feasibility study - oati websmartoasis · 2014. 1. 6. · relay coordination out of griffith...

61
Customer PV Generation Project Feasibility Study Report October 2009 i Feasibility Study Customer Kingman Area Photovoltaic Generation Project Interconnection October, 2009

Upload: others

Post on 08-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

i

Feasibility Study

Customer Kingman Area Photovoltaic Generation Project

Interconnection

October, 2009

Page 2: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

ii

EXECUTIVE SUMMARY CONCLUSION Customer has requested network resource interconnection service from UNS Electric (UNSE) to integrate its proposed Kingman area photovoltaic generation project (KAPVGP or Project) to the UNSE 69 kV transmission system located in the vicinity of Kingman and Golden Valley in Mohave County, Arizona. The project would provide up to 150 MW of photovoltaic resource generation with in-service date of May 2011. The project would consist of one to three units of 50 MW each. The Customer and the UNSE have discussed three options of interconnecting the project. These interconnecting options are via:

• A 69 kV radial line to the UNSE’s Industrial 69 kV Substation, $885k.

• A 69 kV radial line to the UNSE’s Boriana Junction 69 kV Substation, $8,755k.

• A 69 kV radial line to the UNSE’s West Golden Valley 69 kV Substation, $9,055k.

• All three of the above, $10,405k Estimates provided by UNSE/TEP Substation Engineering include all representative direct costs and overheads, but do not include any income tax gross-up that may be required to be collected. Any tax gross-ups will be calculated, collected and refunded in accordance with UNS Electric’s Rules & Regulations.. The cost estimates are non-binding and do not include mitigation of issues on other affected systems. The study evaluated a single 50 MW plant operating alone and all three plants operating concurrently at each of the three locations. Based on the feasibility analysis which evaluated the steady-state response of the UNSE transmission system to the proposed project subject to normal (N-0), single (N-1) as well as multiple (N-2) contingencies, each of the three interconnection options were found to be technically capable of interconnecting the proposed generation additions to the UNSE 69 kV system with appropriate interconnection and mitigation facilities in-place. From the short circuit analysis, performed by UNSE/TEP Protection group, there appear to be no post-project conditions that appreciably increase fault duty beyond the interrupting capability of existing fault interrupting devices on the 69 kV systems out of Griffith or Hilltop substations. The Industrial 69 kV interconnection option was found to be the lowest cost among the alternatives studied. No transmission facility overload was identified under normal as well as contingency conditions following the interconnection of the proposed 50 MW generating plant at Industrial 69 kV substation. The other alternatives however would require an additional 230/69 kV transformer at Griffith station and addition of approximately six miles of new 69 kV circuit between Griffith and the vicinity of Boriana Junction. In the case of plants at Boriana Junction, West Golden Valley or both, a 69 kV switching station near Boriana Junction would also be required to provide adequate protection coordination with the Black Mountain Generating Station.

Page 3: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

iii

BACKGROUND UNSE elected a third party contractor, PDS Consulting, PLC (PDS) to perform the interconnection feasibility study for the KAPVGP project. The analysis was performed using WECC approved 2012 heavy summer and 2013 light winter base cases provided by the UNSE. The scope of the analysis was to:

• Identify the feasibility of interconnecting the KAPVGP project as individual points of interconnection for 50 MW generating plants in the Kingman and Golden Valley area at each of the three locations and as a three 50 MW plants operating concurrently at the three locations.

• Identify the transmission system impacts caused solely by the addition of the KAPVGP project for normal operating conditions (N-0) as well as single (N-1) and multiple (N-2) contingencies.

Studies performed included power flow and short circuit analysis. Transient stability analysis will be conducted in the System Impact Study phase if the Customer elects to continue the interconnection process. The studies described in this report demonstrated the feasibility of interconnecting each of the three 50 MW plants in the KAPVGP to the UNSE transmission system via:

• A 69 kV radial line to the UNSE’s Industrial 69 kV Substation.

• A 69 kV radial line to the UNSE’s Boriana Junction 69 kV Substation.

• A 69 kV radial line to the UNSE’s West Golden Valley 69 kV Substation. The study indicates that the addition of the KAPVGP and the subsequent schedule of its output to the Palo Verde generation hub will not cause any new transmission facility overloads under normal or contingency operating conditions if the project is connected to the UNSE’s Industrial 69 kV substation. However, if the project is connected to the UNSE Boriana Junction 69 kV substation, a second 80 MVA 230/69 kV transformer would be required at Griffith. Additionally, a new 69 kV circuit would have to be built to reduce the complexity of relay coordination involving other generation on the existing 69 kV system out of Griffith substation. Interconnection to the UNSE’s West Golden Valley or Boriana Junction 69 kV substations would also trigger the need for an additional 80 MVA 230/69 kV transformer at Griffith. Interconnection of the proposed project at Boriana Junction, West Golden Valley or both, would also require the installation of a 69 kV switching station in the vicinity of Boriana Junction to further improve reliability and relay coordination out of Griffith substation to accommodate the Black Mountain Generating Station. The study also indicated that the addition of the KAPVGP caused up to three 230 kV transmission line to overload following multiple outages. There were also several existing transmission facility overloads exacerbated by the addition of the project. To mitigate the identified overloads under multiple outages the project may be required to participate in existing operational procedures or may be included in a new operational procedure. Detailed analysis of impacts to the overlying HV and EHV

Page 4: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

iv

transmission system will involve Western Area Power Administration and will be dealt with in the System Impact Study phase. The power flow analysis prior to the interconnection of the KAPVGP did not indicate any transmission facility overloads under normal operating conditions. The study however found six transmission facility overloads under single element outages and two 230 kV transmission line overloads following multiple outages.

Page 5: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

v

CONTENTS

Introduction ..................................................................................................................... 1

Project and Interconnection Information .......................................................................... 1

Study Base Case Description and Assumptions ............................................................. 3

Study Methodology and Evaluation Criteria…………………………………………............4

Study Results ................................................................................................................. .5

Mitigation Plan ............................................................................................................... 14

Cost Estimating ............................................................................................................. 16

Appendix A: Power Flow Maps …………………………………………..……….18

Appendix B: Summary of Power Flow Study Results..…………….……………….……..33

Appendix C: Power Flow Contingency List …………………………….……………..43

Appendix D: Single-line Diagrams …………………………………….……………..51

Appendix E: Cost Estimating …………………………………………….……………..55

Page 6: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

1

INTRODUCTION

Customer has requested network resource interconnection service from UNS Electric (UNSE) to integrate its proposed Kingman area photovoltaic generation project (KAPVGP or Project) to the UNSE 69 kV transmission system located in the vicinity of Kingman and Golden Valley in Mohave County, Arizona. The project would provide up to 150 MW of photovoltaic resource generation with in-service date of May 2011. The project would consist of up to three units of 50 MW each. The Customer and the UNSE have discussed three options of interconnecting the project. These interconnecting options are via:

• A 69 kV radial line to the UNSE’s Industrial 69 kV Substation.

• A 69 kV radial line to the UNSE’s Boriana Junction 69 kV Substation.

• A 69 kV radial line to the UNSE’s West Golden Valley 69 kV Substation. This study evaluated a single 50 MW plant operating alone and all three plants operating concurrently at each of the three locations. UNSE elected a third party contractor, PDS Consulting, PLC (PDS) to perform the interconnection feasibility study for the KAPVGP project. Only power flow analysis was performed. The analysis was performed using WECC approved 2012 heavy summer and 2013 light winter base cases provided by the UNSE. The scope of the analysis was to:

• Identify the feasibility of interconnecting the KAPVGP project as a single 50 MW plant in the Kingman area at each of the three locations and as three 50 MW plants operating concurrently at the three locations.

• Identify the transmission system impacts caused solely by the addition of the KAPVGP project for normal operating conditions (N-0) as well as single (N-1) and multiple (N-2) contingencies.

PROJECT AND INTERCONNECTION INFORMATION Table 1 provides the general project and interconnection information about the KAPVGP. Project Location Mohave County, Arizona Type of Generation Resource Photovoltaic generating plant Maximum Generator Output 50 MW per plant, 150 MW net project size Power Factor Unity Step-up Transformer (s) Three (3), 30/40/50 MVA, 35/69 kV transformer, Z=7.5% Interconnection Configuration See Figure 1 & 2. Interconnection Voltage 69 kV

Table 1: The KAPVGP Project General Information

Page 7: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

2

Figure 1 depicts the KAPVGP Project interconnection options and the existing transmission system at the interconnection vicinity. A one-line diagram of the basic KAPVGP layout is shown in Figure 2.

352

252

152

BLACK MOUNTAIN

SACRAMENTO

GRIFFITH 69 kV

BORIANA JCT

W GOLDEN VALLEY

to WATERFIELD

to BOUNDARY

CONE

to ARCO BREAKER

(NO)

YUCCA

EASTERN

HILLTOP 69 kV

50 MW PV

to JAGERSON

652

752

852

NO

to CASSON

50 MW PV

50 MW PV

INDUSTRIAL

Figure 1: The KAPVGP Project Interconnection Options

69 kV Bus 480 V Bus34.5 kV Bus

Distribution Bus

500 kW PV Sub-array

480 V Bus

500 kW PV Sub-array

.

.

.

Figure 2: Typical One-Line Diagram of the KAPVGP 50 MW Plant

Page 8: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

3

STUDY BASE CASE DESCRIPTION AND ASSUMPTIONS This analysis was conducted using two power flow base cases: Western Electricity Coordination Council (WECC) approved 2012 heavy summer (12hs2a.sav) and 2013 light winter (13lw1s.sav) base cases. The 2012 heavy summer base case was adjusted to reflect 2011 heavy summer forecasted operating conditions in the study area. The 2013 light winter case was modified to reflect forecasted UNSE’s lowest daytime peak conditions in winter of 2012. Generation dispatch modeled in the WECC base cases was not modified. The benchmark (pre-project) base cases were tested to ensure that all transmission facilities in the study area are within their normal operating limits. While it is impossible to study all combinations of system load and generation levels during all seasons, these two pre-project base cases represent extreme loading and generation conditions for the study area. However, UNSE cannot guarantee that the KAPVGP can operate at maximum rated output year round without impacting the transmission system during times and seasons not studied. Four post-project base cases were developed from each of the pre-project cases. The post-project base cases modeled the proposed KAPVGP for the interconnections depicted in Figure 1. The output of KAPVGP project was dispatched to replace merchant generators at Palo Verde/Hassayampa generation hub for this study. Table 2 provides descriptions of all the pre- and post-project base cases developed for the feasibility study.

Pre- /Post- Base Cases

Base Case Description

Pre-project Case A Approved WECC 2012 Heavy summer pre-project base case. Models 2011 forecasted load in the study area.

Pre-project Case B Approved WECC 2013 light winter pre-project base case. Models 2011 forecasted load in the study area.

Post-project Case A1 Developed from Pre-project Case A and models the 50 MW KAPVGP project connected to UNSE’s Industrial 69 kV substation.

Post-project Case A2 Developed from Pre-project Case A and models the 50 MW KAPVGP project connected to UNSE’s Boriana 69 kV substation.

Post-project Case A3

Developed from Pre-project Case A and models the 50 MW KAPVGP project connected to UNSE’s W. Golden Valley 69 kV substation.

Post-project Case A4

Developed from Pre-project Case A and models the 150 MW KAPVGP project distributed equally at UNSE’s Industrial, Boriana and W. Golden Valley 69 kV substations.

Post-project Case B1

Developed from Pre-project Case B and models the 50 MW KAPVGP project connected to UNSE’s Industrial 69 kV substation.

Post-project Case B2

Developed from Pre-project Case B and models the 50 MW KAPVGP project connected to UNSE’s Boriana 69 kV substation.

Post-project Case B3 Developed from Pre-project Case B and models the 50 MW KAPVGP project connected to UNSE’s W. Golden Valley 69 kV substation.

Post-project Case B4 Developed from Pre-project Case B and models the 150 MW KAPVGP project distributed equally at UNSE’s Industrial, Boriana and W. Golden Valley 69 kV substations.

Table 2: Pre-/Post-project Base Cases

Page 9: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

4

STUDY METHODOLOGY AND EVALUATION CRITERIA Power flow analysis was performed on both the pre-Project and post-Project cases to determine the impact of the KAPVGP Project on the UNSE sub-transmission system and the interconnected facilities within the study area. Specific studies conducted and their evaluation criteria are outlined below: Power Flow Analysis Power flow analysis was performed on both the pre-project and post-project base cases detailed in Table 2. The base cases were used to simulate the impact of the Project during normal operating conditions (N-0) as well as single (N-1) and multiple contingency conditions. The contingencies simulated included:

• All single sub-transmission and transmission circuit outages within the study area (N-1).

• All single transformer outages within the study, excluding transformers serving only distribution load (N-1).

• All Tie Lines to adjacent connecting immediately outside the study area (N-1).

• All pairs of the above single outages (N-2) The WECC/NERC and UNSE planning standards will be used to assess the adequacy of the study results. The power flow analysis related evaluation criteria that will be used are summarized below:

• Pre-contingency bus voltage outside the study area must be between 0.95 per unit and 1.05 per unit.

• Post-contingency 69 kV voltages must be between 0.95 and 1.05 per unit.

• Study area transmission voltages >1.00 pu. Fictitious buses to model transformer terminated lines are not subject to this criterion.

• Pre-contingency UNSE 69 kV bus voltages between 0.95 and 1.025 pu

• Maximum voltage deviation allowed at all buses under contingency conditions will be 5% for all contingencies.

• Pre-disturbance loading to remain within continuous ratings of all equipment and line conductors

• Post-disturbance loading to remain within emergency ratings of all equipment and line conductors.

• Post-project representation of the KAPVGP maintained unity power factor at the plant's point of interconnection to the UNSE system

Page 10: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

5

Short Circuit Analysis Short circuit studies were performed to evaluate the impact of the addition of the KAPVGP on selected UNSE-Mohave substation breaker duties. STUDY RESULTS Pre-Project—Power Flow Analysis Results Power flow analysis was performed on both the 2012 heavy summer and 2013 light winter base cases. Power flow maps for both base cases can be found in Appendix A. Key findings from the power flow analysis using both the heavy summer and light winter pre-project base cases are:

• No transmission facility overload was identified under normal operating conditions prior to the addition of KAPVGP.

• Six (6) transmission facility overloads were identified following selected single element (N-1) outages.

• Two (2) 230 kV transmission lines were found to be overloaded under multiple outages during the summer operating condition. (See Appendix B, Table B1 for the identified overloads)

• No bus voltage deviation violation was identified. Industrial 69 kV Interconnection—Power Flow Analysis Results a) 2012 Heavy Summer Base Case Power flow Maps for 2012 heavy summer post-project base case A1 developed for the Industrial 69 kV interconnection can be found at Appendix A. Difference power flow maps between the pre- and post-project base case A1 can also be found at Appendix A. Power flow solutions were achieved for all the outages simulated. Appendix B, Table B1 provides a summary of the results of the power flow analysis. Key findings from the power flow studies using the 2012 heavy summer base cases are:

• No transmission facility overload was identified under normal operating condition following the interconnection of the KAPVGP to the Industrial 69 kV substation.

• No transmission facility overload attributable to the project was identified under N-1 contingency conditions.

• No transmission facility overload solely due the proposed project following multiple outages. However, two existing 230 kV transmission line contingency overloads were exacerbated following the addition of the KAPVGP. (See Appendix B, Table B1 for the identified overloads)

• No bus voltage deviation violation was identified.

Page 11: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

6

b) 2013 Light Winter Base Case Summary of the results of the pre- project base and post-project base case A1 can be found at Appendix B, Table B2. Power flow Maps for 2012 light winter pre- and post-project base cases can also be found at Appendix A. Key findings from the power flow studies are:

• No transmission facility overload was identified under normal operating condition following the interconnection of the KAPVGP to the Industrial 69 kV substation.

• No transmission facility overload solely due to the project under N-1 or N-2 contingency conditions.

• No bus voltage deviation violation was identified. Boriana Junction 69 kV Interconnection—Power Flow Analysis Results a) 2012 Heavy Summer Base Case Power flow Maps for both 2012 heavy summer pre- and post-project base case A2 can be found at Appendix A. Difference power flow maps can also be found at Appendix A. Power flow solutions were achieved for all the outages simulated. Appendix B, Table B3 provides a summary of the results of the power flow analysis. Key findings from the power flow studies are:

• Two (2) new transmission facility overloads attributable to the KAPVGP project were identified under normal (N-0) operating condition. The GRIFFITH 230/69 kV transformer loaded up to 122% of the transformer’s normal rating following the interconnection of the project to Boriana 69 kV substation. Also the BORIANA-BORIANA TAP 69 kV line loaded up to 103% of the line’s normal rating.

• Two (2) new transmission facility overloads identified following selected N-1 outages. See Table 5 for the identified transmission facility overloads.

• Two (2) new 230 kV transmission lines were overloaded following multiple outages. Also two existing 230 kV transmission line contingency overloads were exacerbated following the addition of the KAPVGP. (See Appendix B, Table B3 for the identified overloads)

• No bus voltage deviation violation was identified. b) 2013 Light Winter Base Case Summary of the results of the pre- project base and post-project base case A2 can be found at Appendix B, Table B4. Power flow Maps for 2012 light winter pre- and post-project base cases can also be found at Appendix A. Key findings from the power flow studies are:

Page 12: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

7

• Two (2) new transmission facility overloads attributable to the KAPVGP project were identified under normal operating condition. The GRIFFITH 230/69 kV transformer loaded up to 163% of the transformer’s normal rating following the interconnection of the project to Boriana 69 kV substation. Also the BORIANA-BORIANA TAP 69 kV line loaded up to 105% of the line’s normal rating.

• Two (2) new transmission facility overloads identified following selected N-1 outages. See Table 5 for the identified transmission facility overloads.

• No bus voltage deviation violation was identified. W. Golden Valley 69 kV Interconnection—Power Flow Analysis Results a) 2012 Heavy Summer Base Case Power flow Maps for both 2012 heavy summer pre- and post-project base case A3 developed for the W. Golden Valley 69 kV interconnection can be found at Appendix A. Difference power flow maps can also be found at Appendix A. Power flow solutions were achieved for all the outages simulated. Appendix B, Table B5 provides a summary of the results of the power flow analysis. Key findings from the power flow studies are:

• One (1) new transmission facility overload was identified under normal operating condition. The GRIFFITH 230/69 kV transformer loaded up to 121% of the transformer’s normal rating following the interconnection of the project to W. Golden Valley 69 kV substation.

• Two (2) new transmission facility overloads were identified under N-1 contingency conditions. See Table 5 for the identified transmission facility overloads.

• Two (2) new 230 kV transmission line was overloaded following multiple outages. Two existing 230 kV transmission line contingency overloads were exacerbated following the addition of the KAPVGP. (See Appendix B, Table B5 for the identified overloads)

• No bus voltage deviation violation was identified. b) 2013 Light Winter Base Case The power flow results using 2013 light winter base cases were similar to the results obtained during heavy summer operating conditions. The results are summarized in Table B6, Appendix B. Power flow Maps are provided in Appendix A. Key findings from the power flow studies are:

• One (1) new transmission facility overload was identified under normal operating condition. The GRIFFITH 230/69 kV transformer loaded up to 162% of the transformer’s normal rating following the interconnection of the project to W. Golden Valley 69 kV substation.

• Two (2) new transmission facility overloads were identified under N-1 contingency conditions. See Table 5 for the identified transmission facility

Page 13: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

8

overloads. • No bus voltage deviation violation was identified.

All 3 69 kV Substation Locations—Power Flow Analysis Results a) 2012 Heavy Summer Base Case Key findings from the power flow studies provided in Appendix B, Table B7 are:

• Two (2) new transmission facility overloads attributable to the KAPVGP project were identified under normal operating condition. The GRIFFITH 230/69 kV transformer loaded up to 185% of the transformer’s normal rating and the BORIANA-BORIANA TAP 69 kV line loaded up to 105% of the line’s normal rating.

• Two (2) new transmission facility overloads identified following selected N-1 outages. See Table 5 for the identified transmission facility overloads.

• Three (2) new 230 kV transmission line was overloaded following multiple outages. Two existing 230 kV transmission line contingency overloads were exacerbated following the addition of the KAPVGP. (See Appendix B, Table B7 for the identified overloads)

• No bus voltage deviation violation was identified. b) 2013 Light Winter Base Case Summary of the results of the pre- project base and post-project base case A4 can be found at Appendix B, Table B8. Power flow Maps for 2012 light winter pre- and post-project base cases can also be found at Appendix A. Key findings from the power flow studies are:

• Two (2) new transmission facility overloads attributable to the KAPVGP project were identified under normal operating condition. The GRIFFITH 230/69 kV transformer loaded up to 227% of the transformer’s normal rating and the BORIANA-BORIANA TAP 69 kV line loaded up to 107% of the line’s normal rating.

• Two (2) new transmission facility overloads identified following selected N-1 outages. See Table 5 for the identified transmission facility overloads.

• No bus voltage deviation violation was identified.

Page 14: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

9

Short Circuit Analysis To perform the short circuit study, the 50 MW photovoltaic generation additions were modeled in the TEP short circuit base case using the ASPEN One-Liner software. This case originated from the post-project for the proposed Bowie Power Station project.

The following data was used to prepare the short circuit case:

PV EQ0.265kV

PV MV35.kV

PV HV69.kV

PAD MOUNT TRANSFORMER

50 MVA

Z EQ= 7.5%/50 = 0.15%, X/R= 5.48

INTERTIE TRANSFORMERS= 50 MVAZ= 7 %

50MW PV INVERTER

X''d= 1.0 ( EQUIV. SUBTRANSIENT REACTANCE)

1. ASSUMED PV INVERTERS ARE A CONSTANT SOURCE = LOAD CURRENT

ASSUME X/R= 42

2. ASSUME 50 PAD MOUNT TRANSFORMERS FOR TOTAL GEN= 50MW

BORIANA, INDUSTRIAL

WEST GOLDEN VALLEY INTERCONNETS

S= 50MVA

EQUIVALENT

50 TRANSFORMERS--

3- PHASE FAULT

823P-90

0.0P-176

0.0P-10

108773P-90

20.6P-75

0.10P-90 823P90 108773P-90 0.00P120

Table 3 summarizes the short circuit magnitude for three-phase and single-line-to-ground faults for the pre-project and post-project conditions. Fault duty data in Table 3 is sorted from the highest incremental three-phase current at the Point of Interconnection (POI) to the lowest in order of magnitude for the regional buses. There appear to be no post-project conditions that appreciably increase fault duty beyond the pre-project values. Mitigation of any fault duty in excess of circuit breaker interrupting capability pre-project may cover mitigation of these issues post-project. The available margin at the regional buses was not available at the time of this report; however, it is expected that due to the magnitude of the incremental fault duty and the relatively new age of the breakers with higher interrupting capability in this region that the interconnection of the BPGS CSP may not require mitigation of any breakers.

Page 15: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

10

Page 16: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

11

Page 17: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

12

Page 18: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

13

Page 19: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

14

MITIGATION PLANS Provided in Table 5 below are the recommended corrective mitigation plans for the identified transmission facility overload solely due to the addition of the KAPVGP. For any existing overloads exacerbated with the addition of the KAPVGP, the project could be included in the existing mitigation plan or be made to participate in any new mitigation plan designed for such an overload.

Outage Overloaded Facility Rating Overload Recommended Mitigation Industrial 69 kV Interconnection

N-0 ALL LINES IN SERVICE None N/A N/A None

N-1 None None N/A N/A None

Boriana Junction 69 kV Interconnection N-0

ALL LINES IN SERVICE

GRIFFITH 230/69 kV transformer

80 MVA 163% Add second 80 MW, 230/69 kV transformer

BORIANA – BORIANATP 69 KV LINE 368 A 105% Bypass overloaded segment by constructing new 69 kV circuit between Griffith and a 69 kV switching station in the vicinity of Boriana Junction (see Appendix D1 & D2)

N-1 BKMTMTP1 – BLK_MTN 69 KV LINE GRIFFITH – GRIFTAP3 69 KV LINE 912 A 119% Bypass overloaded segment by

constructing new 69 kV circuit between Griffith and a 69 kV switching station in the vicinity of Boriana Junction (see Appendix D1 & D2)

GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 118%

Table 5: Overloaded transmission facilities and associated recommended mitigation plans

Page 20: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

15

Outage Overloaded Facility Rating Overload (%)

Recommended Mitigation

W. Golden Valley 69 kV Interconnection N-0

ALL LINES IN SERVICE GRIFFITH 230/69 kV transformer 80 MVA 162% Add second 80 MW, 230/69 kV transformer

N-1 BKMTMTP1 – BLK_MTN 69 KV LINE

GRIFFITH – GRIFTAP3 69 KV LINE 912 A 119% Bypass overloaded segment by constructing new 69 kV circuit between Griffith and a 69 kV switching station in the vicinity of Boriana Junction (see Appendix D1 & D2)

GRIFFITH – GRIFTAP3 69 KV LINE

BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 118%

All 3 69 kV Substation Interconnection N-0

ALL LINES IN SERVICE

GRIFFITH 230/69 kV transformer 80 MVA 227% Add second and third 80 MW, 230/69 kV transformers

BORIANA – BORIANATP 69 KV LINE 368 A 107% Bypass overloaded segment by constructing new 69 kV circuit between Griffith and a 69 kV switching station in the vicinity of Boriana Junction (see Appendix D1 & D2)

N-1

BKMTMTP1 – BLK_MTN 69 KV LINE GRIFFITH – GRIFTAP3 69 KV LINE 912 A 153% Bypass overloaded segment by constructing new 69 kV circuit between Griffith and a 69 kV switching station in the vicinity of Boriana Junction (see Appendix D1 & D2)

GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 152%

Table 5: Overloaded transmission facilities and associated recommended mitigation plans (Continued)

Page 21: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

16

COST ESTIMATES (see Appendices D & E for details) The following cost estimates are non-binding and do not include mitigation of issues on other affected systems. These costs include direct costs and UNSE overheads, but do not include any income tax gross-up required to be collected by UNSE to the receipt of a taxable contribution in aid of construction. Pursuant to its Rules & Regulations, UNSE is required to collect an income tax gross-up on any taxable contribution in aid of construction in excess of $500,000. UNS Electric’s current gross-up factor is 65.37%. A portion of the income tax gross-up is refunded annually based on the federal income tax depreciation tables applicable to the plant assets received by UNSE. At the end of the fifth year in service, the remaining gross-up will be refunded at a discounted amount using UNS Electric’s authorized rate of return over the remaining tax life. The estimating is broken into the connection cost and the mitigation cost for each option. For the Feasibility Study it includes only construction costs associated with the 69 kV system and does not include 69 kV right-of-way costs. This estimating does not include any of the costs to mitigate impacts to the overlying Western Area Power Administration HV and EHV transmission system, as Western has said that they will provide these costs once the study moves to the System Impact Study phase. As such, the costs for each interconnection option are as follows: Industrial: $885k Connection Cost: $825k Includes a 69 kV circuit breaker, switches and protection and an estimated 1 mile of line extension with fiber optic ground wire (OPGW) from the 69 kV point of interconnection on the Transmission Provider’s 69 kV system to a high-side disconnect switch at the Interconnection Customers Interconnection Facilities. Protection and communications over new OPGW from Hilltop to Industrial for direct transfer trip to isolate the PV generating plant for faults external to the lateral line extension. A conceptual single-line diagram for the interconnection to Industrial substation is included in Appendix D1 and D2. Mitigation Cost: $60k Includes upgrades to the Hilltop 652 breaker bay to accommodate updating to SEL relaying, addition of direct transfer trip to Industrial and addition of power quality metering. Boriana Junction: $8,755k Connection Cost: $825k Includes a 69 kV circuit breaker, switches and protection at a new five position 69 kV ring bus at Boriana Junction and an estimated 1 mile of line extension with fiber optic

Page 22: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

17

ground wire (OPGW) from the 69 kV point of interconnection on the Transmission Provider’s 69 kV system to a high-side disconnect switch at the Interconnection Customers Interconnection Facilities, and protection at Boriana Junction to isolate the PV generating plant for faults external to the lateral line extension. A conceptual single-line diagram for the interconnection to Boriana Junction substation is included in Appendix D1. Mitigation Cost: $7,930k Mitigation includes a new 69 kV breaker bay breaker at Griffith, a 6 mile long 69 kV circuit out of Griffith substation to the vicinity of Boriana Junction, a new five position 69 kV ring bus at Boriana Junction and addition of an 80 MVA, 230/69 kV transformer at Griffith. West Golden Valley: $9055k Connection Cost: $825k Includes a 69 kV circuit breaker, switches and protection and an estimated 1 mile of line extension with fiber optic ground wire (OPGW) from the 69 kV point of interconnection on the Transmission Provider’s 69 kV system to a high-side disconnect switch at the Interconnection Customers Interconnection Facilities.. Protection and communications over new OPGW from a ring bus at Boriana Junction to West Golden Valley for direct transfer trip to isolate the PV generating plant for faults external to the lateral line extension. A conceptual single-line diagram for the interconnection to West Golden Valley substation is included in Appendix D1. Mitigation Cost: $8230k Mitigation includes a new 69 kV breaker bay breaker at Griffith, a 6 mile long 69 kV circuit out of Griffith substation to the vicinity of Boriana Junction, a new five position 69 kV ring bus at Boriana Junction and addition of an 80 MVA, 230/69 kV transformer at Griffith. All Projects: $10,405k Connection Cost: $2,475k Includes 1 mile of line extension with fiber optic ground wire (OPGW) to each of the three projects, a 69 kV circuit breaker, switches and protection from the existing 69 kV point of interconnection to a high-side disconnect switch at the point-of-interconnection for the W. Golden Valley and Industrial projects. Interconnection cost for the Boriana Junction project is imbedded in the cost for a five position 69 kV ring bus required as part of mitigation if all three projects are constructed. Protection and communications over new OPGW from Griffith to Boriana Junction and West Golden Valley for direct transfer trip to isolate the PV generating plant for faults external to the lateral line

Page 23: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

18

extension. Mitigation Cost: $7,930k Mitigation includes a new 69 kV breaker bay breaker at Griffith, a 6 mile long 69 kV circuit out of Griffith substation to the vicinity of Boriana Junction, a new five position 69 kV ring bus at Boriana Junction and addition of an 80 MVA, 230/69 kV transformer at Griffith. A conceptual single-line diagram for the interconnection of al the projects is included in Appendix D1.

Page 24: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

19

Appendix A

Power Flow Maps

Page 25: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

20

Section 1: Heavy Summer Pre-Project Base Case-Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 26: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

21

Section 2: Heavy Summer Post-Project Base Case A1 (Industrial 69 kV) - Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 27: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

22

Section 3: Difference Power Flow Map B/N Heavy Summer Pre- & Post-Project Base Case A1 (Industrial 69 kV)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 28: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

23

Section 4: Heavy Summer Post-Project Base Case A2 (Boriana 69 kV)-Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 29: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

24

Section 5: Difference Power Flow Map B/N Heavy Summer Pre- & Post- Project Base Case A2 (Boriana 69 kV)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 30: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

25

Section 6: Heavy Summer Post-Project Base Case A3 (Golden Vly 69 kV)-Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 31: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

26

Section 7: Difference Power Flow Map B/N Heavy Summer Pre- & Post- Project Base Case A3 (Golden Vly 69 kV)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 32: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

27

Section 8: Heavy Summer Post-Project Base Case A4 (All 3 Locations)-Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 33: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

28

Section 9: Difference Power Flow Map B/N Heavy Summer Pre- & Post- Project Base Case A4 (All 3 Locations)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 34: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

29

Section 10: Light Winter Pre-Project Base Case -Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 35: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

30

Section 11: Light Winter Post-Project Base Case A1 (Industrial 69 kV) - Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 36: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

31

Section 12: Light Winter Post-Project Base Case A2 (Boriana 69 kV) - Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 37: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

32

Section 13: Light Winter Post-Project Base Case A3 (Golden Vly 69 kV) - Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 38: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

33

Section 14: Light Winter Post-Project Base Case A4 (All 3 Locations) - Power Flow Map (All Lines in Service)

ua00311
Text Box
ua00311
Text Box
ua00311
Text Box
Page 39: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

34

Appendix B

Summary of Power Flow Analysis Results

Page 40: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

35

Table B1: Summary of Power Flow Study Results for Heavy Summer Base Case A1 (Industrial 69 kV)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A1

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE NONE N/A N/A N/A None

Category B Contingencies

BKMTNTP1 – BLK_MTN 69 KV LINE SACROSUB - GRIFTAP3 69 KV LINE 661 A 109 109

Overload not attributable to the addition of the proposed project

SACROSUB – BKMTNTP2 69 KV LINE 661 A 112 112

BKMTNTP2 – BLK_MTN 69 KV LINE GRIFFITH –YUCCATAP 69 KV LINE 661 A 110 110

SACROSUB – BKMTNTP2 69 KV LINE YUCCATAP – BKMTNTP1 69 KV LINE 661 A 113 113

BLK MESA #1 230/69 KV TRANSFORMER

BLK MESA #2 230/69 KV TRANSFORMER

45 MVA 117 117

BLK MESA #2 230/69 KV TRANSFORMER

BLK MESA #1 230/69 KV TRANSFORMER

45 MVA 117 117

Category C/D Contingencies

MCCONICO-DAVIS 230 KV LINE & PEACOCK 345/230 KV TRANSFORMER

PRSCOTWA – RNDVLYTP 230 KV LINE 897 A 120 138 Overload exacerbated by the addition of proposed project PEACOCK-RNDVLYTP 230 KV LINE 897 A 127 145

Page 41: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

36

Table B2: Summary of Power Flow Study Results for Light Winter Base Case A1 (Industrial 69 kV)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A1

Comments

Loading

(%)

Loading

(%)

Category A—Normal Overloads

ALL LINES IN SERVICE NONE N/A N/A N/A None

Category B Contingencies

BKMTNTP1 – BLK_MTN 69 KV LINE SACROSUB - GRIFTAP3 69 KV LINE 661 A 110 110

Overload not due to the addition of proposed project

SACROSUB – BKMTNTP2 69 KV LINE 661 A 111 111

BKMTNTP2 – BLK_MTN 69 KV LINE

GRIFFITH –YUCCATAP 69 KV LINE 661 A 111 110

YUCCATAP – BKMTNTP1 69 KV LINE 661 A 111 111

Category C/D Contingencies

NONE NONE N/A N/A N/A Same facility overloads as recorded under category B contingencies

Page 42: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

37

Table B3: Summary of Power Flow Study Results for Heavy Summer Base Case A2 (Boriana 69 kV)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A2

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE

GRIFFITH 230/69 KV TRANSFORMER 80 MVA 60 122 Replace transformer with a 150 MVA rated one

BORIANA – BORIANATP 69 KV LINE 368 A 10 103 Rebuild line

Category B Contingencies

GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 64 107 Overload due to KAPVGP.Rebuild the overloaded lines

BKMTNTP1 – BLK_MTN 69 KV LINE

GRIFFITH – GRIFTAP3 69 KV LINE 912 A 64 107

SACROSUB - GRIFTAP3 69 KV LINE 661 A 109 110

Overload exacerbated by the addition of proposed project

SACROSUB – BKMTNTP2 69 KV LINE 661 A 112 114

GRIFFITH – GRIFTAP3 69 KV LINE GRIFFITH – YUCCATAP 69 KV LINE 661 A 110 145

GRIFFITH – GRIFTAP3 69 KV LINE YUCCATAP – BKMTMTP1 69 KV LINE 661 A 113 147

BLK MESA #1 230/69 KV TRANSFORMER

BLK MESA #2 230/69 KV TRANSFORMER

45 MVA 117 117

Overload not attributable to the addition of the proposed

project BLK MESA #2 230/69 KV TRANSFORMER

BLK MESA #1 230/69 KV TRANSFORMER

45 MVA 117 117

Category C/D Contingencies

GRIFFITH – PEACOCK & HILLTOP-MCCONICO 230 KV LINES

MCCONICO –DAVIS 230 KV LINE 1336 A 97 107 Overload due to the addition of proposed project

GRIFFITH – PEACOCK & DAVIS-MCCONICO 230 KV LINES

HILLTOP-MCCONICO 230 KV LINE 1336 A 97 107

MCCONICO-DAVIS 230 KV LINE & PEACOCK 345/230 KV TRANSFORMER

PRSCOTWA – RNDVLYTP 230 KV LINE 897 A 120 138 Overload exacerbated by the addition of proposed project PEACOCK-RNDVLYTP 230 KV LINE 897 A 127 145

Page 43: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

38

Table B4: Summary of Power Flow Study Results for Light Winter Base Case A2 (Boriana 69 kV)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A2

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE

GRIFFITH 230/69 KV TRANSFORMER 80 MVA 60 163 Overload due to addition of KAPVGP. Replace transformer with a 150 MVA rated one

BORIANA – BORIANATP 69 KV LINE 368 A 10 105 Overload due to KAPVGP. Rebuild line

Category B Contingencies

BKMTMTP1 – BLK_MTN 69 KV LINE GRIFFITH – GRIFTAP3 69 KV LINE 912 A 88 119 Overload due to KAPVGP. Rebuild overloaded lines

GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 64 118

BKMTNTP1 – BLK_MTN 69 KV LINE SACROSUB - GRIFTAP3 69 KV LINE 661 A 110 112

Overload exacerbated by the addition of proposed project

SACROSUB – BKMTNTP2 69 KV LINE 661 A 111 113

BKMTNTP2 – BLK_MTN 69 KV LINE

GRIFFITH –YUCCATAP 69 KV LINE 661 A 111 162

YUCCATAP – BKMTNTP1 69 KV LINE 661 A 111 163

Category C/D Contingencies

None None N/A N/A N/A Same facility overloads as recorded under category B contingencies

Page 44: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

39

Table B5: Summary of Power Flow Study Results for Heavy Summer Base Case A3 (W. Golden Vly 69 kV)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A3

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE GRIFFITH 230/69 KV TRANSFORMER 80 MVA 60 121 Overload due to addition of KAPVGP. Replace transformer

with a 150 MVA rated one

Category B Contingencies

GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 64 107 Overload due to KAPVGP. Rebuild the overloaded lines

BKMTNTP1 – BLK_MTN 69 KV LINE

GRIFFITH – GRIFTAP3 69 KV LINE 912 A 64 107

SACROSUB - GRIFTAP3 69 KV LINE 661 A 109 111 Overload exacerbated by the addition of proposed project SACROSUB – BKMTNTP2 69 KV LINE 661 A 112 114

BKMTNTP2 – BLK_MTN 69 KV LINE GRIFFITH –YUCCATAP 69 KV LINE 661 A 110 146

SACROSUB – BKMTNTP2 69 KV LINE YUCCATAP – BKMTNTP1 69 KV LINE 661 A 113 148

BLK MESA #1 230/69 KV TRANSFORMER

BLK MESA #2 230/69 KV TRANSFORMER

45 MVA 117 117 Overload not attributable to the addition of the proposed project

BLK MESA #2 230/69 KV TRANSFORMER

BLK MESA #1 230/69 KV TRANSFORMER

45 MVA 117 117

Category C/D Contingencies

PEACOCK-RNDVLYTP 230 KV LINE & PEACOCK 345/230 KV TRANSFORMER

MCCONICO –DAVIS 230 KV LINE 1336 A 97 109 Overload due to the addition of the proposed project

GRIFFITH – PEACOCK & DAVIS-MCCONICO 230 KV LINES

HILLTOP-MCCONICO 230 KV LINE 1336 A 97 107

MCCONICO-DAVIS 230 KV LINE & PEACOCK 345/230 KV TRANSFORMER

PRSCOTWA – RNDVLYTP 230 KV LINE

897 A 120 138 Overload exacerbated by the addition of proposed project

PEACOCK-RNDVLYTP 230 KV LINE 897 A 127 145

Page 45: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

40

Table B6: Summary of Power Flow Study Results for Light Winter Base Case A3 (W. Golden Vly 69 kV)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A2

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE GRIFFITH 230/69 KV TRANSFORMER 80 MVA 60 162 Overload due to addition of KAPVGP. Replace transformer with a 150 MVA rated one

Category B Contingencies

BKMTMTP1 – BLK_MTN 69 KV LINE GRIFFITH – GRIFTAP3 69 KV LINE 912 A 88 119 Overload due to addition of KAPVGP. Rebuild overloaded lines GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 64 118

BKMTNTP1 – BLK_MTN 69 KV LINE SACROSUB - GRIFTAP3 69 KV LINE 661 A 110 112 Overload exacerbated by the addition of proposed project SACROSUB – BKMTNTP2 69 KV LINE 661 A 111 113

BKMTNTP2 – BLK_MTN 69 KV LINE

GRIFFITH –YUCCATAP 69 KV LINE 661 A 111 162

YUCCATAP – BKMTNTP1 69 KV LINE 661 A 111 163

Category C/D Contingencies

None None N/A N/A N/A Same facility overloads as recorded under category B contingencies

Page 46: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

41

Table B7: Summary of Power Flow Study Results for Heavy Summer Base Case A4 (All 3 Locations)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A4

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE

GRIFFITH 230/69 KV TRANSFORMER 80 MVA 60 185 Overload due to KAPVGP. Additional transformer

required

BORIANA – BORIANATP 69 KV LINE 368 A 10 105 Overload due to KAPVGP. Rebuild line

Category B Contingencies

GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 64 152 Overload due to KAPVGP. Rebuild the overloaded lines

BKMTNTP1 – BLK_MTN 69 KV LINE GRIFFITH – GRIFTAP3 69 KV LINE 912 A 64 153

SACROSUB - GRIFTAP3 69 KV LINE 661 A 109 114

Overload exacerbated by the addition of proposed project

SACROSUB – BKMTNTP2 69 KV LINE 661 A 112 118

BKMTNTP2 – BLK_MTN 69 KV LINE GRIFFITH –YUCCATAP 69 KV LINE 661 A 110 207

SACROSUB – BKMTNTP2 69 KV LINE YUCCATAP – BKMTNTP1 69 KV LINE 661 A 113 210

BLK MESA #1 230/69 KV TRANSFORMER

BLK MESA #2 230/69 KV TRANSFORMER

45 MVA 117 117

Overload not attributable to the addition of the proposed

project BLK MESA #2 230/69 KV TRANSFORMER

BLK MESA #1 230/69 KV TRANSFORMER

45 MVA 117 117

Page 47: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

42

Table B7: Summary of Power Flow Study Results for Heavy Summer Base Case A4 (All 3 Locations) Continued

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A4

Comments

Loading (%)

Category C/D Contingencies

GRIFFITH – PEACOCK & HILLTOP-MCCONICO 230 KV LINES

MCCONICO –DAVIS 230 KV LINE 1336 A 97 116

Overload due to the addition of proposed project GRIFFITH – PEACOCK & DAVIS-

MCCONICO 230 KV LINES HILLTOP-MCCONICO 230 KV LINE 1336 A 97 118

PEACOCK – HILLTOP 230 KV LINE 1336 A 81 111

MCCONICO-DAVIS 230 KV LINE & PEACOCK 345/230 KV TRANSFORMER

PRSCOTWA – RNDVLYTP 230 KV LINE 897 A 120 178 Overload exacerbated by the addition of proposed project

PEACOCK-RNDVLYTP 230 KV LINE 897 A 127 132 Overload attributable to the addition of the proposed project

Page 48: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

43

Table B8: Summary of Power Flow Study Results for Light Winter Base Case A4 (All 3 Locations)

Worst Outage

Overloaded Facility

Applicable Rating

Pre-Project

Case A

Post-Project

Case A4

Comments

Loading (%)

Category A—Normal Overloads

ALL LINES IN SERVICE

GRIFFITH 230/69 KV TRANSFORMER 80 MVA 60 227 Overload due to KAPVGP. Additional transformer

required

BORIANA – BORIANATP 69 KV LINE 368 A 10 107 Overload due to KAPVGP. Rebuild line

Category B Contingencies

BKMTMTP1 – BLK_MTN 69 KV LINE GRIFFITH – GRIFTAP3 69 KV LINE 912 A 88 164 Overload due to addition of KAPVGP. Rebuild overloaded lines GRIFFITH – GRIFTAP3 69 KV LINE BKMTMTP1 – BLK_MTN 69 KV LINE 912 A 64 162

BKMTNTP1 – BLK_MTN 69 KV LINE SACROSUB - GRIFTAP3 69 KV LINE 661 A 110 115 Overload exacerbated by the addition of proposed project SACROSUB – BKMTNTP2 69 KV LINE 661 A 111 116

BKMTNTP2 – BLK_MTN 69 KV LINE

GRIFFITH –YUCCATAP 69 KV LINE 661 A 111 223

YUCCATAP – BKMTNTP1 69 KV LINE 661 A 111 224

Category C/D Contingencies

None None N/A N/A N/A Same facility overloads as recorded under category B contingencies

Page 49: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

44

Appendix C

Power Flow Contingency List

Page 50: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

45

CATEGORY A RUN 0 CATEGORY BR LINE 19053 "LIBERTY " 345.0 19315 "PEACOCK " 345.0 1 RUN 1 CATEGORY BR LINE 19315 "PEACOCK " 345.0 19037 "MEAD " 345.0 1 RUN 2 CATEGORY BN LINE 19022 "DAVIS " 230.0 26046 "MCCULLGH" 230.0 1 RUN 3 CATEGORY BN LINE 19022 "DAVIS " 230.0 19011 "MEAD N " 230.0 1 RUN 4 CATEGORY BN LINE 19022 "DAVIS " 230.0 17087 "RIVIERA " 230.0 1 RUN 5 CATEGORY BN LINE 19022 "DAVIS " 230.0 19320 "TOPOCK " 230.0 2 RUN 6 CATEGORY BN LINE 19022 "DAVIS " 230.0 19224 "ZORB " 230.0 1 RUN 7 CATEGORY BN LINE 19310 "GRIFFITH" 230.0 19314 "PEACOCK " 230.0 1 RUN 8 CATEGORY BN LINE 19651 "HARRIS " 230.0 90003 "MERCATOR" 230.0 1 RUN 9 CATEGORY BN LINE 19072 "HILLTOP " 230.0 19056 "MCCONICO" 230.0 1 RUN 10 CATEGORY BN LINE 19056 "MCCONICO" 230.0 19022 "DAVIS " 230.0 1 RUN 11 CATEGORY BN LINE 19056 "MCCONICO" 230.0 19310 "GRIFFITH" 230.0 1 RUN 12 CATEGORY BN LINE 19056 "MCCONICO" 230.0 19651 "HARRIS " 230.0 1 RUN 13 CATEGORY BN LINE 19074 "N.HAVASU" 230.0 19042 "PARKER " 230.0 1 RUN 14 CATEGORY BN LINE 19074 "N.HAVASU" 230.0 19320 "TOPOCK " 230.0 1 RUN 15 CATEGORY BN LINE 19042 "PARKER " 230.0 19019 "BLK MESA" 230.0 1 RUN 16 CATEGORY BN

Page 51: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

46

LINE 19042 "PARKER " 230.0 14209 "EAGLEYE " 230.0 1 RUN 17 CATEGORY BN LINE 19042 "PARKER " 230.0 25402 "GENE " 230.0 1 RUN 18 CATEGORY BN LINE 19042 "PARKER " 230.0 19204 "HARCUVAR" 230.0 1 RUN 19 CATEGORY BN LINE 19042 "PARKER " 230.0 19075 "HAVASU " 230.0 1 RUN 20 CATEGORY BN LINE 19314 "PEACOCK " 230.0 19072 "HILLTOP " 230.0 1 RUN 21 CATEGORY BN LINE 14222 "PRESCOTT" 230.0 19501 "RNDVLYTP" 230.0 1 RUN 22 CATEGORY BN LINE 19501 "RNDVLYTP" 230.0 19314 "PEACOCK " 230.0 1 RUN 23 CATEGORY BN LINE 19320 "TOPOCK " 230.0 19019 "BLK MESA" 230.0 1 RUN 24 CATEGORY BN LINE 19320 "TOPOCK " 230.0 19316 "SOPOINT " 230.0 1 RUN 25 CATEGORY BN LINE 19224 "ZORB " 230.0 19320 "TOPOCK " 230.0 1 RUN 26 CATEGORY BN LINE 19041 "PARKER " 161.0 19020 "BLYTHE " 161.0 1 RUN 27 CATEGORY BN LINE 19041 "PARKER " 161.0 19046 "BOUSE " 161.0 1 RUN 28 CATEGORY BN LINE 19041 "PARKER " 161.0 19206 "HEADGATE" 161.0 1 RUN 29 CATEGORY BN LINE 19041 "PARKER " 161.0 19602 "PARKERAZ" 161.0 1 RUN 30 CATEGORY BN LINE 16841 "BKMTNTP1" 69.0 16840 "BLK_MTN " 69.0 1 RUN 31 CATEGORY BN LINE 16842 "BKMTNTP2" 69.0 16840 "BLK_MTN " 69.0 1 RUN 32 CATEGORY BN LINE 16825 "BORIANTP" 69.0 16854 "BDRYCONE" 69.0 1 RUN 33 CATEGORY BN

Page 52: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

47

LINE 16825 "BORIANTP" 69.0 16853 "BORIANA " 69.0 1 RUN 34 CATEGORY BN LINE 16848 "CANTEX " 69.0 16847 "AIRPORT " 69.0 1 RUN 35 CATEGORY BN LINE 16848 "CANTEX " 69.0 16849 "IVY_WIRE" 69.0 1 RUN 36 CATEGORY BN LINE 16852 "CASSON " 69.0 16851 "CASSONTP" 69.0 1 RUN 37 CATEGORY BN LINE 16814 "CHLORJCT" 69.0 16816 "PIERFERR" 69.0 1 RUN 38 CATEGORY BN LINE 16813 "DUVALBOS" 69.0 16827 "DUVALRCM" 69.0 1 RUN 39 CATEGORY BN LINE 16813 "DUVALBOS" 69.0 16812 "DUVALTAP" 69.0 1 RUN 40 CATEGORY BN LINE 16804 "GRIFFITH" 69.0 16823 "GRIFTAP1" 69.0 1 RUN 41 CATEGORY BN LINE 16804 "GRIFFITH" 69.0 16832 "GRIFTAP3" 69.0 1 RUN 42 CATEGORY BN LINE 16804 "GRIFFITH" 69.0 16829 "YUCCATAP" 69.0 1 RUN 43 CATEGORY BN LINE 16823 "GRIFTAP1" 69.0 16824 "GRIFTAP2" 69.0 1 RUN 44 CATEGORY BN LINE 16824 "GRIFTAP2" 69.0 16805 "SKINGTAP" 69.0 1 RUN 45 CATEGORY BN LINE 16832 "GRIFTAP3" 69.0 16825 "BORIANTP" 69.0 1 RUN 46 CATEGORY BN LINE 16844 "GUARDIAN" 69.0 16843 "EASTERN " 69.0 1 RUN 47 CATEGORY BN LINE 16844 "GUARDIAN" 69.0 16845 "INDUSTRL" 69.0 1 RUN 48 CATEGORY BN LINE 16809 "GVTAP " 69.0 16810 "GOLDVALL" 69.0 1 RUN 49 CATEGORY BN LINE 16809 "GVTAP " 69.0 16811 "SOHI " 69.0 1 RUN 50 CATEGORY BN

Page 53: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

48

LINE 16818 "HIGHWAY " 69.0 16819 "WILLBECH" 69.0 1 RUN 51 CATEGORY BN LINE 16800 "HILLTOP1" 69.0 16843 "EASTERN " 69.0 1 RUN 52 CATEGORY BN LINE 16802 "HILLTOP2" 69.0 16851 "CASSONTP" 69.0 1 RUN 53 CATEGORY BN LINE 16850 "JAGERSON" 69.0 16847 "AIRPORT " 69.0 1 RUN 54 CATEGORY BN LINE 16807 "NKINGTAP" 69.0 16809 "GVTAP " 69.0 1 RUN 55 CATEGORY BN LINE 16808 "NORTKING" 69.0 16851 "CASSONTP" 69.0 1 RUN 56 CATEGORY BN LINE 16816 "PIERFERR" 69.0 16817 "DOLSPRNG" 69.0 1 RUN 57 CATEGORY BN LINE 16816 "PIERFERR" 69.0 16818 "HIGHWAY " 69.0 1 RUN 58 CATEGORY BN LINE 16846 "S.WIRE " 69.0 16847 "AIRPORT " 69.0 1 RUN 59 CATEGORY BN LINE 16846 "S.WIRE " 69.0 16845 "INDUSTRL" 69.0 1 RUN 60 CATEGORY BN LINE 16831 "SACROSUB" 69.0 16842 "BKMTNTP2" 69.0 1 RUN 61 CATEGORY BN LINE 16831 "SACROSUB" 69.0 16832 "GRIFTAP3" 69.0 1 RUN 62 CATEGORY BN LINE 16805 "SKINGTAP" 69.0 16807 "NKINGTAP" 69.0 1 RUN 63 CATEGORY BN LINE 16805 "SKINGTAP" 69.0 16806 "SOTHKING" 69.0 1 RUN 64 CATEGORY BN LINE 16811 "SOHI " 69.0 16814 "CHLORJCT" 69.0 1 RUN 65 CATEGORY BN LINE 16833 "W.GDNTAP" 69.0 16825 "BORIANTP" 69.0 1 RUN 66 CATEGORY BN LINE 16833 "W.GDNTAP" 69.0 16812 "DUVALTAP" 69.0 1 RUN 67 CATEGORY BN

Page 54: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

49

LINE 16833 "W.GDNTAP" 69.0 16834 "DUVALWTR" 69.0 1 RUN 68 CATEGORY BN LINE 16833 "W.GDNTAP" 69.0 16826 "W.GDNVLY" 69.0 1 RUN 69 CATEGORY BN LINE 16819 "WILLBECH" 69.0 16820 "GOLDSTRK" 69.0 1 RUN 70 CATEGORY BN LINE 16830 "YUCCASUB" 69.0 16829 "YUCCATAP" 69.0 1 RUN 71 CATEGORY BN LINE 16829 "YUCCATAP" 69.0 16841 "BKMTNTP1" 69.0 1 RUN 72 CATEGORY BR XFMR 19038 "MEAD " 500.0 19011 "MEAD N " 230.0 1 RUN 73 CATEGORY BR XFMR 19038 "MEAD " 500.0 19011 "MEAD N " 230.0 2 RUN 74 CATEGORY BR XFMR 19037 "MEAD " 345.0 19011 "MEAD N " 230.0 1 RUN 75 CATEGORY BR XFMR 19315 "PEACOCK " 345.0 19314 "PEACOCK " 230.0 1 RUN 76 CATEGORY BN XFMR 19019 "BLK MESA" 230.0 14401 "BLK MESA" 69.0 1 RUN 77 CATEGORY BN XFMR 19310 "GRIFFITH" 230.0 19311 "GRIFFTH1" 16.0 1 RUN 79 CATEGORY BN XFMR 19310 "GRIFFITH" 230.0 19312 "GRIFFTH2" 16.0 2 RUN 80 CATEGORY BN XFMR 19310 "GRIFFITH" 230.0 19313 "GRIFFTH3" 16.0 3 RUN 81 CATEGORY BN XFMR 19316 "SOPOINT " 230.0 19317 "SOPOINT1" 16.0 1 RUN 82 CATEGORY BN XFMR 19316 "SOPOINT " 230.0 19318 "SOPOINT2" 16.0 2 RUN 83 CATEGORY BN XFMR 19316 "SOPOINT " 230.0 19319 "SOPOINT3" 16.0 3 RUN 84 CATEGORY BN XFMR 19041 "PARKER " 161.0 19042 "PARKER " 230.0 1 RUN 85 CATEGORY BN

Page 55: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

50

XFMR 19041 "PARKER " 161.0 19042 "PARKER " 230.0 2 RUN 86 CATEGORY BN XFMR 16742 "BLKMESA1" 69.0 19019 "BLK MESA" 230.0 1 RUN 87 CATEGORY BN XFMR 16744 "BLKMESA2" 69.0 19019 "BLK MESA" 230.0 1 RUN 88 CATEGORY BN XFMR 16746 "BLKMSA34" 69.0 19019 "BLK MESA" 230.0 1 RUN 89 CATEGORY BN XFMR 16746 "BLKMSA34" 69.0 19019 "BLK MESA" 230.0 2 RUN 90 CATEGORY BN XFMR 16804 "GRIFFITH" 69.0 19310 "GRIFFITH" 230.0 1 RUN 92 CATEGORY BN XFMR 16800 "HILLTOP1" 69.0 19072 "HILLTOP " 230.0 1 RUN 93 CATEGORY BN XFMR 16802 "HILLTOP2" 69.0 19072 "HILLTOP " 230.0 1 RUN 94 CATEGORY BN XFMR 16740 "N.HAVASU" 69.0 19074 "N.HAVASU" 230.0 1 RUN 95 CATEGORY BN XFMR 17103 "TOPOCK " 69.0 19320 "TOPOCK " 230.0 1 RUN 96 CATEGORY BN XFMR 90020 "BORIANA " 35.0 16853 "BORIANA " 69.0 1 RUN 97 CATEGORY BN XFMR 90022 "INDUSTRL" 35.0 16845 "INDUSTRL" 69.0 1 RUN 98 CATEGORY BN XFMR 90021 "W.GDNVLY" 35.0 16826 "W.GDNVLY" 69.0 1 RUN 99 CATEGORY BN XFMR 16835 "BLK_MTN1" 13.8 16840 "BLK_MTN " 69.0 1 RUN 100 CATEGORY BN XFMR 16836 "BLK_MTN2" 13.8 16840 "BLK_MTN " 69.0 1 RUN 101 CATEGORY BN XFMR 19001 "DAVISG1 " 13.8 19022 "DAVIS " 230.0 1 RUN 102 CATEGORY BN XFMR 19002 "DAVISG2 " 13.8 19022 "DAVIS " 230.0 1 RUN 103 CATEGORY BN

Page 56: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

51

XFMR 19003 "DAVISG3 " 13.8 19022 "DAVIS " 230.0 1 RUN 104 CATEGORY BN XFMR 19004 "DAVISG4 " 13.8 19022 "DAVIS " 230.0 1 RUN 105 CATEGORY BN XFMR 19005 "DAVISG5 " 13.8 19022 "DAVIS " 230.0 1 RUN 106 CATEGORY BN XFMR 15185 "HAVASU12" 13.2 19075 "HAVASU " 230.0 1 RUN 107 CATEGORY BN XFMR 15186 "HAVASU34" 13.2 19075 "HAVASU " 230.0 1 RUN 108 CATEGORY BN XFMR 15187 "HAVASU56" 13.2 19075 "HAVASU " 230.0 1 RUN 109 CATEGORY BN XFMR 16838 "MERCATR1" 13.2 90003 "MERCATOR" 230.0 1 RUN 110 CATEGORY BN XFMR 16839 "MERCATR2" 13.2 90003 "MERCATOR" 230.0 1 RUN 111 CATEGORY BN XFMR 19006 "PARKERG1" 6.9 19041 "PARKER " 161.0 1 RUN 112 CATEGORY BN XFMR 19007 "PARKERG2" 6.9 19041 "PARKER " 161.0 1 RUN 113 CATEGORY BN XFMR 19008 "PARKERG3" 6.9 19041 "PARKER " 161.0 1 RUN 114 CATEGORY BN XFMR 19009 "PARKERG4" 6.9 19041 "PARKER " 161.0 1 RUN 115

Page 57: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

52

Appendix D

Single-line Diagrams D1: PV Interconnection 69 kV Single-line

D2: Industrial Substation PV Interconnection

Page 58: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

53

Page 59: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

54

EXISTING 69 kV

NE

W 6

9 kV

ser

ving

PV

pla

nt (w

/ OP

GW

)

Interconnection Customer’s Interconnection Facilities,

EME owned

50 MW PV Generation

Hilltop 69 kV Bus

Fibe

r opt

ic c

omm

unic

atio

ns

= New Facilities

PV InterconnectionIndustrial SubAppendix D2

M

Revenue/Power Quality Metering

2000

A

Point of Interconnection

Transmission Provider’s Interconnection Facilities,

EME funded, UNSE owned

Page 60: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

55

Appendix E

Cost Estimating

Page 61: Feasibility Study - OATI webSmartOASIS · 2014. 1. 6. · relay coordination out of Griffith substationto accommodate the Black Mountain Generating Station The study also indicated

Customer PV Generation Project Feasibility Study Report

October 2009

56

Customer Kingman Area Photovoltaic Generation Project

$/mile, w/o ROW

Rail 954 acss, 200°C w/ OPGW $525k/mile

6.0 miles $3150k n/a $3150k 69 kV Switching Station $2400k $2400k Griffith or Hilltop 69 kV Yard Upgrades $180k $180k Griffith T3 230/69 kV 80 MVA Xfmr $2500k $2500k W. Golden Valley 69 kV Tap for PV $300k $300k Industrial 69 kV Tap for PV $300k $300k Boriana Junction 69 kV Tap for PV $300k $300k

69 kV Extension to PV Site Total Interconnection Mitigation

Industrial 1.0 miles $885k $825k $60k Boriana 1.0 miles $8755k $825k $7930k

W. Golden Valley 1.0 miles $9055k $825k $8230k All 3.0 miles $10405k $2475k $7930k