· figure 3 stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-thps obtained from acid-catalysed...

53
How an Early or Late Transition State Impacts the Stereoselectivity of Tetrahydropyran Formation by Intramolecular oxa-Michael Addition Dániel Csókás, a Annabel Ho Xuan Ying, a Raghunath O. Ramabhadran b * and Roderick W. Bates a * a. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 b. Indian Institute of Science Education and Research (IISER) Tirupati, Transit Campus - Sree Rama Engineering College, Mangalam P/O, Tirupati - 517507, Andhra Pradesh, India Supporting information II: NMR Spectra and crystallographic data Table of Contents Stereochemical assignments of the THPs 2 NMR Spectra 5 General information 5 1 H NMR 13 C NMR COSY 10a 6 7 cis-22 8 9 trans-22 11 12 13 12a 14 15 trans-23 16 17 18 15a 19 20 cis-24 21 22 23 trans-24 24 25 26 17a 27 28 trans-25 29 30 31 cis-25 32 33 34 trans-21 35 36 trans-19 37 38 cis-20 39 40 cis-18 41 42 crystallographic data and ORTEP diagrams cis-20 43 trans-19 47 trans-21 53 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 16-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

How an Early or Late Transition State Impacts the Stereoselectivity of Tetrahydropyran Formation by Intramolecular oxa-Michael Addition

Dániel Csókás,a Annabel Ho Xuan Ying,a Raghunath O. Ramabhadranb* and Roderick W. Batesa*

a. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,

Singapore 637371b. Indian Institute of Science Education and Research (IISER) Tirupati, Transit

Campus - Sree Rama Engineering College, Mangalam P/O, Tirupati - 517507, Andhra Pradesh, India

Supporting information II: NMR Spectra and crystallographic data

Table of Contents

Stereochemical assignments of the THPs 2

NMR Spectra 5General information 5

1H NMR 13C NMR COSY10a 6 7cis-22 8 9trans-22 11 12 1312a 14 15trans-23 16 17 1815a 19 20cis-24 21 22 23trans-24 24 25 2617a 27 28trans-25 29 30 31cis-25 32 33 34trans-21 35 36trans-19 37 38cis-20 39 40cis-18 41 42

crystallographic data and ORTEP diagramscis-20 43trans-19 47trans-21 53

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry.This journal is © The Royal Society of Chemistry 2019

Page 2:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Stereochemical assignments of the obtained THPs

Figure 1 Stereochemical assignment of 2,6-, 2,5-, 2,4-THPs obtained from base-catalysed oxa-Michael cyclisation

S2

OPh

MeO2C

Hax

Hax

OPh

Heq Hax

MeO2C

HeqHeq

2,6-THP

cis(eq-eq)

trans(eq-ax)

2,5-THP

trans(eq-eq)

2,4-THPcis

(eq-eq)trans

(eq-ax)characteristic couplings in ring

characteristic couplings with substutient

Hax

OCO2Me

HaHb

H

H

Hax

OCO2Me

HaHb

H

H HeqOH

H

MeO2C HaHb

OMeO2C

Hax

Hax

Heq

Ph

Jax-a= 6.0 HzJax-b= 7.1 Hz

Jeq-eq/ ax-ax = 7.4 HzJeq-ax = 3.2 Hz

Jax-eq = 2.0 HzJax-ax = 11.3 Hz

Jeq-a= 5.7 HzJeq-b= 8.6 Hz

Jax-a= 5.2 HzJax-b= 7.8 Hz

Jax-a= 5.2 HzJax-b= 7.9 Hz

Jeq-a= 5.9 HzJeq-b= 8.4 Hz

Jax-eq = 2.1HzJax-ax = 11.0 Hz

Hax

OCO2Me

HaHb

H

H HeqOH

H

MeO2C HaHb

OMeO2C

Hax

Hax

OHeq Hax

MeO2C

Heq

HeqPhPh

Jax-eq = 2.1 HzJax-ax = 10.4 Hz

Ph

Hax

OHeq

Hax

Jax-eq = 2.2 HzJax-ax = 11.3 HZ

Ph

Hax

OHeq

Hax

characteristic couplings of proton attached to Ph

(apparent tr iplet)

coupling constants were obtained by homodecoupling -CH2-CO2Me protons(original peaks were multiplets)

Jax-ax/ ax-eq = 5.7 Hz

Heq

Hax

OPh

Hax

Jeq-ax = 4.4 HzJax-ax = 11.3 HZ

Ph

HaxHeq

HaxHax

Heq Ph

HaxHeq

HaxHax

Heq

overlaping with -CHax(O)

Jeq-ax = 2.3 HzJax-ax = 9.8 HZ

Jeq-ax = 3.8 HzJax-ax = 8.5 HZ

coupling constants were obtainedfrom original peaks

coupling constants were obtained byhomodecoupling adjacent -CH2- protons

(original peaks were multiplets)

observed coupling constant is weighted average of the two conformersdue to conformational equilibrium

Page 3:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 2 Stereochemical assignment of 2,3-THP obtained from base-catalysed oxa-Michael cyclisation

S3

2,3-THP

Hax

OCO2Me

HaHb

Ph

HHeqOPh

H

MeO2C HaHb

Jax-a= 4.5 HzJax-b= 9.3 Hz

Jeq-a= 3.5 HzJeq-b= 8.9 Hz

trans(eq-eq)

cis(ax-eq)

Jax-ax = 10.0 HzJax-eq = 3.5 Hz

OMeO2C

Hax

Hax

OHeq Hax

MeO2C

PhPh

characteristic couplings in ring

coupling constants were obtained from original peaks

characteristic couplings with substutient

PhHax

HeqHax

PhHax

HeqHax

characteristic couplingsof proton attached to Ph

Jax-ax/ ax-eq = 4.4 HzJeq-ax = 4.1 HzJax-ax = 10.0 Hz

(apparent quartet)

observed coupling constant is weighted average of the two conformersdue to conformational equilibrium

Page 4:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation

S4

OPh

ArOC

Hax

Hax

Heq

2,6-THP

cis(eq-eq)

2,5-THP

trans(eq-eq)

2,4-THP

cis(eq-eq)

characteristic couplings in ring

characteristic couplings with substutient

Hax

OCOAr

HaHb

H

H

Hax

OCOAr

HaHb

H

H

OArOC

Hax

Hax

Heq

Ph

Jax-a= 6.0 HzJax-b= 6.4 Hz

Jax-eq = 5.2 HzJax-ax = 11 Hz

Jax-a= 5.5 HzJax-b= 7 Hz

Jax-a= 5.2 HzJax-b= 7.2 Hz

Jax-eq = 4 HzJax-ax = 13 Hz

Hax

OCOAr

HaHb

H

H

OArOC

Hax

Hax

HeqPh

Jax-eq = 0 HzJax-ax = 12.5 Hz

Ph

Hax

OHeq

Hax

Jax-eq = 2 HzJax-ax = 11.2 Hz

characteristic couplings of proton attached to Ph

Heq

Hax

OPh

Hax

Jeq-ax = 4 HzJax-ax = 10 Hz

Ph

HaxHeq

HaxHax

Heq

Jeq-ax = 0 HzJax-ax = 13 Hz

coupling constants were obtained from original peaks

2,3-THP

Hax

OCOAr

HaHb

Ph

H

Jeq-a= 2 HzJeq-b= 11.5 Hz

trans(eq-eq)

Jax-ax = 10.0 Hz

OArOC

Hax

Hax

Ph

PhHax

HaxHax

Jax-ax = 11.5 Hz

Page 5:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

NMR Spectra

General informationNMR spectra were recorded on JEOL ECA 400SL (400MHz), JEOL ECA 400 (400MHz) and Bruker AV400 (400 MHz) spectrometers in CDCl3 solutions. Chemical shifts are given in ppm (referenced to the residual chloroform 1H-spectrum 7.26 ppm, 13C-spectrum: 77.16 ppm) and coupling constants in Hz. In the cases of severely overlapping peaks, the integration of individual peaks is assumed to be the expected value.

S5

Page 6:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 4 1H NMR spectrum of 10a

S6

HOCO2Me

Ph

10a

Page 7:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 5 13C NMR spectrum of 10a

S7

HOCO2Me

Ph

10a

Page 8:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 6 1H NMR spectrum of cis-22

S8

O

CO2Me

Ph

cis-22(eq-eq)

Page 9:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 7 13C NMR spectrum of cis-22

S9

O

CO2Me

Ph

cis-22(eq-eq)

Page 10:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 8 COSY spectrum of cis-22

S10

Page 11:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 9 1H NMR spectrum of trans-22

S11

O

CO2Me

Ph

trans-22(eq-ax)

Page 12:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 10 13C NMR spectrum of trans-22

S12

O

CO2Me

Ph

trans-22(eq-ax)

Page 13:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 11 COSY spectrum of trans-22

S13

Page 14:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 12 1H NMR spectrum of 12a

S14

HOCO2Me

Ph 12a

Page 15:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 13 13C NMR spectrum of 12a

S15

HOCO2Me

Ph 12a

Page 16:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 14 1H NMR spectrum of trans-23

S16

O

CO2Metrans-23(eq-eq)

Ph

Page 17:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 15 13C NMR spectrum of trans-23

S17

O

CO2Metrans-23(eq-eq)Ph

Page 18:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 16 COSY spectrum of trans-23

S18

Page 19:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 17 1H NMR spectrum of 15a

S19

HOCO2Me

Ph 15a

Page 20:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 18 13C NMR spectrum of 15a

S20

HOCO2Me

Ph 15a

Page 21:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 19 1H NMR spectrum of cis-24

S21

O

CO2MePh

cis-24(eq-eq)

Page 22:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 20 13C NMR spectrum of cis-24

S22

O

CO2MePh cis-24

(eq-eq)

Page 23:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 21 COSY spectrum of cis-24

S23

Page 24:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 22 1H NMR spectrum of trans-24

S24

OPh

CO2Me

trans-24(eq-ax)

Page 25:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 23 13C NMR spectrum of trans-24

S25

OPh

CO2Me

trans-24(eq-ax)

Page 26:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 24 COSY spectrum of trans-24

S26

Page 27:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 25 1H NMR spectrum of 17a

S27

HOCO2Me

Ph 17a

Page 28:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 26 13C NMR spectrum of 17a

S28

HOCO2Me

Ph 17a

Page 29:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 27 1H NMR spectrum of trans-25

S29

O

Phtrans-25(eq-eq)

CO2Me

Page 30:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 28 13C NMR spectrum of trans-25

S30

O

Phtrans-25(eq-eq)

CO2Me

Page 31:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 29 COSY spectrum of trans-25

S31

Page 32:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 30 1H NMR spectrum of cis-25

S32

O

CO2MePh cis-25

(eq-ax)

Page 33:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 31 13C NMR spectrum of cis-25

S33

O

CO2MePh cis-25

(eq-ax)

Page 34:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 32 COSY spectrum of cis-25

S34

Page 35:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 33 1H NMR spectrum of trans-21

S35

trans-21

Page 36:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 34 13C NMR spectrum of trans-21

S36

trans-21

Page 37:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 35 1H NMR spectrum of trans-19

S37

trans-19

Page 38:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 36 13C NMR spectrum of trans-19

S38

trans-19

Page 39:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 37 1H NMR spectrum of cis-20

S39

cis-20

Page 40:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 38 13C NMR spectrum of cis-20

S40

cis-20

Page 41:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 39 1H NMR spectrum of cis-18

S41

cis-18

Page 42:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 40 13C NMR spectrum of cis-18

S42

cis-18

Page 43:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

X-ray crystallographic data

Figure 41 ORTEP diagram of cis-20 with 50% probability

Table 1. Sample and crystal data for cis-20.Chemical formula C19H19BrO2

Formula weight 359.25 g/molTemperature 100(2) KWavelength 0.71073 ÅCrystal size 0.040 x 0.120 x 0.320 mmCrystal habit colorless plateCrystal system orthorhombicSpace group P n a 21Unit cell dimensions a = 19.185(2) Å α = 90°

b = 5.7454(7) Å β = 90°c = 29.323(3) Å γ = 90°

Volume 3232.1(7) Å3

Z 8Density (calculated) 1.477 g/cm3

Absorption coefficient 2.548 mm-1

F(000) 1472

Table 2. Data collection and structure refinement for cis-20.Theta range for data collection 2.23 to 27.94°Index ranges -25<=h<=24, -7<=k<=6, -38<=l<=38Reflections collected 18414Independent reflections 7547 [R(int) = 0.0670]Coverage of independent reflections 99.8%

Absorption correction Multi-ScanMax. and min. transmission 0.9050 and 0.4960Structure solution technique direct methodsStructure solution program SHELXT 2014/5 (Sheldrick, 2014)Refinement method Full-matrix least-squares on F2

Refinement program SHELXL-2016/6 (Sheldrick, 2016)Function minimized Σ w(Fo

2 - Fc2)2

S43

Page 44:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Data / restraints / parameters 7547 / 1 / 398Goodness-of-fit on F2 1.034Final R indices 5514 data; I>2σ(I) R1 = 0.0645, wR2 = 0.1480

all data R1 = 0.0960, wR2 = 0.1637

Weighting scheme w=1/[σ2(Fo2)+(0.0817P)2+2.4536P]

where P=(Fo2+2Fc

2)/3Absolute structure parameter 0.39(2)Largest diff. peak and hole 2.354 and -0.874 eÅ-3

R.M.S. deviation from mean 0.125 eÅ-3

Table 3. Bond lengths (Å) for cis-20.Br1-C17 1.889(9) Br2-C36 1.903(9)C1-C2 1.368(15) C1-C6 1.388(14)C1-H1 0.95 C2-C3 1.384(16)C2-H2 0.95 C3-C4 1.390(16)C3-H3 0.95 C4-C5 1.367(15)C4-H4 0.95 C5-C6 1.401(14)C5-H5 0.95 C6-C7 1.529(13)C7-C8 1.509(14) C7-C11 1.534(13)C7-H7 1.0 C8-C9 1.496(16)C8-H8A 0.99 C8-H8B 0.99C9-O1 1.422(13) C9-H9A 0.99C9-H9B 0.99 C10-O1 1.423(11)C10-C12 1.520(13) C10-C11 1.541(13)C10-H10 1.0 C11-H11A 0.99C11-H11B 0.99 C12-C13 1.538(13)C12-H12A 0.99 C12-H12B 0.99C13-O2 1.218(12) C13-C14 1.482(14)C14-C15 1.394(13) C14-C19 1.395(12)C15-C16 1.402(14) C15-H15 0.95C16-C17 1.370(14) C16-H16 0.95C17-C18 1.405(14) C18-C19 1.370(13)C18-H18 0.95 C19-H19 0.95C20-C21 1.383(15) C20-C25 1.393(14)C20-H20 0.95 C21-C22 1.382(17)C21-H21 0.95 C22-C23 1.353(16)C22-H22 0.95 C23-C24 1.396(15)C23-H23 0.95 C24-C25 1.418(14)C24-H24 0.95 C25-C26 1.512(14)C26-C30 1.518(14) C26-C27 1.528(15)C26-H26 1.0 C27-C28 1.501(15)C27-H27A 0.99 C27-H27B 0.99C28-O3 1.450(13) C28-H28A 0.99C28-H28B 0.99 C29-O3 1.425(11)C29-C30 1.509(13) C29-C31 1.523(13)C29-H29 1.0 C30-H30A 0.99C30-H30B 0.99 C31-C32 1.495(13)C31-H31A 0.99 C31-H31B 0.99C32-O4 1.217(12) C32-C33 1.510(13)

S44

Page 45:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

C33-C34 1.378(13) C33-C38 1.393(13)C34-C35 1.383(13) C34-H34 0.95C35-C36 1.396(13) C35-H35 0.95C36-C37 1.378(13) C37-C38 1.376(13)C37-H37 0.95 C38-H38 0.95

Table 4. Bond angles (°) for cis-20.C2-C1-C6 122.0(9) C2-C1-H1 119.0C6-C1-H1 119.0 C1-C2-C3 119.9(10)C1-C2-H2 120.1 C3-C2-H2 120.1C2-C3-C4 118.4(10) C2-C3-H3 120.8C4-C3-H3 120.8 C5-C4-C3 122.2(11)C5-C4-H4 118.9 C3-C4-H4 118.9C4-C5-C6 119.2(10) C4-C5-H5 120.4C6-C5-H5 120.4 C1-C6-C5 118.3(9)C1-C6-C7 120.3(9) C5-C6-C7 121.3(9)C8-C7-C6 115.9(9) C8-C7-C11 109.2(8)C6-C7-C11 109.1(8) C8-C7-H7 107.4C6-C7-H7 107.4 C11-C7-H7 107.4C9-C8-C7 112.1(9) C9-C8-H8A 109.2C7-C8-H8A 109.2 C9-C8-H8B 109.2C7-C8-H8B 109.2 H8A-C8-H8B 107.9O1-C9-C8 112.6(9) O1-C9-H9A 109.1C8-C9-H9A 109.1 O1-C9-H9B 109.1C8-C9-H9B 109.1 H9A-C9-H9B 107.8O1-C10-C12 107.6(8) O1-C10-C11 110.5(8)C12-C10-C11 111.5(8) O1-C10-H10 109.1C12-C10-H10 109.1 C11-C10-H10 109.1C7-C11-C10 110.6(8) C7-C11-H11A 109.5C10-C11-H11A 109.5 C7-C11-H11B 109.5C10-C11-H11B 109.5 H11A-C11-H11B 108.1C10-C12-C13 110.1(8) C10-C12-H12A 109.6C13-C12-H12A 109.6 C10-C12-H12B 109.6C13-C12-H12B 109.6 H12A-C12-H12B 108.1O2-C13-C14 120.6(9) O2-C13-C12 118.8(9)C14-C13-C12 120.5(9) C15-C14-C19 118.9(9)C15-C14-C13 123.4(9) C19-C14-C13 117.6(8)C14-C15-C16 120.3(9) C14-C15-H15 119.8C16-C15-H15 119.8 C17-C16-C15 119.4(9)C17-C16-H16 120.3 C15-C16-H16 120.3C16-C17-C18 120.8(9) C16-C17-Br1 120.5(7)C18-C17-Br1 118.8(7) C19-C18-C17 119.3(9)C19-C18-H18 120.4 C17-C18-H18 120.4C18-C19-C14 121.2(9) C18-C19-H19 119.4C14-C19-H19 119.4 C21-C20-C25 121.4(10)C21-C20-H20 119.3 C25-C20-H20 119.3C22-C21-C20 119.9(10) C22-C21-H21 120.0C20-C21-H21 120.0 C23-C22-C21 120.5(10)

S45

Page 46:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

C23-C22-H22 119.7 C21-C22-H22 119.7C22-C23-C24 120.5(11) C22-C23-H23 119.7C24-C23-H23 119.7 C23-C24-C25 120.2(10)C23-C24-H24 119.9 C25-C24-H24 119.9C20-C25-C24 117.3(10) C20-C25-C26 121.0(9)C24-C25-C26 121.7(9) C25-C26-C30 111.0(9)C25-C26-C27 114.8(9) C30-C26-C27 108.6(8)C25-C26-H26 107.4 C30-C26-H26 107.4C27-C26-H26 107.4 C28-C27-C26 111.7(9)C28-C27-H27A 109.3 C26-C27-H27A 109.3C28-C27-H27B 109.3 C26-C27-H27B 109.3H27A-C27-H27B 107.9 O3-C28-C27 110.7(10)O3-C28-H28A 109.5 C27-C28-H28A 109.5O3-C28-H28B 109.5 C27-C28-H28B 109.5H28A-C28-H28B 108.1 O3-C29-C30 110.9(8)O3-C29-C31 106.7(8) C30-C29-C31 114.0(8)O3-C29-H29 108.4 C30-C29-H29 108.4C31-C29-H29 108.4 C29-C30-C26 111.7(8)C29-C30-H30A 109.3 C26-C30-H30A 109.3C29-C30-H30B 109.3 C26-C30-H30B 109.3H30A-C30-H30B 107.9 C32-C31-C29 112.2(8)C32-C31-H31A 109.2 C29-C31-H31A 109.2C32-C31-H31B 109.2 C29-C31-H31B 109.2H31A-C31-H31B 107.9 O4-C32-C31 119.9(9)O4-C32-C33 119.5(8) C31-C32-C33 120.6(8)C34-C33-C38 118.1(9) C34-C33-C32 124.2(9)C38-C33-C32 117.7(8) C33-C34-C35 121.5(9)C33-C34-H34 119.2 C35-C34-H34 119.2C34-C35-C36 117.8(9) C34-C35-H35 121.1C36-C35-H35 121.1 C37-C36-C35 122.8(9)C37-C36-Br2 118.1(7) C35-C36-Br2 119.1(7)C38-C37-C36 116.9(9) C38-C37-H37 121.5C36-C37-H37 121.5 C37-C38-C33 122.8(9)C37-C38-H38 118.6 C33-C38-H38 118.6C9-O1-C10 111.2(8) C29-O3-C28 110.0(8)

Figure 42 ORTEP diagram of trans-19 with 50% probability

S46

Page 47:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Table 5. Sample and crystal data for trans-19.Chemical formula C19H19BrO2

Formula weight 359.25 g/molTemperature 100(2) KWavelength 0.71073 ÅCrystal size 0.040 x 0.220 x 0.240 mmCrystal habit colorless plateCrystal system monoclinicSpace group P 1 21 1Unit cell dimensions a = 9.6819(10) Å α = 90°

b = 9.8937(10) Å β = 97.704(3)°c = 25.250(3) Å γ = 90°

Volume 2396.9(4) Å3

Z 6Density (calculated) 1.493 g/cm3

Absorption coefficient 2.577 mm-1

F(000) 1104

Table 6. Data collection and structure refinement for trans-19.Theta range for data collection 2.37 to 27.14°Index ranges -12<=h<=12, -12<=k<=12, -32<=l<=31Reflections collected 32466Independent reflections 10573 [R(int) = 0.1292]Coverage of independent reflections 99.7%

Absorption correction Multi-ScanMax. and min. transmission 0.9040 and 0.5770Structure solution technique direct methodsStructure solution program XT, VERSION 2014/5Refinement method Full-matrix least-squares on F2

Refinement program SHELXL-2014/7 (Sheldrick, 2014)Function minimized Σ w(Fo

2 - Fc2)2

Data / restraints / parameters 10573 / 1 / 595Goodness-of-fit on F2 1.021Δ/σmax 0.001

Final R indices 7111 data; I>2σ(I) R1 = 0.0635, wR2 = 0.1258

all data R1 = 0.1161, wR2 = 0.1496

Weighting scheme w=1/[σ2(Fo2)+(0.0450P)2]

where P=(Fo2+2Fc

2)/3Absolute structure parameter 0.093(11)Largest diff. peak and hole 0.546 and -1.380 eÅ-3

R.M.S. deviation from mean 0.116 eÅ-3

Table 7. Bond lengths (Å) for trans-19.Br1-C17 1.898(10) Br2-C36 1.903(9)Br3-C55 1.889(11) C1-C6 1.381(15)C1-C2 1.388(15) C1-H1 0.95C2-C3 1.399(15) C2-H2 0.95

S47

Page 48:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

C3-C4 1.374(15) C3-H3 0.95C4-C5 1.397(15) C4-H4 0.95C5-C6 1.372(14) C5-H5 0.95C6-C7 1.521(13) C7-C11 1.513(13)C7-C8 1.551(14) C7-H7 1.0C8-C9 1.523(13) C8-H8A 0.99C8-H8B 0.99 C9-C10 1.506(13)C9-H9A 0.99 C9-H9B 0.99C10-O1 1.442(11) C10-C12 1.534(12)C10-H10 1.0 C11-O1 1.434(10)C11-H11A 0.99 C11-H11B 0.99C12-C13 1.501(14) C12-H12A 0.99C12-H12B 0.99 C13-O2 1.223(11)C13-C14 1.507(13) C14-C15 1.374(13)C14-C19 1.400(14) C15-C16 1.390(14)C15-H15 0.95 C16-C17 1.382(14)C16-H16 0.95 C17-C18 1.383(14)C18-C19 1.395(14) C18-H18 0.95C19-H19 0.95 C20-C21 1.390(15)C20-C25 1.408(14) C20-H20 0.95C21-C22 1.374(14) C21-H21 0.95C22-C23 1.378(15) C22-H22 0.95C23-C24 1.390(15) C23-H23 0.95C24-C25 1.382(13) C24-H24 0.95C25-C26 1.516(13) C26-C30 1.515(13)C26-C27 1.535(14) C26-H26 1.0C27-C28 1.523(13) C27-H27A 0.99C27-H27B 0.99 C28-C29 1.508(13)C28-H28A 0.99 C28-H28B 0.99C29-O3 1.431(11) C29-C31 1.515(12)C29-H29 1.0 C30-O3 1.430(10)C30-H30A 0.99 C30-H30B 0.99C31-C32 1.504(13) C31-H31A 0.99C31-H31B 0.99 C32-O4 1.218(11)C32-C33 1.496(14) C33-C38 1.392(13)C33-C34 1.408(14) C34-C35 1.369(14)C34-H34 0.95 C35-C36 1.379(13)C35-H35 0.95 C36-C37 1.400(13)C37-C38 1.403(14) C37-H37 0.95C38-H38 0.95 C39-C40 1.406(15)C39-C44 1.416(14) C39-H39 0.95C40-C41 1.364(15) C40-H40 0.95C41-C42 1.408(16) C41-H41 0.95C42-C43 1.387(15) C42-H42 0.95C43-C44 1.408(14) C43-H43 0.95C44-C45 1.503(14) C45-C49 1.509(12)C45-C46 1.528(13) C45-H45 1.0C46-C47 1.517(14) C46-H46A 0.99C46-H46B 0.99 C47-C48 1.522(13)

S48

Page 49:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

C47-H47A 0.99 C47-H47B 0.99C48-O5 1.449(11) C48-C50 1.497(14)C48-H48 1.0 C49-O5 1.435(11)C49-H49A 0.99 C49-H49B 0.99C50-C51 1.511(14) C50-H50A 0.99C50-H50B 0.99 C51-O6 1.234(11)C51-C52 1.511(15) C52-C57 1.380(14)C52-C53 1.392(14) C53-C54 1.385(14)C53-H53 0.95 C54-C55 1.380(15)C54-H54 0.95 C55-C56 1.385(15)C56-C57 1.378(15) C56-H56 0.95C57-H57 0.95

Table 8. Bond angles (°) for trans-19.C6-C1-C2 121.1(10) C6-C1-H1 119.5C2-C1-H1 119.5 C1-C2-C3 120.3(9)C1-C2-H2 119.9 C3-C2-H2 119.9C4-C3-C2 118.6(10) C4-C3-H3 120.7C2-C3-H3 120.7 C3-C4-C5 120.3(10)C3-C4-H4 119.9 C5-C4-H4 119.9C6-C5-C4 121.6(10) C6-C5-H5 119.2C4-C5-H5 119.2 C5-C6-C1 118.2(10)C5-C6-C7 120.0(9) C1-C6-C7 121.8(9)C11-C7-C6 114.6(8) C11-C7-C8 109.4(8)C6-C7-C8 111.0(8) C11-C7-H7 107.1C6-C7-H7 107.1 C8-C7-H7 107.1C9-C8-C7 110.5(8) C9-C8-H8A 109.5C7-C8-H8A 109.5 C9-C8-H8B 109.5C7-C8-H8B 109.5 H8A-C8-H8B 108.1C10-C9-C8 110.6(8) C10-C9-H9A 109.5C8-C9-H9A 109.5 C10-C9-H9B 109.5C8-C9-H9B 109.5 H9A-C9-H9B 108.1O1-C10-C9 110.2(8) O1-C10-C12 106.3(7)C9-C10-C12 114.6(8) O1-C10-H10 108.5C9-C10-H10 108.5 C12-C10-H10 108.5O1-C11-C7 112.1(8) O1-C11-H11A 109.2C7-C11-H11A 109.2 O1-C11-H11B 109.2C7-C11-H11B 109.2 H11A-C11-H11B 107.9C13-C12-C10 112.7(8) C13-C12-H12A 109.0C10-C12-H12A 109.0 C13-C12-H12B 109.0C10-C12-H12B 109.0 H12A-C12-H12B 107.8O2-C13-C12 121.3(9) O2-C13-C14 120.4(9)C12-C13-C14 118.2(8) C15-C14-C19 118.5(9)C15-C14-C13 123.3(9) C19-C14-C13 118.2(8)C14-C15-C16 121.5(9) C14-C15-H15 119.2C16-C15-H15 119.2 C17-C16-C15 118.5(9)C17-C16-H16 120.7 C15-C16-H16 120.7C16-C17-C18 122.2(10) C16-C17-Br1 119.7(7)C18-C17-Br1 118.1(8) C17-C18-C19 117.7(10)

S49

Page 50:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

C17-C18-H18 121.1 C19-C18-H18 121.1C18-C19-C14 121.4(9) C18-C19-H19 119.3C14-C19-H19 119.3 C21-C20-C25 119.6(9)C21-C20-H20 120.2 C25-C20-H20 120.2C22-C21-C20 121.9(10) C22-C21-H21 119.0C20-C21-H21 119.0 C21-C22-C23 118.1(10)C21-C22-H22 121.0 C23-C22-H22 121.0C22-C23-C24 121.5(10) C22-C23-H23 119.2C24-C23-H23 119.2 C25-C24-C23 120.5(10)C25-C24-H24 119.7 C23-C24-H24 119.7C24-C25-C20 118.4(9) C24-C25-C26 120.8(9)C20-C25-C26 120.9(9) C30-C26-C25 113.1(8)C30-C26-C27 109.9(8) C25-C26-C27 112.0(8)C30-C26-H26 107.2 C25-C26-H26 107.2C27-C26-H26 107.2 C28-C27-C26 109.3(8)C28-C27-H27A 109.8 C26-C27-H27A 109.8C28-C27-H27B 109.8 C26-C27-H27B 109.8H27A-C27-H27B 108.3 C29-C28-C27 111.6(8)C29-C28-H28A 109.3 C27-C28-H28A 109.3C29-C28-H28B 109.3 C27-C28-H28B 109.3H28A-C28-H28B 108.0 O3-C29-C28 109.5(8)O3-C29-C31 106.0(7) C28-C29-C31 114.6(8)O3-C29-H29 108.8 C28-C29-H29 108.8C31-C29-H29 108.8 O3-C30-C26 111.9(8)O3-C30-H30A 109.2 C26-C30-H30A 109.2O3-C30-H30B 109.2 C26-C30-H30B 109.2H30A-C30-H30B 107.9 C32-C31-C29 113.1(8)C32-C31-H31A 109.0 C29-C31-H31A 109.0C32-C31-H31B 109.0 C29-C31-H31B 109.0H31A-C31-H31B 107.8 O4-C32-C33 120.7(9)O4-C32-C31 120.8(9) C33-C32-C31 118.5(8)C38-C33-C34 119.1(9) C38-C33-C32 123.1(9)C34-C33-C32 117.8(9) C35-C34-C33 120.9(9)C35-C34-H34 119.5 C33-C34-H34 119.5C34-C35-C36 119.4(10) C34-C35-H35 120.3C36-C35-H35 120.3 C35-C36-C37 121.9(9)C35-C36-Br2 119.1(8) C37-C36-Br2 118.9(7)C36-C37-C38 118.0(9) C36-C37-H37 121.0C38-C37-H37 121.0 C33-C38-C37 120.5(10)C33-C38-H38 119.7 C37-C38-H38 119.7C40-C39-C44 119.7(10) C40-C39-H39 120.2C44-C39-H39 120.2 C41-C40-C39 122.4(10)C41-C40-H40 118.8 C39-C40-H40 118.8C40-C41-C42 118.4(11) C40-C41-H41 120.8C42-C41-H41 120.8 C43-C42-C41 120.7(10)C43-C42-H42 119.7 C41-C42-H42 119.7C42-C43-C44 121.4(10) C42-C43-H43 119.3C44-C43-H43 119.3 C43-C44-C39 117.5(10)C43-C44-C45 120.9(9) C39-C44-C45 121.3(9)

S50

Page 51:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

C44-C45-C49 109.7(8) C44-C45-C46 116.1(8)C49-C45-C46 107.8(8) C44-C45-H45 107.6C49-C45-H45 107.6 C46-C45-H45 107.6C47-C46-C45 110.1(8) C47-C46-H46A 109.6C45-C46-H46A 109.6 C47-C46-H46B 109.6C45-C46-H46B 109.6 H46A-C46-H46B 108.2C46-C47-C48 112.3(8) C46-C47-H47A 109.2C48-C47-H47A 109.2 C46-C47-H47B 109.2C48-C47-H47B 109.2 H47A-C47-H47B 107.9O5-C48-C50 104.2(7) O5-C48-C47 110.0(7)C50-C48-C47 113.8(9) O5-C48-H48 109.5C50-C48-H48 109.5 C47-C48-H48 109.5O5-C49-C45 113.4(8) O5-C49-H49A 108.9C45-C49-H49A 108.9 O5-C49-H49B 108.9C45-C49-H49B 108.9 H49A-C49-H49B 107.7C48-C50-C51 115.5(8) C48-C50-H50A 108.4C51-C50-H50A 108.4 C48-C50-H50B 108.4C51-C50-H50B 108.4 H50A-C50-H50B 107.5O6-C51-C50 121.4(10) O6-C51-C52 119.3(9)C50-C51-C52 119.2(8) C57-C52-C53 119.5(10)C57-C52-C51 120.3(10) C53-C52-C51 120.2(9)C54-C53-C52 119.9(9) C54-C53-H53 120.0C52-C53-H53 120.0 C55-C54-C53 119.6(10)C55-C54-H54 120.2 C53-C54-H54 120.2C54-C55-C56 120.8(11) C54-C55-Br3 119.9(8)C56-C55-Br3 119.3(9) C57-C56-C55 119.1(10)C57-C56-H56 120.4 C55-C56-H56 120.4C56-C57-C52 120.9(10) C56-C57-H57 119.5C52-C57-H57 119.5 C11-O1-C10 111.2(7)C30-O3-C29 111.3(7) C49-O5-C48 113.0(7)

S51

Page 52:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Figure 43 ORTEP diagram of trans-21 with 50% probability

Table 9. Sample and crystal data for trans-21.Chemical formula C19H19BrO2

Formula weight 359.25 g/molTemperature 100(2) KWavelength 0.71073 ÅCrystal size 0.060 x 0.120 x 0.320 mmCrystal habit colorless needleCrystal system monoclinicSpace group P 1 21/c 1Unit cell dimensions a = 15.9582(5) Å α = 90°

b = 9.1314(3) Å β = 91.0981(11)°c = 10.7679(3) Å γ = 90°

Volume 1568.82(8) Å3

Z 4Density (calculated) 1.521 g/cm3

Absorption coefficient 2.625 mm-1

F(000) 736

Table 10. Data collection and structure refinement for trans-21.Theta range for data collection 2.55 to 36.35°Index ranges -26<=h<=26, -15<=k<=15, -13<=l<=17Reflections collected 27317Independent reflections 7552 [R(int) = 0.0455]Coverage of independent reflections 99.0%

Absorption correction Multi-ScanMax. and min. transmission 0.8580 and 0.4870Structure solution technique direct methodsStructure solution program XS, VERSION 2013/1Refinement method Full-matrix least-squares on F2

S52

Page 53:  · Figure 3 Stereochemical assignment of 2,6-, 2,5-, 2,4, 2,3-THPs obtained from acid-catalysed oxa-Michael cyclisation S4 O P h AC r O Ha x Hax He q 2,6-HPT c i s

Refinement program SHELXL-2014/7 (Sheldrick, 2014)Function minimized Σ w(Fo

2 - Fc2)2

Data / restraints / parameters 7552 / 0 / 199Goodness-of-fit on F2 1.027Δ/σmax 0.002Final R indices 5423 data; I>2σ(I) R1 = 0.0380, wR2 = 0.0760

all data R1 = 0.0677, wR2 = 0.0847

Weighting scheme w=1/[σ2(Fo2)+(0.0316P)2+0.5508P]

where P=(Fo2+2Fc

2)/3Largest diff. peak and hole 0.564 and -0.715 eÅ-3

R.M.S. deviation from mean 0.092 eÅ-3

Table 11. Bond lengths (Å) for trans-21.Br1-C11 1.8976(13) C1-C7 1.5150(18)C1-C2 1.5282(18) C2-O1 1.4342(15)C2-C3 1.5397(17) C3-C14 1.5142(18)C3-C4 1.5367(18) C4-C5 1.5255(19)C5-C6 1.517(2) C6-O1 1.4279(16)C7-O2 1.2215(16) C7-C8 1.4947(18)C8-C13 1.3956(18) C8-C9 1.3984(18)C9-C10 1.3841(19) C10-C11 1.3879(19)C11-C12 1.3837(19) C12-C13 1.3899(19)C14-C19 1.3908(18) C14-C15 1.4000(18)C15-C16 1.3881(19) C16-C17 1.396(2)C17-C18 1.384(2) C18-C19 1.396(2)

Table 12. Bond angles (°) for trans-21.C7-C1-C2 109.94(10) O1-C2-C1 105.92(10)O1-C2-C3 111.25(10) C1-C2-C3 112.53(10)C14-C3-C4 111.75(10) C14-C3-C2 111.72(10)C4-C3-C2 110.05(10) C5-C4-C3 111.07(11)C6-C5-C4 109.06(11) O1-C6-C5 110.48(11)O2-C7-C8 120.02(12) O2-C7-C1 119.62(12)C8-C7-C1 120.33(11) C13-C8-C9 119.23(12)C13-C8-C7 122.17(11) C9-C8-C7 118.49(11)C10-C9-C8 120.86(12) C9-C10-C11 118.51(12)C12-C11-C10 122.09(12) C12-C11-Br1 118.63(10)C10-C11-Br1 119.26(10) C11-C12-C13 118.76(12)C12-C13-C8 120.50(12) C19-C14-C15 118.28(12)C19-C14-C3 121.24(11) C15-C14-C3 120.48(11)C16-C15-C14 121.05(13) C15-C16-C17 120.13(13)C18-C17-C16 119.21(13) C17-C18-C19 120.56(13)C14-C19-C18 120.77(13) C6-O1-C2 111.86(10)

S53