ferroelectricity. phase transition. material properties...knbo3 708 30 pbtio 3 765 >50 litio 3 938...

19
11/5/2013 Physics 403 Fall 2013 1 Ferroelectricity. Phase transition. Material properties Eugene V Colla, Physics 403

Upload: others

Post on 06-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 11/5/2013 Physics 403 Fall 2013 1

    Ferroelectricity. Phase transition.

    Material properties

    Eugene V Colla, Physics 403

  • 11/5/2013 Physics 403 Fall 2013 2

    Ferroelectricity.

    outline

    •Ferroelectricity. Definition

    •Discovery

    •Main properties

    •Phenomenological theory

    • Some materials

    •Relaxors

    •Applications

  • 11/5/2013 Physics 403 Fall 2013 3

    Ferroelectricity. Definitions.

    Ferroelectric Materials. A ferroelectric material is

    a material that exhibits, over some range of

    temperature, a spontaneous electric polarization

    that can be reversed or reoriented by application

    of an electric field.

    An American National Standard

    IEEE Standard Definitions of

    Primary Ferroelectric Terms

  • 11/5/2013 Physics 403 Fall 2013 4

    Rochelle Salt KNaC4H4O6*4H2O

    Ferroelectricity: Discovery

  • 11/5/2013 Physics 403 Fall 2013 5

    Rochelle Salt KNaC4H4O6*4H2O

    Joseph Valasek (1897-1993)

    University of Minnesota

    1. J. Valasek, Phys. Rev. 17, 475 (1921) 2. J. Valasek, Phys. Rev. 19, 478 (1922)

    Fig.1. The first published

    hysteresis loop [1] Fig3. Piezoelectric

    response as a function

    of temperature [2]

    Ferroelectricity: Discovery

    1920 1969

  • 11/5/2013 Physics 403 Fall 2013 6

    Ferroelectricity: Two classes of ferroelectrics

    Displacement type

    N

    O

    O

    Order-Disorder

    disorder

    order

    NaNO2

    Ba

    Ti O

    P

    P BaTiO3

  • -40 -30 -20 -10 0 10 20 30 40

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40 Sn:Ti = 0.24:0.11

    PLZST ceramics

    P (

    C

    /cm

    2)

    EDC

    (kV/cm)

    11/5/2013 Physics 403 Fall 2013 7

    Ferroelectricity: Polarization reversible

    (P-E hysteresis)

  • 11/5/2013 Physics 403 Fall 2013 8

    Ferroelectricity: Domains

    +

    -

    Pnet~0

    Single domain state

    Multi domain state

    180o domain pattern

    90o domains

    Y Lu et al. Science 1997;276:2004-2006

    Courtesy of Igor Lukyanchuk

    http://www.lukyanc.net/stories/nano-worldofdomains

  • 11/5/2013 Physics 403 Fall 2013 9

    Ferroelectricity: Domains

    Courtesy of Benjamin Vega-Westhoff

    and Scott Scharfenberg, P403, Fall2009

    BaTiO3

    BaTiO3

    Crystal from Forschungsinstitut für mineralische und metallische

    Werkstoffe -Edelsteine/Edelmetalle

    KH2PO4

    Courtesy of Allison Pohl, P403,

    Fall2009

    KD2PO4 191K

    PMN-PT40%

    PMN-PT30%

  • 11/5/2013 Physics 403 Fall 2013 10

    Ferroelectricity: Landau-Ginzburg

    phenomenological theory

    EPcPbPaPFP ...6

    1

    4

    1

    2

    1 642

    Free energy Order parameter (polarization) Electric field

    To find the equilibrium solution we need to

    find the minima of FP by solving the equation: 0

    P

    F

    Ignoring higher terms we can get the linear solution:

    0F

    aP EP

    aE

    P 1

    Assuming linear dependence of a on temperature we will have:

    1( )

    cT T

    C and finally we will have Curie-Weiss law

    ( )c

    C

    T T

  • -7 0 7

    0

    10

    20

    30

    40

    50

    60

    70

    80

    F (

    a.u

    .)

    P (a.u.)

    11/5/2013 Physics 403 Fall 2013 11

    Ferroelectricity: Landau-Ginzburg

    phenomenological theory

    In case of b>) (C>0 also) We will

    have the solution for second order

    phase transition with two

    equilibrium points –p0 and p0. Both

    these states are equivalent

    T>Tc

    T=Tc

    T

  • -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12-20

    -10

    0

    10

    20

    30

    40

    F (

    a.u

    .)

    P (a.u.)

    -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12-20

    -10

    0

    10

    20

    30

    40

    F (

    a.u

    .)

    P (a.u.)

    -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12-20

    -10

    0

    10

    20

    30

    40

    F (

    a.u

    .)

    P (a.u.)

    -40 -30 -20 -10 0 10 20 30 40

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40 Sn:Ti = 0.24:0.11

    PLZST ceramics

    P (

    C

    /cm

    2)

    EDC

    (kV/cm)

    11/5/2013 Physics 403 Fall 2013 12

    Ferroelectricity: Landau-Ginzburg

    phenomenological theory

    EPcPbPaPFP ...6

    1

    4

    1

    2

    1 642

    Including EP term can illustrate

    the P-E hysteretic behavior

    -Ps Ps

    Pr

    Pr

    Ps

  • 400 450 5000

    3

    6

    9

    T (K)

    '/1

    000

    11/5/2013 Physics 403 Fall 2013 13

    Ferroelectricity: Susceptibility

    0P E

    0 0 0 0 0(1 )D E P E E E E

    For ferroelectrics >>1 and ≈

    Curie-Weiss law:

    00)(

    CWTT

    C

    C=1.9*105;

    TCW=385.2K

  • 11/5/2013 Physics 403 Fall 2013 14

    Ferroelectricity: Typical ferroelectric materials

    KH2PO4

    Courtesy Max Candocia, P403 Spring 2011

    EDC=1.2kV/cm

  • 11/5/2013 Physics 403 Fall 2013 15

    Ferroelectricity: Typical ferroelectric materials

    BaTiO3

    cubic

    tetragonal orthorhombic rhombohedral

  • 11/5/2013 Physics 403 Fall 2013 16

    Ferroelectricity: Typical ferroelectric materials

    Number of publications concerning ferroelectricity.

    From Jan Fousek “Joseph Valasek and the Discovery of

    Ferroelectricity”

    Number of ferroelectric substances discovered in each year.

    Springer Handbook of Condensed Matter and Materials Data

    TC(K) Ps (C/cm2)

    KDP

    type KH2PO4 123 4.75

    KD2PO4 213 4.83

    RbH2PO4 147 5.6

    Perovskites BaTiO3 408 26

    KNbO3 708 30

    PbTiO3 765 >50

    LiTiO3 938 50

    LiNbO3 1480 71

  • 11/5/2013 Physics 403 Fall 2013 17

    Ferroelectricity: Relaxors - PMN Pb(Mg1/3 Nb2/3)O3

    Frequency dispersion of e’

    at different temperatures

    Temperature dependencies of the

    real part of the dielectric constant

    measured in a broad frequency

    range: 3*10-3 -106 Hz [1,2]

    1. E.V. Colla et all., J. Phys.: Cond. Matter, 4,3671, (1992)

    2. E.V. Colla et all. J. Appl. Phys., 83, 3298, (1998)

    150 200 250 300 350 400 4500

    7

    14

    21

    28

    35

    T (K)

    '/1

    03

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    10

    00

    /'

    101

    102

    103

    104

    105

    106

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    220K

    230K

    240K

    250K

    '/1

    03

    f (Hz)

  • 0.0 0.1 0.2 0.3 0.4 0.5

    300

    400

    500 Literature data

    single crystals

    ceramics

    Tc

    (K

    )

    x

    11/5/2013 Physics 403 Fall 2013 18

    (PMN)(1-x)(PT)(x)

    phase diagram

    “Relaxor”state

    (pseudocubic)

    Regular ferroelectric

    (tetragonal)

    Paraelectric

    (cubic)

    (PMN)0.9(PT)0.1 (PMN)0.7(PT)0.3

    (PMN)0.6(PT)0.4

    (PMN)0.7(PT)0.3 PT: PbTiO3, ferroelectric with

    Curie temperature 763K

    Ferroelectricity: Solid solution relaxor-regular

    ferroelectric.

  • 11/5/2013 Physics 403 Fall 2013 19

    Material Dielectric

    constant

    Piezoelectric

    coefficient, (pC/n)

    Electromechanical

    coupling factorQuartz 4.5 2.3 0.1

    Rochelle salt (30C) 9.2 27 0.3

    Barium titanate

    ceramic

    1700 190 0.52

    Lead zirconate

    titanate PZT 45/55

    450 140 060

    PMN-PT (sc) 4200 2200 0.92-0.94

    PZN-PT (sc) 2500 2400 0.91-0.93

    Actuators

    Transducers

    Adaptive optics

    Capacitors

    Line motors for SFM

    Transducer stack for

    ultrasonic sonar application

    (TRS Ceramics)

    Piezoelectric

    properties of different

    materials

    Ferroelectricity: Relaxors - some aplications