fi 3221 electromagnetic interactions in...

12
18/01/2016 1 Alexander A. Iskandar Physics of Magnetism and Photonics FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER Maxwell eq. in vacuum Wave eq. and its solution Propagation of energy Maxwell eq. in matter Interface phenomena REVIEW OF ELECTROMAGNETISM AND WAVES Alexander A. Iskandar Electromagnetic Interactions in Matter 2

Upload: truongnguyet

Post on 13-May-2018

220 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

1

Alexander A. Iskandar

Physics of Magnetism and Photonics

FI 3221 ELECTROMAGNETIC

INTERACTIONS IN MATTER

• Maxwell eq.

in vacuum

• Wave eq.

and its

solution

• Propagation

of energy

• Maxwell eq.

in matter

• Interface

phenomena

REVIEW OF

ELECTROMAGNETISM AND

WAVES

Alexander A. Iskandar Electromagnetic Interactions in Matter 2

Page 2: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

2

Main

M. Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4

S.A. Maier : Section 1.1

Alexander A. Iskandar Electromagnetic Interactions in Matter 3

REFERENCES

In vacuum, the governing equations of electro-

magnetism are the Maxwell equations:

Alexander A. Iskandar Electromagnetic Interactions in Matter 4

MAXWELL’S EQUATIONS IN VACUUM

0 B

t

BE

0

E

t

EJB

000

Page 3: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

3

If there are no sources ( = 0 and = 0), taking the

curl of the last two equations and recall that :

we arrive at the wave equation,

Alexander A. Iskandar Electromagnetic Interactions in Matter 5

WAVE EQUATION IN VACUUM AND ITS

SOLUTIONS

J

001 v01

2

2

2

2

B

E

tv

B

E

B

E

2

The monochromatic/harmonic free wave has the

general form of

with the spatial part satisfying the Helmholtz eq.

is called the propagation vector it points to the

direction to where the wave travels.

Alexander A. Iskandar Electromagnetic Interactions in Matter 6

WAVE EQUATION IN VACUUM AND ITS

SOLUTIONS

tiexB

xE

txB

txE

)(

)(

),(

),(

0)(

)(22

xB

xEk

vk

v

vk ˆ

k

Page 4: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

4

The free wave equation admits solutions of the

following specific forms :

harmonic plane waves

harmonic spherical waves

Alexander A. Iskandar 7

WAVE EQUATION IN VACUUM AND ITS

SOLUTIONS

Electromagnetic Interactions in Matter

and are constant vectors.

Wavefront (position that has the same phase) is a

plane

8

rktieB

E

trB

trE

0

0

,

,

r

k

constrk

r

r

k

planar wavefront /

phase front

0E

0B

PLANE WAVE SOLUTIONS

Alexander A. Iskandar Electromagnetic Interactions in Matter

Page 5: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

5

Wavefront is a spherical surface

9

k

rktieB

E

rtrB

trE

0

01

,

,

constkr

r

r

r

SPHERICAL WAVE SOLUTIONS

Alexander A. Iskandar Electromagnetic Interactions in Matter

In matter, the charge can be classified in two kinds

And the current can be decomposed into

Further, the Ohm’s law gives

Alexander A. Iskandar Electromagnetic Interactions in Matter 10

ELECTROMAGNETIC FIELDS IN MATTER

boundfree Pbound

t

PMJbound

boundcond JJJ

EJcond

Page 6: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

6

Constitutive relations, expressing material responses

Alexander A. Iskandar Electromagnetic Interactions in Matter 11

ELECTROMAGNETIC FIELDS IN MATTER

)1(0 eEPED 0,

)1(0 mHMHB 0,

,0 EP e

χe = electric susceptibility

= 0, in vacuum

,HM m

χm = magnetic susceptibility

= 0 (=0), in vacuum and non magnetic medium

The Maxwell’s equations in matter becomes

Alexander A. Iskandar Electromagnetic Interactions in Matter 12

MAXWELL’S EQUATION IN MATTER

0 B

t

BE

t

DJH cond

freeD

Page 7: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

7

Consider the case with no free sources (free = 0 and

= 0), taking the curl of the last two

equations yielded :

For uniform medium : , yields

Alexander A. Iskandar Electromagnetic Interactions in Matter 13

WAVE EQUATION IN MATTER

0

H

E

01

2

2

2

2

H

E

tv

1v wave propagation speed

H

E

H

E

2

condJ

For non-uniform medium :

Refractive index is defined the ratio of propagation

speed in vacuum to that in matter,

For non-magnetic materials ( = 0)

Alexander A. Iskandar Electromagnetic Interactions in Matter 14

WAVE EQUATION IN MATTER

02

22

H

E

t

en 12

00

v

cn

Page 8: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

8

Consider a (non-magnetic, m = 0) metal with no free

charges.

Taking the curl of the Faraday’s equation yields

And making use of the Ampere’s equation gives the

following wave equation

Solution and skin-depth.

Alexander A. Iskandar Electromagnetic Interactions in Matter 15

WAVE ON (NON-MAGNETIC) METAL

Ht

EE

2

02

2

00

2

t

E

t

EE

Alexander A. Iskandar Electromagnetic Interactions in Matter 16

PROPAGATION OF ENERGY

Poynting vector : energy flow

density

Time-average Poynting vector

Power transported through

surface-area S

S S

HES

2*

21 Re mWHES

WdSS S

Page 9: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

9

Alexander A. Iskandar Electromagnetic Interactions in Matter 17

Applying the continuity condition of the wave vector,

we obtained the Snell’s law (independent of

polarization)

18

'1k

1'

1

2

1n

2n

1k

2k

x

zy

11

2211 sinsin nn 22

zjjx kkk zzz kkk 212,1j

REFLECTION AND TRANSMISSION

Alexander A. Iskandar Electromagnetic Interactions in Matter

Page 10: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

10

TE (s) wave : plane of incidence (x) or //

(linearly polarized)

Boundary condition : continuities in and

19

REFLECTION AND TRANSMISSION

E

y

yE xEy

Alexander A. Iskandar Electromagnetic Interactions in Matter

)exp(ˆ10

2,1 xikzikEry xz

'1k

1'

1

2

1n

2n

1k

2k

H

H

H

x

z

)exp(ˆ 10 xikzikEy xz

)exp(ˆ20

2,1 xikzikEty xz

y

Resulted reflection and transmission coefficients :

20

REFLECTION AND TRANSMISSION

Alexander A. Iskandar Electromagnetic Interactions in Matter

;coscos

coscos

2211

2211

21

21

1

12,1

nn

nn

kk

kk

E

Er

xx

xx

2211

11

21

1

1

22,1

coscos

cos2

2

nn

n

kk

k

E

Et

xx

x

)exp(ˆ10

2,1 xikzikEry xz

'1k

1'

1

2

1n

2n

1k

2k

H

H

H

x

z

)exp(ˆ 10 xikzikEy xz

)exp(ˆ20

2,1 xikzikEty xz

y

Page 11: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

11

TM (p) wave : plane of incidence or equivalently

// the plane of incidence (draw your own figure in

close analogy with the previous one !)

Boundary condition : continuities in and

21

REFLECTION AND TRANSMISSION

Alexander A. Iskandar Electromagnetic Interactions in Matter

H

yHx

H

n

y

2

1

2112

11

2

2

11

2

2

122,1

//coscos

cos22

nn

n

knkn

knt

xx

x

2112

2112

2

2

11

2

2

2

2

11

2

22,1

//coscos

coscos

nn

nn

knkn

knknr

xx

xx

Transmission and reflection of energy flow across an

interface can be calculated from the Poynting vector

One can show that for non-absorptive materials,

energy is conserved

Alexander A. Iskandar Electromagnetic Interactions in Matter 22

TRANSMITTANCE AND REFLECTANCE

2

11

22

cos

cos

ˆ

ˆt

n

n

Sx

Sx

I

IT

i

t

i

t

2

ˆ

ˆr

Sx

Sx

I

IR

i

r

i

r

1TR

Page 12: FI 3221 Electromagnetic Interactions in matterfismots.fi.itb.ac.id/FMF/wp-content/uploads/2016/01/Lecture01... · Dressel and G. Gruner : Section 2.1 and 2.2 and 2.4 S.A. Maier :

18/01/2016

12

Show that the time-average Poynting vector is given as

Derive Fresnel formulas

Derive the transmittance and reflectance formulas

and conservation of energy formula

Alexander A. Iskandar Electromagnetic Interactions in Matter 23

HOMEWORK

2*

21 Re mWHES