, �006, 31-6, 670-676

Aim of the study: This study compared the microleakage of an experimental low-shrinkage resin composite (Hermes), a nanofilled resin composite material (Filtek Supreme) and a hybrid resin composite (Tetric Ceram) using a dye penetration in Class I cavities.

Results: Incremental placement remains the preferred restorative technique for direct composites. To reduce the effects of polymerization shrinkage on marginal quality, the low shrink Hermes system might become a good alternative in clinical practice.

Note: The material Hermes corresponds to Filtek Silorane Restorative which was applied with an experimental adhesive.

Page 32: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

3�

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Degree of Conversion

Title: Silorane-based Dental Composite: Behavior and Abilities Executed by N. Ilie and R. Hickel, University of Munich, Germany Published in: Dental Material Journal (�006) �5: 445-454

Aim of the study: The purpose of this study was to examine the char-acteristics of an innovative composite material for dental restorations based on silorane. Degree of conversion was determined at � mm and 6 mm depth as a function of curing regimes.

Results: Siloranes exhibit good mechanical properties comparable to those of clinically successful methacrylate-based composite materials. No differences in degree of cure were noted at � mm and 6 mm depth with the tested curing units.

Type Curing unit Regime Time [s] DC [2 mm] DC [6 mm] (layered in 3 increments)

LED

Mini L.E.D. (Satelec) Serial No.: 114-6064

Fast-cure102040

60.2cdef (2.7) 61.3fgh (2.1) 66.8lm (3.0)

57.3abc (4.4) 62.5fghij (2.2) 64.6ijklm (1.1)

Pulse122448

56.8ab (4.5) 64.3hijklm (2.7) 66.4lm (2.7)

55.3a (5.5) 61.6fgh (2.5) 64.0ghijklm (1.0)

Step-cure 20 64.4hijklm (6.2) 57.0ab (1.5)

Bluephase (Ivoclar Vivadent) Serial No.: 1547581

HIP102040

60.6ef (3.1) 61.9fghi (2.7) 64.9jklm (4.9)

57.6abcd (1.9) 58.2bcde (3.2) 60.5ef (3.2)

Freelight 2 (3M ESPE) Serial No.: 939820013826

Standard102040

62.4fghij (1.4) 65.6klm (1.9) 66.5lm (2.8)

57.5abcd (2.8) 63.7ghijkl (1.9) 64.7ijklm (2.9)

HalogenAstralis 10 (Ivoclar Vivadent) Serial No.: 013336

HIP102040

60.5ef (4.5) 63.0fghijk (2.3) 64.9jklm (4.2)

55.8ab (3.4) 58.2bcde (1.1) 60.3def (1.1)

Superscript letters indicate statistically homogenous subgroups “Tukey’s HSD test” 0.05.

Degree of Conversion of Filtek Silorane as determined by different curing regimes

Page 33: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

33

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Degree of Conversion and Shrinkage Stress

Title: Degree of Conversion and Shrinkage Stress of Silorane Composite Published by: H. M. EL-Damanhoury1, B. K. Moore1, A. N. Habib�, M. A. AL-Hassan� and N. M. Aboul-Enein3, 1Indiana University, Indianapolis, USA, �University of Cairo, Egypt, 3Suez Canal University, Ismalia, Egypt Published at: IADR �007, New Orleans, Abstract #�68�

Aim of the study: Silorane-based composite was introduced as a restor-ative material with lower polymerization shrinkage stress. The purpose of this study was to evaluate the effect of utilizing two different light sources on the degree of conversion (DC) and the polymerization shrink-age stress of the silorane-based composite Filtek Silorane and compare them to methacrylate-based composites.

Results: Silorane-based composites showed significantly lower shrink-age stresses than any of the other tested materials, while the degree of conversion was not significantly different.

Degree of Conversion and Shrinkage Stress with Two Different Curing Systems

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

56

58

60

62

64

66

68

70

72

Degr

ee o

f Con

vers

ion

[%]

Shrin

kage

Str

ess

[MPa

]

Filtek™ Silorane Prisme Aelite™ Filtek™ Z250

2.5

2

1.5

1

0.5

0

Degree of Conversion Shrinkage stress

QTH (Halogen Light, 600 mW/cm2)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

10

20

30

40

50

60

70

80

Degr

ee o

f Con

vers

ion

[%]

Shrin

kage

Str

ess

[MPa

]

Filtek™ Silorane Prisme Aelite™ Filtek™ Z250

2.5

2

1.5

1

0.5

0

Degree of Conversion Shrinkage stress

LED (1400 mW/cm2)

Page 34: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

34

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Flexural Strength

Title: Determination of the Flexural Strength of Filtek Silorane and Methacrylate-Based Composites Executed by: N. Ilie and K.-H. Kunzelmann, University of Munich, Germany Unpublished data

Aim of the study: The aim of the study was to determine the flexural strength of Filtek Silorane and methacrylate based composites. The materials were fixed at two points and stress was applied to a third point until fracture. During the test, compressive forces built up on the upper side and tensile forces at the lower side.

Results: The flexural strength of Filtek™ Silorane Low Shrink Posterior Restorative lies within the range of clinically proven composites and is substantially above the ISO 4049 limit of 80 MPa.

Flexural Strength (ISO 4049)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

020406080

100120140160180

200

Flex

ural

Str

engt

h [M

Pa]

Filtek™ Silorane

Z100 Filtek™

Z250Tetric™ Ceram

Helio-molar™

Prodigy™ InTenS™ QuiXfil™

Page 35: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

35

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Flexural Modulus and Hardness

Title: Silorane-based Dental Composite: Behavior and Abilities Executed by: N. Ilie and R. Hickel Published in: Dental Material Journal (�006) �5: 445-454

Aim of the study: The purpose of this study was to examine the characteristics of an innovative composite material for dental restora-tions based on silorane – a monomer with a new chemical composition, and thereby compare the examined characteristics against those of well known methacrylate-based composites.

Results: Siloranes exhibit good mechanical properties comparable to those of clinically successful methacrylate-based composite materials. No significant differences were observed for hardness and modulus of elasticity between � mm and 6 mm depth.

Curing unit Regime Time [s] HV – 2 mm [N/mm2]

HV – 6 mm [N/mm2]

E – 2 mm [GPa]

E – 6 mm [GPa]

Mini L.E.D.

Fast-cure102040

75.9 (4.1) 73.7 (1.0) 79.8 (4.6)

71.9 (4.6)72.6 (6.6)73.7 (6.2)

12.7 (0.1)12.4 (0.2)12.7 (0.6)

12.0 (0.4)11.8 (0.8)12.4 (0.6)

Pulse122448

73.4 (2.2)75.2 (0.1)82.2 (5.2)

70.1 (8.2)71.4 (5.1)74.4 (6.3)

12.8 (0.2)12.6 (0.2)13.4 (0.3)

11.9 (0.4)12.5 (0.2)12.4 (0.4)

Step-cure 20 76.0 (1.0) 74.2 (6.6) 12.5 (0.5) 12.8 (0.4)

Bluephase HIP102040

76.8 (4.0)78.8 (2.1)78.5 (4.4)

68.6 (5.5)72.1 (4.4)75.7 (6.1)

12.7 (0.6)12.5 (0.9)12.8 (0.4)

11.2 (0.8)11.9 (0.9)12.3 (0.3)

Freelight 2 Standard102040

79.9 (3.4)82.5 (9.2)81.7 (5.7)

69.4 (6.7)76.6 (10)76.6 (10)

12.4 (0.7)12.8 (1.1)13.5 (0.1)

12.2 (0.9)12.7 (1.0)13.0 (1.2)

Astralis 10 HIP102040

80.8 (7.7)81.5 (2.9)80.8 (5.0)

68.2 (5.7)72.3 (8.0)73.9 (4.0)

12.6 (0.6)12.4 (0.5)12.5 (0.4)

11.6 (1.5)11.7 (2.1)12.5 (0.3)

Vickers Hardness and Modulus of Elasticity of Filtek Silorane

Page 36: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

36

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Compressive Strength and Flexural Strength

Title: Compressive Strength and Flexural Strength of Filtek Silorane and Methacrylate-Based Composites Executed by: W. Weinmann, A. Stippschild, 3M ESPE AG, Seefeld, Germany Unpublished data

Aim of the study: The aim of this study was to evaluate compressive strength and flexural strength of Filtek Silorane compared to methacry-late-based composites.

Results: Both the compressive strength and flexural strength of Filtek™ Silorane Low Shrink Posterior Restorative rank within the range of clini-cally proven composites and are substantially above the ISO 4049 limit of 80 MPa (flexural strength).

Compressive Strength and Flexural Strength (ISO 4049)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

050

100

150

200

250

300

350

400

450

Glac

ier

Aelit

e™ L

S Pa

ckab

leQu

iXfil

ELS

Cera

mX

™ D

uoTe

tric

EvoC

eram

®He

liom

olar

®

Gran

dio

®

Esth

etX

®

TPH

® 3Fi

ltek™

Silo

rane

Venu

s™Fi

ltek™

Sup

rem

ePr

eim

ise™

[MPa

]

Compressive StrengthFlexural Strength

Page 37: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

37

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Flexural Fatigue Limit

Title: Determination of the Flexural Fatigue Limit of Resin Based Composites and Filtek Silorane Executed by: M. Braem, University of Antwerp, Belgium Unpublished data

Aim of the study: Restoration fracture due to material fatigue is one of the main reasons for failure of direct restorations. To obtain insight into the fatigue behavior of Filtek Silorane its flexural fatigue limit was determined and compared with conventional methacrylate composites. In this test 10,0000 cycles of 3-point loading were applied with the frequency of � Hz, which is the upper limit of chewing frequency, under wet conditions and a constant temperature of 35°C. Several tests were done for each material, increasing the stress compared to the previous test if a material did not fail, and decreasing the stress if the material broke under loading. This procedure is referred to as the staircase approach.

Results: The flexural fatigue limit of Filtek Silorane Low Shrink Posterior Restorative under wet condition reaches top level, indicat-ing that under clinical conditions Filtek Silorane will likely withstand mastication forces without fracturing even after many years in service.

Flexural Fatigue Limit

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

010

20

30

40

50

60

70

80

90

Shea

r Fle

xura

l Fat

igue

Lim

it [M

Pa]

Charisma™ Tetric™ Ceram

Filtek™

Z250Surefil Prodigy™

Condens.Solitaire™

2Filtek™

Silorane

Page 38: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

38

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Fracture Toughness (KIC

)

Title: Fracture Toughness of Filtek Silorane and Methacrylate-Based CompositesExecuted by: K.-H. Kunzelmann, University of Munich Unpublished data

Aim of the study: Fracture toughness is a measure of the resistance of a material to crack propagation. A high fracture toughness means clini-cally that a small crack needs more mechanical impact to cause a failure of the restoration.

Results: The fracture toughness of Filtek™ Silorane Low Shrink Posterior Restorative is in the range of clinically proven methacrylate composites.

Fracture Toughness, resistance to crack propagation

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

0.5

1.0

1.5

2.0

2.5

KIC

Filtek™

Z250Tetric™ Ceram

Heliomolar™ Prodigy QuiXfil™ Filtek™

Silorane

Page 39: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

39

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Viscoelastic Stability

Title: Creep of solvent-aged silorane, Ormocer and dimethacrylate matrix composites Published by: D.C. Watts, and H. Y. Marghalani, University of Manchester, UK Published at: IADR �007, New Orleans,USA, Abstract #0�35

Aim of the study: The purpose was to study time-dependent visco-elastic deformation (creep and recovery) of new composite formulations with different matrix structures, under compressive load, after aging in food-simulating solvents of different solubility parameter. The hypo-theses to be tested were that: (i) viscoelasticity would vary with solu-bility parameter and that (ii) materials with the newer matrix chemistries would be more dimensionally stable under load.

Results: The materials all exhibited classic creep and recovery curves. Two new-matrix composite types: silorane and Ormocer, exhibited viscoelastic stability in food-simulating solvents. But this behaviour was closely matched by one highly-filled dimethacrylate material.

Page 40: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

40

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Hydrolytic Stability

Title: Hydrolytical Stability of a Silorane and Three Methacrylate Composites Published by: R. Guggenberger, C. Thalacker, A. Syrek, A. Stippschild and W. Weinmann, 3M ESPE AG, Seefeld, Germany Published at: IADR 005, Baltimore, Maryland, USA, Abstract #3093

Aim of the study: The goal of this study was to investigate the hydro-lytical stability of an experimental Silorane based filling material in comparison to conventional methacrylate-based systems. Thus, their water sorption was correlated with their flexural strength (FS) after water storage and a boiling stress test.

Results: The Silorane material exhibits statistically the lowest amount of water sorption. There was no statistical difference among all materials regarding the development of the flexural strength after 7d 36 °C. The boiling test for 10 h revealed that the silorane material and Prodigy Condensable showed the most robust hydrolytical stability.

Water sorption and FS according to ISO 4049. Standard deviations are given in parentheses. Means with the same letters are statistically the same.

Material Manufacturer Water sorption µg/mm3

FS ISO [MPa]

Ratio FS 7d 36 °C / ISO [%]

Ratio FS 10h 100 °C / ISO [%]

Silorane 3M ESPE 9.2 (0.6)a 124 (9)e 105 (9)f 89 (8)g

Tetric Ceram Ivoclar Vivadent

19.6 (0.7)c 127 (14)e 99 (7)f 77 (5)i

Quixfil Dentsply 11.7 (0.9)c 130 (29)e 104 (2)f 80 (7)hi

Prodigy Condensable

Kerr 15.2 (0.9)d 140 (24)e 101 (4)f 86 (5)gh

Page 41: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

41

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Hydrolytic Stability

Title: The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites Executed by: W. M. Palin1, G. J. P. Fleming1, F. J. T. Burke1, P. M. Marquis1, R. C. Randall�, 1University of Birmingham, UK, 13M ESPE, St. Paul, USA Published in: Dental Materials (�005) �1, 85�–863

Aim of the study: The aim of the current study was to investigate the effect of water uptake characteristics and water solubility on the mechanical properties of two methacrylate (Z100 and Filtek Z�50), an experimental oxirane (OXI) and silorane (SIL) resin based composites (RBC) following short- and medium-term immersion.

Results: Silorane exhibited the significantly lowest water sorption, solubility and associated diffusion coefficient following each immersion period. This may potentially improve hydrolytic stability of composite restorations.

Immersion periods [weeks]

Material Water sorption [µg mm–3]

Water solubility [µg mm–3]

1

Z100 13.04 (0.5)b 0.92 (0.09)b

Z250 11.31 (0.3)c 0.36 (0.09)c

OXI 19.11 (1.0)a 2.28 (0.11)a

SIL 6.63 (0.5)d 0.26 (0.07)c

4

Z100 16.31 (0.5)b 0.92 (0.12)b

Z250 13.62 (0.5)c 0.49 (0.10)c

OXI 22.92 (1.0)a 2.94 (0.16)a

SIL 8.04 (0.6)d 0.28 (0.07)d

12 Z100 17.32 (0.9)b 0.89 (0.08)b

Z250 13.93 (0.6)c 0.49 (0.07)c

OXI 25.30 (0.7)a 2.90 (0.19)a

SIL 8.74 (1.1)d 0.29 (0.07)d

26

Z100 18.84 (1.4)b 0.95 (0.16)b

Z250 15.41 (0.8)c 0.54 (0.11)c

OXI 28.14 (1.2)a 2.95 (0.17)a

SIL 9.40 (0.8)d 0.26 (0.07)d

Water sorption and water solubility after storage in water (37°C)

Standard deviations are displayed in parentheses. Similar superscripts within each immersion period signify no significant difference between materials (P<0.05).

Page 42: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

4�

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Oxygen Inhibition Layer

Title: Reducing the depth of oxygen inhibition in resin-based composites Published by: S. Mohammed, W. M. Palin and A. C. Shortall, University of Birmingham, UK Published at: IADR �007, New Orleans, USA, #�673

Aim of the study: To investigate the effect of monomer chemistry and filler content on oxygen diffusion and curing extent near to the irradiated surface of resin-based composites (RBCs).

Results: Silorane resin chemistry may eliminate oxygen inhibition near the cured surface. The depth of inhibition is complicated by filler content which may act as a diffusion barrier or adsorb oxygen onto the filler surface.

Page 43: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

43

FiltekTM Silorane

5

5. Mechanical / Physical Properties

3-Body Wear

Title: 3-Body Wear of Filtek Silorane and Methacrylate based Composites Determined by Means of the ACTA Machine Executed by: T. DeGee, University of Amsterdam (ACTA), Netherlands Unpublished data

Aim of the study: Wear resistance is a critical factor especially for the survival of posterior restorations. In this study the wear resistance of Filtek Silorane and methacrylate based composites was determined by means of the ACTA-wear machine. In this machine a structured steel wheel rotated against a composite sample wheel in a millet gruel suspension, causing a trace in the samples. The deeper the trace, the less wear resistant is the composite. Wear was determined after �00,000 revolutions and different storage times by measuring the depth of the trace that the steel wheel has caused on the composite samples.

Results: The wear resistance of Filtek™ Silorane Low Shrink Posterior Restorative was similar to clinically proven resin composites.

Abrasion (ACTA, 3-body wear)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

10

20

30

40

50

60

70

80

Wea

r [µm

/200

,000

revo

lutio

ns]

Spectrum™ TPH Prodigy™ Condensable

InTen-S Tetric™ Ceram Filtek™ Silorane

1 day4 days1 week1 month2 months

Page 44: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

44

FiltekTM Silorane

5

5. Mechanical / Physical Properties

3-Body Wear

Title: Wear of Filtek Silorane and methycrylate-based composites Executed by A. Stippschild and Wolfgang Weinmann 3M ESPE, Seefeld, Germany Unpublished Data

Aim of the study: Wear resistance is a critical factor especially for the survival of posterior restorations. In this study the wear resistance of Filtek Silorane and methacrylate based composites was determined by means of the ACTA-wear machine. Values are given in relation to Filtek Z�50 Universal Restorative.

Results: The wear resistance of Filtek Silorane Low Shrink Posterior Restorative was equivalent to clinically proven resin composites.

Abrasion (ACTA, 3-body wear)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

0.5

1.0

1.5

2.0

2.5

Filte

k™ Z

250

Char

isma™

Poin

t 4Fi

ltek™

Silo

rane

Tetri

c™ C

eram EL

SCe

ram

™ X

Esth

et X

®Gr

adia

Dire

ctTe

tric

EvoC

eram

®Fi

ltek™

Sup

rem

e

Wea

r in

rela

tion

to F

iltek

Z25

0

Page 45: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

45

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Ambient Light Stability and Flexural Modulus

Title: Comparative Testing of Ambient Light Stability and Reactivity of Silorane and Methacrylate Filling Materials Published by: W. Weinmann, C. Thalacker, R. Guggenberger, A. Stipp-schild, K. Dede and A. Anderski, 3M ESPE AG, Seefeld, Germany Published at: IADR �003, Göteborg, Sweden, #0733

Aim of the study: Light curing dental composites already polymerize when exposed to daylight or operatory light. The sensitivity to ambient light reduces the time a practitioner has to properly shape the composite restora-tion. Especially for posterior applications a long working time is desirable. This study compared the ambient light stability and the corresponding reactivity of Filtek Silorane with a resin composite (Tetric Ceram).

Results: The Filtek Silorane composite revealed a significantly higher ambient light stability than the resin composite Tetric Ceram. The postcur-ing rate (reactivity), determined by the measurement of the E-modulus at different times, was not significantly different, although Filtek Silorane showed a significantly higher E-modulus at 5 min and �4 h than Tetric Ceram.

E-modulus in GPa

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

2

4

6

8

10

12

GPa

Filtek™ Silorane Tetric™ Ceram

5 min.24 h

Page 46: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

46

FiltekTM Silorane

5

5. Mechanical / Physical Properties

Ambient Light Stability

Title: Operatory Light Stability of Filtek Silorane and methacrylate-based composites Executed by: W. Weinmann, A. Stippschild, 3M ESPE AG, Seefeld, Germany Unpublished data

Aim of the study: The sensitivity to the operatory light of methacrylate-based composites often necessitates the practitioner to work without direct illumination if larger restorations need to be placed. This study evaluated the operatory light stability of Filtek Silorane with other resin composites according to ISO 4049.

Results: Filtek™ Silorane Low Shrink Posterior Restorative offers the dentist up to 9 minutes to place and shape the restoration under operatory light illumination.

Ambient Light Stability (ISO 4049)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

2

4

6

8

10

Tetri

c Ev

oCer

am®

Esth

et X

®

Filte

k™ Z

250

Filte

k™ P6

0

QuiX

fil™

Prem

ise™ p

acka

ble

Spec

trum

™ T

PH

Gran

dio™

TPH3

Filte

k™ S

ilora

ne

Ambi

ent l

ight

sta

bilit

y [m

in]

Page 47: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

47

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Stability in biological fluids

Title: Stability of silorane dental monomers in aqueous systems Executed by: Eick J. D.1, Smith R. E.1, Charles S. Pinzino C. S.�, and Kostoryz E. L.1, 1University of Missouri Kansas City, USA, �Midwest Research Institute, USA Published in: J Dent (�006) 34: 405-410

Aim of the study: To test the stability of siloranes by measuring changes in the chemical structure of the oxirane group in biologi-cal fluids. Siloranes are extremely hydrophobic, perhaps making the oxirane groups inaccessible to attack by water or water-soluble species. The chemical stability of the silorane component can then be assessed by measuring changes in the chemical structure of the oxirane group. The stability of the component in turn will indicate the chemical stabil-ity of the composite in the oral environment.

Results: Siloranes were stable in all aqueous biological fluids tested.

Page 48: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

48

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Genotoxicity Testing

Title: The Induction of Gene Mutations and Micronuclei by Oxiranes and Siloranes in Mammalian Cells Executed by: H. Schweikl1, G. Schmalz1 and W. Weinmann�, 1University of Regensburg, Germany,� 3M ESPE, Seefeld, Germany Published in: J Dent Res (�004) 83: 17-�1�7

Aim of the study: Oxiranes and siloranes are candidate molecules for the development of composite materials with low shrinkage. Therefore, we analyzed the formation of micronuclei (chromosomal aberrations) and the induction of gene mutations (HPRT assay) in mammalian cells.

Results: No mutagenic effects were detected for the Siloranes used in Filtek™ Silorane Low Shrink Posterior Restorative.

Page 49: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

49

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Mutagenicity Testing

Title: Evaluation of Siloranes for DNA Damage Using the Comet Assay Executed by: H. Zhao1, E. L. Kostoryz1, W. Weinmann� and J. D. Eick1 1University of Missouri, Kansas City, USA, �3M ESPE, Seefeld, Germany Published at: IADR �005, Baltimore, #1196

Aim of the study: Dental monomers containing silicone and oxirane functional groups (siloranes) are potential components of new dental composites. The objective of this investigation was to evaluate the DNA damage potential of siloranes in L9�9 mouse fibroblast cells.

Results: None of the siloranes produced DNA damage in this evalua-tion. The non DNA damaging effect exhibited by the siloranes supports their non-clastogenic properties as reported in the literature.

Page 50: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

50

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Mutagenicity Testing

Title: Mutagenic activity of structurally related oxiranes and siloranes in Salmonella typhimurium Executed by: H. Schweikl1, G. Schmalz1 and W. Weinmann�, 1University of Regensburg, Germany, �3M ESPE, Seefeld, Germany Published in: Mut Res Gen Toxicol Environ Mut (�00�) 5�1: 19-�7

Aim of the study: Ring-opening molecules like oxiranes (epoxides) may be suitable for the development of non-shrinking dental com-posite materials. Since oxiranes are reactive molecules, they could cause adverse biological effects in living organisms. The introduction of siloranes, a merger of silane and oxirane, may solve this problem. Here, new oxiranes and siloranes were analyzed for the induction of mutations in Salmonella typhimurium.

Results: The Siloranes used in Filtek™ Silorane Low Shrink Posterior Restorative tested negative in all S. typhimurium strains which shows that the Siloranes are non-mutagenic in S. typhimurium (Ames Test).

Page 51: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

51

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Cytotoxicity Testing

Title: Cytotoxicity of a Silorane-Based Composite in a Dentin Barrier Test Executed by: A. Sengun1, H. Schweikl�, K.A. Hiller�, F. Ozer1 and G. Schmalz� 1Selcuk University Turkey, �University of Regensburg, Germany Published at: CED �005, Amsterdam, #01��

Aim of the study: The biocompatibility is an important requirement for a dental filling material. The objective of this study was to evaluate the cytotoxicity of a new silorane-based resin composite material with its corresponding adhesive in comparsion with a known material in a dentin barrier test simulating the in vivo situation.

Results: Cell survival rates for Hermes System and Tetric Ceram/Exite were statistically not different from the control. With residual dentin barriers of �00 µm and 500 µm the tested silorane-based composite/adhesive may not alter biologically the dental pulp on a short term basis.

Note: The Hermes System corresponds to Filtek Silorane Low Shrink Posterior Restorative which was applied with an experimental adhesive.

Page 52: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

5�

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Histological Evaluation

Title: A Histological Evaluation of a New Adhesive/ Composite Restorative System Published by: I. L. Dogon1, L. Murray�, 1Harvard University, Boston, MA, USA, �Forsyth Institute, Boston, MA, USA Published at: IADR �004, Honolulu, USA, #4093

Aim of the study: Dental composites must not exhibit any adverse effects to the dental pulp. The purpose of this investigation was to evalu-ate the biological response of Filtek Silorane with the corresponding adhesive in comparison to a methacrylate based composite in monkey teeth.

Results: No significant difference was observed between Filtek Silorane Low Shrink Posterior Restorative and the methacrylate based composite with regards to pulp response.

Note: Filtek Silorane was applied with an experimental adhesive.

Page 53: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

53

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Bacterial Adhesion

Title: Adhesion of S. mutans to dental restorations Published by: R. Lang, G. Groeger, M. Rosentritt, and G. Handel, University of Regensburg, Germany Published at: CED �005, #04�6

Objectives: The aim of this study was to rank commonly used filling materials according to their susceptibility to bacterial adhesion.

Results: Due to the low bacterial adhesion rate in vitro a low plaque susceptibility of Hermes, Enamel Plus and Grandio may be expected.

Medians and �5/75 percentiles were calculated; statistics: Mann-Whitney U-test.

Note: The material Hermes corresponds to Filtek™ Silorane Low Shrink Posterior

Restorative.

Adhesion of S. mutnas (Resazurine Fluorescence)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

5000

10000

15000

20000

25000

Enam

el p

lus

Gran

dio™

Tetri

c™ C

eram

Glas

sSp

ectru

m™

Filte

k™ S

upre

me

Esth

et X

™He

liom

olar

™Fi

ltek™

Z25

0Ad

mira

Venu

s™In

Tens

Com

pogl

ass

Arab

esk

Top

Filte

k™ S

ilora

ne

Rel.

fluor

esce

nce

inte

nsity

Page 54: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

54

FiltekTM Silorane

6

6. Biocompatibility and Bacterial Adhesion

Bacterial Adhesion

Title: Adhesion potential of novel silorane-based restorative to oral streptococci Executed by: R. Bürgers, S. Hahnel, G. Handel, M. Rosentritt University of Regensburg, Germany Unpublished data

Aim of the study: To compare the susceptibility of one novel silorane-based and four conventional methacrylate-based resin composites to adhere oral streptococci. Bacterial suspensions of four Streptococci were incubated on specimens of the test materials and bacterial adherence was determined with a fluorescence dye (Resazurine).

Results: The fluorescence intensities of the four methacrylate resin composites were comparable among each other. Significantly lower fluorescence intensities were found on Filtek™ Silorane Low Shrink Posterior Restorative for all four strains of streptococci.

Medians and �5/75 percentiles were calculated; statistics: Mann-Whitney U-test.

Bacterial Adherence of Streptococci (Resazurine Fluorescence)

0

5

10

15

20

25

30

35

Nexus™ 2 Panavia™ F RelyX™ Unicem Variolink™ II

0

5000

10000

15000

20000

25000

S. mutans S. oralis S. sanguinis S. gordonii

Filtek™ Silorane Filtek™ Z250 Tetric™ EvoCeramQuiXfil™ Spectrum™ TPH Glass (Reference)

Page 55: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

55

FiltekTM Silorane

7

7. Clinical Studies

Title: One year performance of an innovative silorane posterior composite Published by: M. Brandenbusch, G. R. Meyer, K. Canbek, B. Willers-hausen and C.-P. Ernst, Johannes Gutenberg University, Mainz, Germany Published at: IADR �007, New Orleans, USA, Abstract #1581

Aim of the study: The aim of the study was to evaluate the clinical per-formance of an experimental silorane restorative (Hermes/3M ESPE), in comparison to another low shrinkage posterior resin composite (QuiXfil/DENTSPLY) in Class II cavities according to the Ryge/CDA-criteria. In accordance to a split mouth study design, 46 patients (36.9 SD±10.�a) received at least one pair of comparable Class II restorations (Total: 10� restorations).

Results: After one year, all restorations retained and showed clini-cally excellent and acceptable results. No Charlie or Delta scores were documented at all. This study was supported by 3M ESPE, Seefeld, Germany.

Note: The material Hermes corresponds to Filtek™ Silorane Low Shrink Posterior Restorative which was applied with an experimental adhesive.

Page 56: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

56

FiltekTM Silorane

7

7. Clinical Studies

Title: Clinical performance of a Silorane restorative in combination with an experimental adhesive Executed by: Prof. Eliasson, University of Iceland Unpublished data

Aim of the study: In this study the clinical performance of Filtek™ Silorane Low Shrink Posterior Restorative is being tested with an ex-perimental adhesive system and is compared to Tetric Ceram and a self etching adhesive, AdheSE. At least one pair of restorations was placed in each patient according to research protocol. At one year 53 restoration pairs in 31 patients were examined using the modified Ryge/CDA scale.

Results: All the restorations were retained. No Charlie and Delta scores were seen. Color match was unchanged and no secondary decay was ob-served. One Tetric Ceram restoration was removed because of sensitiv-ity. No sensitivity was reported for Filtek Silorane at one year, both the materials appear to be clinically acceptable and comparable.

Note: Filtek Silorane Low Shrink Posterior Restorative was applied with an experimental adhesive.

Page 57: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

57

FiltekTM Silorane

7

7. Clinical Studies

Title: Clinical application of Filtek Silorane Posterior Restorative System Executed by: E. Mecher, 3M ESPE AG, Seefeld, Germany Unpublished data

Aim of the study: Filtek Silorane System was tested by 43 dentists in their offices during a six-week period. 1145 fillings were placed with an average of �7 fillings per dentist.

Results: The overall satisfaction of the Filtek Silorane System was rated as equivalent or better compared to their currently used restorative system by 77% of the dentists. The Filtek Silorane system received very good ratings in many handling aspects and was rated as very easy/easy to use by 84% of the dentists. No post-operative sensitivities were reported.

Page 58: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth
Page 59: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth
Page 60: Filtekmultimedia.3m.com/mws/media/598060O/filtek-silorane... · 2012-02-06 · Filtek TM Silorane Introduction Composite materials have been used in dental practices to restore teeth

3M ESPE AGESPE Platz 8���9 Seefeld Germany E-Mail: [email protected] Internet: www.3mespe.com

Based on the data contained in the publications 3M ESPE has prepared “Aim of the Study”, “Results” and graphs.

3M, ESPE, Filtek, Z100, Sinfony and Sof-Lex are trademarks of 3M or 3M ESPE AG.

All other trademarks are owned by other parties.

© 3M 2007. All rights reserved. 70200955709 (09.2007)