files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · web viewsingle...

30
SINGLE CELL_PBMC8k : (10x chromium(cellrangerMatrix) – PROJECT Login to Partek flow partek.crc.pitt.edu Pitt user name and pw After login – click on new project – Name of the project Follow the Partek documentation for Single cell analysis Partek singlecell pipeline documentation: Partek flow tutorials: https://documentation.partek.com/display/FLOWDOC/Tutorials Import 10X Genomics matrix files : https://documentation.partek.com/display/FLOWDOC/ Importing+10X+Genomics+Matrix+Files Analyze 10X Genomics matrix files in partek flow : https://documentation.partek.com/display/FLOWDOC/ Analyzing+Single+Cell+RNA-Seq+Data 1. Import cellranger matrix data: Import – import single cell data

Upload: others

Post on 13-Apr-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

SINGLE CELL_PBMC8k : (10x chromium(cellrangerMatrix) – PROJECT

Login to Partek flow

partek.crc.pitt.edu

Pitt user name and pw

After login – click on new project – Name of the project

Follow the Partek documentation for Single cell analysis

Partek singlecell pipeline documentation:

Partek flow tutorials:

https://documentation.partek.com/display/FLOWDOC/Tutorials

Import 10X Genomics matrix files :

https://documentation.partek.com/display/FLOWDOC/Importing+10X+Genomics+Matrix+Files

Analyze 10X Genomics matrix files in partek flow :

https://documentation.partek.com/display/FLOWDOC/Analyzing+Single+Cell+RNA-Seq+Data

1. Import cellranger matrix data:

Import – import single cell data

Page 2: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

If it is one sample,

barcodes.tsv genes.tsv matrix.mtx

Select all 3 files for importing into Partek Flow and click Next

Page 3: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 4: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 5: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

2. QC and Filtering cells in single cell RNA-Seq data

Single cell data node – QA/QC - Single-cell QA/QC

Single cell QA/QC – Task report

Page 6: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

Cell barcode QA/QC:

Cell barcode report:

Page 7: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

3. Filtering cells:

There are three plots: number of read counts per cell, number of detected genes per cell, and the percentage of mitochondrial reads per cell.

Here we set the filters to a maximum of 12000 Read counts, 2500 Detected genes, and 8% Mitochondrial reads

Page 8: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

4. Normalization:

Because different cells will have a different number of total counts, it is important to normalize the data prior to downstream analysis.

Page 9: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

5. Filtering genes in single cell RNA-Seq data

Page 10: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

6. PCAFiltered counts – Exploratory analysis - PCAYou can choose Features contribute equally to standardize the genes prior to PCA or allow more variable genes to have a larger effect on the PCA by choosing by variance. By default, we take variance into account and focus on the most variable genes.

Page 11: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

7. Graph based clustering:

Graph-based clustering identifies groups of similar cells using PC values as the input. By including only the most informative PCs, noise in the data set is excluded, improving the results of clustering.

Filtered counts – Exploratory analysis – Graph-based clustering

Clustering can be performed on each sample individually or on all samples together. Here, we are working with a single sample.

Page 12: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

8. t-SNE plots:

t-SNE (t-distributed stochastic neighbor embedding) is a visualization method commonly used analyze single-cell RNA-Seq data. Using the t-SNE plot, cells can be classified based on clustering results or differences in gene and pathway expression.

Filtered counts – Exploratory analysis – t-SNE

Page 13: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 14: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

t-SNE result:

Page 15: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

9. Classifying cells in tSNE:

We can classify cell types using known biomarkers. Another option is using Cell marker database or using the list of biomarkers hosted by Partek flow

a. Classify cell types using known biomarkers:

Page 16: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

b. Classify cell types by list provided by Partek:

Page 17: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

c. Classify cells using cell marker database:

Page 18: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

http://biocc.hrbmu.edu.cn/CellMarker/

Page 19: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 20: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 21: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

Download the list and copy the gene names into txt file. Only gene names.

Partek

Settings – Partek Flow components - List management

Page 22: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 23: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 24: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 25: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 26: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

After saving all the classifications, we can apply classifications

10. Differential analysis:

Page 27: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 28: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:
Page 29: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

Anova results:

Generate filtered node:

The table lists all of genes in the data set; using the filter control panel on the left, we can filter to just the genes that are significantly different for the comparison.

Click FDR step up and click the arrow next to it Set to 0.05

Click Fold change and click the arrow next to it Set to -2 to 2

Page 30: files.hsls.pitt.edufiles.hsls.pitt.edu/files/molbio/pbmc_cellrangermatrix.docx · Web viewSingle cell QA/QC – Task report Cell barcode QA/QC: Cell barcode report: Filtering cells:

The number of genes at the top of the filter control panel updates to indicate how many genes are left after the filters are applied.

Click to generate a filtered version of the table for downstream analysis