fig. 1 kuo et al

21
1 Fig. 1 Kuo et al. p-Sisubstrate Sibuffer layer 50 nm Sispacer 60 nm G e quantum dot G e w etting layer 100 nm Sicap Ptor A l LPD oxide (a ) (b )

Upload: cicero

Post on 08-Jan-2016

43 views

Category:

Documents


1 download

DESCRIPTION

(b). (a). Fig. 1 Kuo et al. Fig. 2 . Kuo et al. (b). (a). Fig. 3 . Kuo et al. Fig. 4 . Kuo et al. Fig. 5 . Kuo et al. Schottky diode. TEM of epi Ge before PMA :. After PMA :. Pt Germanide. Ref :IEEE ELECTRON DEVICE LETTERS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fig. 1 Kuo et al

1 Fig. 1 Kuo et al.

p-Si substrate

Si buffer layer 50 nm

Si spacer 60 nm

Ge quantum dot

Ge wetting layer

100 nm Si cap

Pt or AlLPD oxide

(a) (b)

Page 2: Fig. 1 Kuo et al

2

0 1 2 310-12

1x10-10

1x10-8

1x10-6

1x10-4

1x10-2

1x100

Al Ge QD

Pt P-Si

Pt Ge QD

Al P-Si

LPD-SiO2 25A

Cu

rren

t (A

)

Gate Voltage (V)Fig. 2 . Kuo et al.

Page 3: Fig. 1 Kuo et al

3 Fig. 3 . Kuo et al.

Pt

4.7 eVAl3.15 eV

5.85 eV4.3 eV

3.2 eV

4.7 eV

EF

(a) (b)

3.2 eV

4.7 eV

Pt

4.7 eV

4.3 eV

EF

Page 4: Fig. 1 Kuo et al

4

-8 -6 -4 -2 010-14

10-12

1x10-10

1x10-8

1x10-6

1x10-4

1x10-2 Pt gate

C

urr

ent

(A)

Gate Voltage (V)

Bulk pSi 300K Bulk pSi 40K SiGe QD 300K SiGe QD 40K

Fig. 4 . Kuo et al.

Page 5: Fig. 1 Kuo et al

5

-80 -60 -40 -20 0 20 40 60 80 100 120

-4

-2

0

2

4

6

8 Pt gate

4.7 eV

3.2 eV

4.3 eV

4.7 eV

Efm

T=40KVg=-4V

En

erg

y

Position (nm)Fig. 5 . Kuo et al.

Page 6: Fig. 1 Kuo et al

6

Schottky diode

Page 7: Fig. 1 Kuo et al

7

TEM of epi Ge before PMA :

After PMA :

Pt Germanide

Ref :IEEE ELECTRON DEVICE LETTERS

JohnY. Spann, Student Member, IEEE, Robert A. Anderson, Student Member, IEEE, Trevor J. Thornton, Member, IEEE,Gari Harris, Member, IEEE, Shawn G. Thomas, Member, IEEE, and Clarence Tracy

32 Å

91 Å

79 Å125 Å

175Å

16 Å43 Å

29 Å

Page 8: Fig. 1 Kuo et al

8

Pt SB w/ epi Ge/Si From MinHung

Page 9: Fig. 1 Kuo et al

9

EFn

EFm N-type Si

EFnEFm

N-type Si

kT

qVwheneeTAeeTAJ kT

qVkTBnqkT

qVkTBnq 3

~]1[

Emission" Thermionic" From

)/(2*)/(2* ))(

ln(2*

sBn J

TSiorGeA

q

kT

Page 10: Fig. 1 Kuo et al

10

kT

qVwheneeTAeeTAJ kT

qVkTBnqkT

qVkTBnq 3

~]1[

Emission" Thermionic" From

)/(2*)/(2* ))(

ln(2*

sBn J

TSiorGeA

q

kT

0.00 0.04 0.08 0.12 0.16 0.201E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

Bulk nSiepi nGe

Bulk nGe

6.95e-71.93e-6

0.00185

J

Vg (V)

nSi FBn 0.81 eV nGe FBn 0.59 eV N2679 FBn 0.77 eV

0.00 0.04 0.08 0.12 0.16 0.20

0

1

2

3

4

5

n-id

eality

Page 11: Fig. 1 Kuo et al

11

0.00 -0.04 -0.08 -0.12 -0.16 -0.201E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

5.48373333e-7

2.770155e-6

0.00262312

J

Vg (Reverse bias)

Bulk nSi FBn 0.82 eV Bulk nGe FBn 0.58 eV epi nGe N2679 FBn 0.76 eV

Calculating ΦBn by Reverse current :

Sze : ref )kT

qexp(-TA

/3

Bn2*

qkTVforJJ RSR

Page 12: Fig. 1 Kuo et al

12

I-V curves

-3 -2 -1 0 1 2 31E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

epi Ge

nGe

nSi

J (A

/cm

2 )

Vg (V)

nSi nGe epi Ge

Thermionic emission

V/cm104 4Thermionic-field emission (Tunneling)

thermionic emission

tunneling current

Page 13: Fig. 1 Kuo et al

13

Thermionic emission Thermionic-field emission (Tunneling)

V/cm104 4

nSi E-field~ 2e4 V/cm Epi Ge E-field~ 3e6 V/cm

From Simulation :

Page 14: Fig. 1 Kuo et al

14

C-V calibration :

C R

Cp

Rp

Rs

22222

2

222

222

1

1

1

1

1

)1(

pp

p

pp

pp

pp

s

pp

ppps

RCCC

RC

RC

C

RC

RpRR

C

jR

RC

RCjRR

2

4

C 1

22

2

p22

p

pp

p

RCC

RCCC由

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

1.0x10-7

2.0x10-7

3.0x10-7

4.0x10-7

5.0x10-7

6.0x10-7

C (

F/c

m2 )

Vg (volt)

C100K C500K

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.0

1.0x10-7

2.0x10-7

3.0x10-7

4.0x10-7

5.0x10-7

6.0x10-7

after calibration

2679N die1

So I just show the C-V before -2V for epi Ge with cap Pt SBD.

epi Ge with cap :

From I-V

Page 15: Fig. 1 Kuo et al

15

-2.0 -1.5 -1.0 -0.5 0.00.00E+000

5.00E-008

1.00E-007

1.50E-007

2.00E-007

2.50E-007

3.00E-007

Pt SBD

C (

F/c

m2 )

Vg (volt) - reverse bias

NSi epi Ge with cap epi Ge w/o cap

SBD C-V :

Epi Ge with cap for SBD has higher C than Bulk nSi and epi Ge w/o cap.

EFn

EFm N-type Si

Page 16: Fig. 1 Kuo et al

16

Floating gate Memory :

Flating gate

Control gate

Tunnel Oxide

Interpoly Dielectric

SourceDrain

p-substrate

Leakage path

Nano-crystals memory

(Freescale) :

Source Drain

Gate

Control Oxide

tunnel oxide

nano-crystals

Leakage path

Smaller dot size for scaling.Scaling (SiO2 gap between dots must exceed 5 nm)

Charge loss in full floating gate. Thick tunnel oxide.Trade-off between erase speed and tunnel oxide thickness – charge leaks off from the floating gate.The reliability issue when scaled down to deep submicron.

Disadvantage :

Page 17: Fig. 1 Kuo et al

17

ConventionalSONOS(15Å~30 Å)

NROM(>40 Å)

Bit-per-cell 1 bit/cell 2 bits/cell

Program FN CHE

Erase FN BTBT

Trap Memory

Page 18: Fig. 1 Kuo et al

18

Advantage : Trap size = atom for scaling

∆VT can be large if trap density is height

After annealing, Si implanted into the SiO2 separates from the oxide phase and form the Si-NCs.

Trap Memory :

Oxide

Substrate

Metal

defect

implantation

Page 19: Fig. 1 Kuo et al

19

Schematic energy band diagram under program/erase

oo

Ev

Ev

Ec

Ec

Eraseprogram

JelectronJ

electron

Jhole

Jhole

Al2O

3SiO2

Al2O

3

p-Si SiO2 HfO

2 high-p-Si SiO

2 HfO

2 high-

SiO2

TaN

TaN

Program/erase performance is enhanced using high-k blocking oxide.

Page 20: Fig. 1 Kuo et al

20

TEM characteristics

All high-k films are deposited by ALD.

After annealing treatment (1000oC, 10s) in N2 ambient, HfAlO

film shows partial crystalline, while HfO2 film shows fully

crystalline. The Al2O3 film shows also partial crystalline.

p-SiSiO2~3.6 nm

Al gate

Al2O3~10 nm

HfO2~5.2 nm

10 nm

Glue

Al2O3~10nm

SiO2~3nm

p-Si

HfAlO~10nm

Page 21: Fig. 1 Kuo et al

21

C-V hysteresis memory window

-2 0 2 4 60

1

2

3

memory window ~5.7V

Cap

acit

ance

(fF

/m

2 )

Gate voltage (V)

sweeping voltage: 3V 12V

Structure:

SiO2(3nm)/HfO2(10nm)/Al2O3(10nm)

Al gate electrode

Frequency: 100kHz

Ramp rate: 0.1V/s

A good C-V hysteresis memory window of high-k charge trapping layers is observed with high gate voltage. The memory window is slightly lower (7-8V@Vg=15V) as compared with

reported data (~10V@Vg=12V) on TaN/AlLaO3(12nm)/AlGaN(10nm)/SiO2

(2.7nm)/p-Si [A. Chin et al., 2005 IEDM Tech. Dig. P. 165].