fermionic tensor networks - university of british columbia · 2012-06-07 · parity symmetry even...

38
Fermionic tensor networks Bosons Fermions vs Philippe Corboz, Institute for Theoretical Physics, ETH Zurich P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010) : fermionic PEPS

Upload: others

Post on 26-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic tensor networks

Bosons Fermionsvs

Philippe Corboz, Institute for Theoretical Physics, ETH Zurich

P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERAP. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010) : fermionic PEPS

Page 2: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

‣ Reminder: Calculus with fermionic operators✦ Jordan Wigner transformation: 1D vs 2D

‣ Fermionic tensor networks✦ Mapping a fermionic “operator” network onto a “familiar” tensor network

✦ Simple, intuitive rules

✦ Same computational cost

‣ Benchmarks✦ Free Fermions are the hardest case!

‣ Application: the t-J model✦ Infinite PEPS can compete with other variational approaches

‣ Summary

Outline

Page 3: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Introduction to Fermions

Lattice with N sites

V : local Hilbert space....

1 2 3 4 5 N-1 N{|0⇤, |1⇤}

order!

Basis states |n1, . . . , nN � = (c†1)n1(c†2)

n2 . . . (c†N )nN |0�

ni � {0, 1}

c†i

ci

c†i |0⇥ = |0 · · · 1 · · · 0⇥

ci|0 · · · 1 · · · 0⇥ = |0⇥Fermionic creation

annihilation ops

site i

Anticommutation relations

c†i c†i |0⇥ = �c†i c

†i |0⇥ = 0cicj = �cj ci

{ci, cj} = cicj + cj ci = 0,n

ci, c†j

o

= �ij

Page 4: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic basis

Basis states |n1, . . . , nN � = (c†1)n1(c†2)

n2 . . . (c†N )nN |0�

Examples:

c†1c†2|0� = |110� c†1|010� = |110�

c†2|010� = 0 c2|011� = |001�

c†3|010� = |011�

c†3|010⇥ = c†3c†2|0⇥ = �c†2c

†3|0⇥ = �|011⇥

Page 5: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic operators acting on basis states

c†i |n1...ni...nN ⇥ = �ni,0P (1)P (2)...P (i� 1)|n1...ni+1...nN ⇥

ci|n1...ni...nN ⇥ = �ni,1P (1)P (2)...P (i� 1)|n1...ni�1...nN ⇥

General rule:

c†i ci+k|...ni...ni+k...⇥ = �ni,0�ni+k,1P (i + 1)P (i + 2)...P (i + k � 1)|...ni+1...ni+k�1...⇥

P |1⇥ = (�1) |1⇥P |0� = (+1) |0�

Jordan-Wigner transformation!

c†i ci+k b†i �zi+1�

zi+2...�

zi+k�1 bi+k

Fermionic operator acting on 2 sites

(Hardcore) bosonic or spin operator acting on k+1 sites

Page 6: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Parity symmetry

Fermionic observables and Hamiltonians have parity symmetry

[H, P ] = 0 [O, P ] = 0

➡ they can be written as an even polynomial of ‘s c†, c

A parity preserving fermionic operator commutes with any other fermionic operator if their supports are disjoint

[O, ck] = 0, if k /� sup[O]

(�1)2 = +1

(�1)2N = +1

c†3c4 c†k = c†k c†3c4

k /� {3, 4}

{

O

Page 7: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Local fermionic operators

c†i ci+k b†i �zi+1�

zi+2...�

zi+k�1 bi+k

non-local paritypreserving op

No negative sign arises when acting with a local, normal ordered, parity preserving operator on a state

Example:

= c†3c4 c†1c†2c

†4|0� = c†1c

†2 c†3c4 c†4|0� = |1110�c†3c4|1101�

JWT

c†i ci+1 b†i bi+1local parity preserving op

(no ‘s are involved)JWT

�z

acts in the same way as the (hardcore) bosonic operator

Page 8: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Jordan-Wigner transformation in 1D

1D1 2 3 4 easy!

c†2c3 � b†2b3

no string of ‘sfor nearest-neighbor operators

�z

★ Local fermionic operators get mapped into local bosonic operators★ We can easily map the fermionic Hamiltonian onto a (hardcore) bosonic

Hamiltonian and then solve the bosonic (spin) model

Page 9: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Jordan-Wigner transformation in 2D

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 2-site local operator

k-site non-local operator

c†1c5 � b†1�z2�z

3�z4 b5

2D

★ In two dimensions some local fermionic operators get mapped into non-local bosonic operators

★ This looks complicated for large (or even infinite) 2D systems!

Can we use a “fermionic” tensor network ansatz to represent fermionic wave functions directly?

Yes, it’s possible!Corboz et al, PRA 81 (2010)

Page 10: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Breakthrough in 2009: Fermions with 2D tensor networks

How to take fermionic statistics into account?

P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, Phys. Rev. A 81, 010303(R) (2010)

C. V. Kraus, N. Schuch, F. Verstraete, J. I. Cirac, Phys. Rev. A 81, 052338 (2010)

C. Pineda, T. Barthel, and J. Eisert, Phys. Rev. A 81, 050303(R) (2010)

P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009)

T. Barthel, C. Pineda, and J. Eisert, Phys. Rev. A 80, 042333 (2009)

Q.-Q. Shi, S.-H. Li, J.-H. Zhao, and H.-Q. Zhou, arXiv:0907.5520

P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010)

I. Pizorn, F. Verstraete, Phys. Rev. B 81, 245110 (2010)

Z.-C. Gu, F. Verstraete, X.-G. Wen. arXiv:1004.2563

Different formulations:

fermionic operators anticommute

cicj = �cj ci

Page 11: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

3x3 PEPS

Crossings in 2D tensor networks

Ψ

؆��|�

Crossings appear when projecting the 3D network onto 2D!

w1 w2 w3 w4

uux uy

� (lower half)

� (upper half)

H

Example network of the 2D MERA

Page 12: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Bosons vs Fermions

�B(x1, x2) = �B(x2, x1)

symmetric!

�F (x1, x2) = ��F (x2, x1)

antisymmetric!

+ --Crossings in a tensor network

ignore crossings take care!

--=+

operators anticommutebibj = bj bi

operators commute

cicj = �cj ci

Page 13: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

The swap tensor

RULE:

# Fermions

+

even even

+

evenodd

--oddodd

+

oddeven Parity

(even parity), even number of particlesParity of a state: P

(odd parity), odd number of particles

P = +1

P = �1{Replace crossing by swap tensor

i1 i2

j2 j1

B

S(P (i1), P (i2)) =��1+1

if P (i1) = P (i2) = �1otherwise

Bi1i2j2j1

= �i1,j1�i2,j2S(P (i1), P (i2))

Page 14: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Parity symmetry

even odd

• Decomposing local Hilbert spaces into even and odd parity sectors

• Label state by a composite index i = (p, �p)parity sector enumerate states in

parity sector p

➡ tensor with a block structure (similar to a block diagonal matrix)➡ Easy identification of the parity of a state!

• Choose all tensors to be parity preserving!

Ti1i2...iM = 0 if P (i1)P (i2) . . . P (iM ) �= 1=

P P P

P

• Fermionic systems exhibit parity symmetry! [H, P ] = 0

➡ Parity preserving operator T commutes with any operator K if their support is disjoint

Example!

Page 15: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

ExampleBosonic tensor network Fermionic tensor network

EASY!!!

Page 16: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic “operator networks”

Tensor

State of 4 site system

bosonictensor network

{|0⇤, |1⇤}

i1 i2 i3 i4

�i1i2i3i4

i1 i2 i3 i4

j1 j2

Bj2i3i4Aj1

i1i2

Dj1j2

Contract

Boso

ns

|�� =�

i1i2i3i4

�i1i2i3i4 |i1i2i3i4�

Tensor + fermionic ops

i1 i2 i3 i4 i1 i2 i3 i4

j1 j2fermionic operator networkA B

D Contract+

operator calculus

Ferm

ions

A = Aj1i1i2

|i1i2ihj1| = Aj1i1i2

c†i11 c†i22 |0ih0|cj110

Page 17: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic “operator network”

Use anticommutation rules to evaluate fermionic operator network:

Easy solution: Map it to a tensor

network by replacing crossings by swap tensors

Page 18: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

O = t c†1c3

|�� = |011�

���| = �110|

0

0

= �tc†1I3c†2|0⇥�tc†1c3c

†3c

†2|0⇥ ={

�tc†1c†2I3|0⇥ = (�t)|110⇥

⇥110|(±t)|110⇤ = ± t

➡ All involved anticommutations to evaluate a fermionic operator network are represented by a crossing

➡ The crossings play the key role to evaluate a fermionic tensor network

Example

c†2c†3|0�

�c†3c†2|0⇥

A simple example: , ���|O|�⇥ O = t c†1c3

Page 19: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Cost of fermionic tensor networks??

w1 w2 w3 w4

uux uy

� (lower half)

� (upper half)

H

First thought:Many crossings many more tensors larger computational cost??

NO!Same computational cost

Page 20: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

The “jump” move

• Jumps over tensors leave the tensor network invariant• Follows form parity preserving tensors

=

[T , ck] = 0, if k /� sup[T ]

• Allows us to simplify the tensor network• Final cost of contraction is the same as in a bosonic tensor network

Page 21: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Example of the “jump” move

Page 22: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Example of the “jump” move

Page 23: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Example of the “jump” move

Page 24: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Example of the “jump” move

absorb

absorb

Page 25: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Example of the “jump” move

now contract as usual!

Page 26: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic (i)PEPS

Ψ

Ψ†

‣ No crossings anymore

‣ Fermionic character taken into account locally!

‣ Only small modification to bosonic PEPS

��|�

Page 27: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Example of the “jump” move

absorb

absorb

Page 28: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Fermionic (i)PEPS: expectation values

environment

compute environment approximately (e.g. using MPS)

Connect two-body operator

Contract this network!

insert swap tensors

Page 29: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Summary: Fermionic TN➡Simulate fermionic systems with 2D tensor networks

➡Replace crossings by swap tensors & use parity preserving tensors

➡Computational cost does not depend a priori on the particle statistics (but on the amount of entanglement in the system)!

Page 30: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Computational cost

It depends on the amount of entanglement in the system!

• How large does have to be?D

• Leading cost: O(Dk)polynomial scaling but large exponent!

MPS: k = 3PEPS: k ⇡ 10

2D MERA: k = 16

The less entangled the system, the better the accuracy!

0

1

2

3

1 1.5 2 2.5 310−6

10−5

10−4

10−3

λ

Enta

ngle

men

t en

trop

yEr

ror

of e

nerg

y

H(�)Spinless fermion model

fixed bond dimension D

Page 31: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Classification by entanglement (in 2D)

high

Entanglement

low gapped systemsband insulators, valence-bond crystals, s-wave superconductors, ...

gapless systemsHeisenberg model, p-wave superconductors, Dirac Fermions,...

systems with “1D fermi surface”

free Fermions, Fermi-liquid type phases, bose-metals

S(L) � L log L

★ Free fermions (or Fermi-liquid phases) are among the hardest problem for a 2D tensor network (in real space)

Page 32: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Non-interacting spinless fermions: infinite systems (iPEPS)

fast convergence with D in gapped phases

slow convergence in phase with 1D Fermi surface

Hfree =�

�rs⇥

[c†rcs + c†scr � �(c†rc†s + cscr)]� 2⇥

r

c†rcr

0 1 2 3 40

1

2

3

4

λ

γ critical gapped

1D Fermi surface

1 1.5 2 2.5 310−7

10−6

10−5

10−4

10−3

10−2

λ

Rel

ativ

e er

ror o

f ene

rgy

γ=0 D=2γ=0 D=4γ=1 D=2γ=1 D=4γ=2 D=2γ=2 D=4 D: bond dimension

Li et al., PRB 74, 073103 (2006)

Page 33: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Non-interacting fermions (2D MERA)

2D MERA is scalable!

101 102

10−3

10−2

L

rel.

erro

r of e

nerg

y

λ=1

λ=1.5

λ=2

λ=2.5

λ=3

� = 1, ⇥ = 4

critical phase

gapped phase

Layers1234

Size6x6

18x1854x54

162x162

Error constant with L�

Page 34: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Nearest-neighbor hopping Heisenberg interaction

t-J model

Ht-J = �tX

hiji�

c†i� cj� + H.c. + JX

hiji

(SiSj �14ninj) constraint: only one

electron per site!

Does it reproduce “striped” states observed

in some cuprates? ??

DMRG (wide ladders): YES!Variational Monte CarloFixed-node Monte Carlo NO!

Page 35: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

t-J model: iPEPS resultsM. Lugas, L. Spanu, F. Becca, S. Sorella. PRB 74, 165122 (2006)• Comparison with:

‣ variational Monte Carlo (VMC) (Gutzwiller projected wave functions)

‣ state-of-the-art fixed node Monte Carlo (FNMC)

0 0.05 0.1 0.15 0.2 0.25−1.55

−1.5

−1.45

−1.4

−1.35

δ

E hole

VMCFNMCiPEPS D=8 2x2 unit cell

J/t = 0.4iPEPS with 2x2 unit cell

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Corboz, White, Vidal, Troyer, PRB84, 2011

Page 36: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

0 0.05 0.1 0.15 0.2 0.25−1.55

−1.5

−1.45

−1.4

−1.35

δ

E hole

VMCFNMCiPEPS D=8 2x2 unit celliPEPS D=8 8x2 unit celliPEPS D=8 12x2 unit celliPEPS D=10 12x2 unit cell

• Comparison with:

‣ variational Monte Carlo (VMC) (Gutzwiller projected wave functions)

‣ state-of-the-art fixed node Monte Carlo (FNMC)

M. Lugas, L. Spanu, F. Becca, S. Sorella. PRB 74, 165122 (2006)

J/t = 0.4

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

AF order

Large hole

density

iPEPS: lower (better) variational energy than VMC/FNMC

t-J model: iPEPS results

DMRG, 18x10, cylindric BC, m=5000

Corboz, White, Vidal, Troyer, PRB84, 2011

Page 37: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

� = 0.1

0 0.05 0.1 0.15 0.2−1.65

−1.6

−1.55

−1.5

−1.45

−1.4

1/D

E h

Doping δ=0.1

uniform statestriped state

t-J model: Homogeneous vs striped state

Study energies as a function of the bond dimension D

Larger D thanks implementation of symmetries!Bauer, Corboz, Orus, Troyer, PRB 83 (2011)

Solution within reach! Work in progress...

VMC+Lanczos for N=162

Hu, Becca, Sorella, PRB 85 (2012)

?who wins

States are still competing at very low energies!

Page 38: Fermionic tensor networks - University of British Columbia · 2012-06-07 · Parity symmetry even odd • Decomposing local Hilbert spaces into even and odd parity sectors • Label

Summary: Fermionic tensor networks

‣ Fermionic Hamiltonians can be mapped onto a (hardcore) bosonic model (or spin model) via a Jordan-Wigner transformation

‣ In 2D local fermionic Hamiltonians get mapped into non-local bosonic Hamiltonians

✓ We can use a fermionic “operator” network to represent fermionic wave-functions in 2D

✓ We can account for the fermionic anticommutation rules by replacing crossings by swap tensors + use parity preserving tensors

✓ Same computational cost

‣ Free fermions (with a 1D Fermi-surface) violate the area law!

‣ Infinite PEPS yields competitive variational energies for the t-J model

‣ Promising way to simulate the 2D Hubbard model