fd-soi harnessing the power - dac 2016 austin presentation

36
FD-SOI – Harnessing the Power + A Little Spelunking Into PPA Rick Tewell Vice President of Systems CTO Office DAC, 2016

Upload: rick-tewell

Post on 15-Apr-2017

635 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

FD-SOI – Harnessing the Power +A Little Spelunking Into PPA

Rick TewellVice President of Systems

CTO Office

DAC, 2016

Page 2: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

But first…

a short, sweet - yet obligatory

VeriSilicon Overview

Page 3: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

VeriSilicon Global Operations▲Founded in 2001, currently ~700 employees; six R&D centers; nine sales offices▲70% dedicated to R&D; 70% based in Shanghai, China▲70% of the revenue comes from outside of China

Company Proprietary and Confidential

Page 4: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

From Fabless to Design-lite

Company Proprietary and Confidential

Page 5: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

VeriSilicon – A SiPaaS Company

We call it Silicon Platform as a Service, or SiPaaS

▲ IP-centric

▲ Platform-based

▲ End-to-end turnkey service

What we do What we don’t do▲ No fab

▲ No branded product► No NRE investment► Limited inventory risk

Company Proprietary and Confidential

Page 6: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

End-to-end Turnkey Service

▲Tape out one chip a week; 50 chips a year ▲Foundry neutral ▲98% first silicon success

CustomerSiliconShippingTestingPackagin

gNetlist to

GDSIIRTL to Netlist

Spec to RTL Manufacturing

TSMC 28nm LP GF 28 nm SLPTSMC 28nm HPM GF 28nm HPM SEC 28nm LPP UMC 28nm LP SMIC 28nm HPM

Company Proprietary and Confidential

Page 7: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

FD SO What?

Page 8: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

VLSIresearch – G. Dan Hutcheson

Page 9: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

VLSIresearch – G. Dan Hutcheson

Page 10: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

VLSIresearch – G. Dan Hutcheson

Page 11: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

VLSIresearch – G. Dan Hutcheson

Page 12: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Harnessing The Power

Page 13: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

▲Body-biasing Enables Power/Performance Trade-off

FD-SOI Body Biasing

Page 14: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

FD-SOI Body Biasing▲Body-biasing allows for optimum power/performance trade-off

Page 15: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

IoT SoC Block Diagram

DVFSBB Control

Low Speed I/O Power Domain

Page 16: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

IoT SoC Block Diagram

DVFSBB Control

Low Speed I/O Power Domain

New VeriSilicon IP

Page 17: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

IoT SoC Block Diagram

DVFSBB Control

Low Speed I/O Power Domain

New VeriSilicon IP

Strive to create an “industry standard” programming model in HW and SW for

DVFS and Body Bias Control

Page 18: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

ACPI (Advanced Configuration and Power Interface)► Standard interface specification► OS can perform power management using this API► Hardware and software drivers support this API► Mapping from CPU mechanisms to ACPI is provided by BIOS and

software drivers

OS Power Management

Hardware: CPU, BIOS etc.

Software driversACPI

Applications

Direct Software Control

Page 19: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

ACPI State Hierarchy

Global system states (g-state)▲G0 : Working▲G1 : Sleeping (e.g., suspend, hibernate)▲G2 : Soft off (e.g., powered down but can be restarted by

interrupts from input devices)▲G3 : Mechanical off

Lower number means higher power

Direct Software Control

Page 20: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

▲ Global system states (g-state)▲ G0 : Working

► Domain power states (C-state)► C0 : normal execution► C1 : idle► C2 : lower power but longer resume latency than C1 ► C3 : lower power but longer resume latency than C2

▲ G1 : Sleeping (e.g., suspend, hibernate)► Sleep State (S-state)► S0► S1► S2► S3: suspend► S4: hibernate

▲ G2 : Soft off (S5)▲ G3 : Mechanical off

ACPI State Hierarchy

Direct Software Control

Page 21: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

How To Dynamically Manage Body Biasing?

ACPI State Hierarchy

▲G0 : Working►Domain power states (C-state)►C0 : normal execution

Performance state (P-State) P0: highest performance, highest power P1 Pn

►C1, C2, C3▲G1 : Sleeping (e.g., suspend, hibernate)

►Sleep State (S-state): S0, S1, S2, S3, S4▲G2 : Soft off (S5)▲G3 : Mechanical off

▲ Enhanced BB Control== dynamic frequency and voltage scaling

▲ An operation point (frequency, voltage) == P-state

▲ Note that the power domain remains in normal operation

Direct Software Control

Page 22: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

RO Comparison Between Samsung 28nm FD-SOI and Samsung 28nm LPP/LPH

Page 23: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

9 Stages RO Simulation @ TT/ 25cVdd (v) Samsung 28nm LPP

(ps)28nm FD-SOI

(ps)28nm FD-SOI w/ LVT (ps) Samsung 28nm LPH (ps)

0.6 62.22 31.7 16.06 22.5

0.7 29.72 15.39 9.78 13

0.8 18.2 9.83 6.94 8.94

0.9 13 7.22 5.39 6.83

1.0 10.16 5.83 4.47 5.67

• 9 stages of inv (P/N: 0.3um/0.2um) chains• The delay number is based on average one gate number

28nm FD-SOI has speed advantage on low Vdd supply

Page 24: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

RO Dynamic Power Comparison

▲Dynamic Power comparison

1. @ Same Vdd, the dynamic power is lower in 28nm FD-SOI than Samsung 28nm LPH.2. @ Same speed, the dynamic power saving in 28nm FD-SOI is more significant than Samsung 28nm LPP.

1v

1v

1v1v

0.9v

0.9v

0.8v 0.9v 0.9v

0.9v0.8v

0.8v

0.8v0.7v

0.7v

0.7v 0.7v

Page 25: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

RO Leakage Comparison

▲Leakage comparison

Samsung 28nm LPH and 28nm FD-SOI (LVT) consume more leakage power than Samsung 28nm LPP and 28nm FD-SOI (RVT), @same VDD

TT, 25C TT, Vdd=1v

Page 26: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Memory Comparison Between Samsung 28nm FD-SOI and Samsung 28nm LPP/LPH

Page 27: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Memory Benchmarks on Access Time▲Memory (1Kx8) Access Time Comparison

►Access time and comparison @ different VDD (TT, 25C)

►The highlighted in RED are the conditions for the memory to run @ the same speed

VDD Samsung 28nm LPP 28nm FD-SOI Samsung 28nm LPH

(v) (ns) (%) (ns) (%) (ns) (%)

1.0 0.560 100 0.388 144.3 0.372 150.5

0.9 0.739 75.8 0.483 115.9 0.472 118.6

0.85 0.879 63.7 0.552 101.4 0.539 103.9

0.8 1.070 52.3 0.647 86.6 0.642 87.2

Page 28: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Memory Benchmarks on Active Power

▲Memory (1Kx8) Active Power Comparison►Active power and comparison @ different VDD (TT, 25C)

►The highlighted in RED are the conditions for the memory to run @ the same speed

VDD Samsung 28nm LPP 28nm FD-SOI Samsung 28nm LPH

(v) (uW@1MHz) (%) (uW@1MHz) (%) (uW@1MHz) (%)

1.0 2.568 100 2.076 80.9 2.9 112.9

0.9 2.039 79.4 1.674 65.2 2.335 90.9

0.85 1.812 70.6 1.490 58.0 2.013 78.4

0.8 1.566 61.0 1.318 51.3 1.805 70.3

Page 29: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Memory Benchmarks on Leakage Power

▲Memory (1Kx8) Leakage Power Comparison►Leakage power and comparison @ different VDD (TT, 25C)

►The highlighted in RED are the conditions for the memory to run @ the same speed

VDD Samsung 28nm LPP 28nm FD-SOI Samsung 28nm LPH

(v) uW (%) uW (%) uW (%)

1.0 0.745 100 0.857 115.1 1.148 154.1

0.9 0.457 61.4 0.537 72.1 0.733 98.3

0.85 0.369 49.5 0.426 57.2 0.588 79.0

0.8 0.302 40.5 0.338 45.4 0.474 63.6

Page 30: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Speed Active power Leakage power Total power0%

20%

40%

60%

80%

100%

120%

28LPP@vdd=1v

28FD-SOI(RVT)@vdd=0.85v

28LPH@vdd=0.85v

Memory Benchmarks on Total Power▲Memory Total Power Comparison

1. @Same Vdd=1v, the total power on 28nm FD-SOI is the lowest compared with Samsung 28nm LPP and LPH2. @Same speed, the total power on 28nm FD-SOI is the lowest compared with Samsung 28nm LPP and LPH.

Memory speed @ 1GHz

Speed Active powr Leakage power Total power0%

20%

40%

60%

80%

100%

120%

140%

160%

Samsung 28nm LPP

28nm FD-SOI

Samsung 28nm LPH

Page 31: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Cortex A7 Benchmark Between Samsung 28nm FD-SOI and Samsung 28nm LPP/LPH

Page 32: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Cortex A7 Benchmark – CPU ConfigurationRepresentative Configuration Across Many Applications

Configurable Feature Selected Value

L1 Instruction Cache 32KB

L1 Data Cache 32KB

NEON™ Included

FPU(Floating Point Unit) Included

GIC (Generic Interrupt Controller) Included

ETM(Embedded Trace Macro Cell) Included

Cortex-A7 Floorplan

Page 33: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Cortex A7 Benchmark – 800MHz (1)

Tech Node 28nm FD-SOI Samsung 28nm LPPTarget Performance 800 MHz 800 MHz

Sign-off Corner ss_0.80v_m40c* * ss_0.9v_m40c* * Post-Shrink Area(mm²) w/o utilization 0.449 0.536

Leakage(mW) @ tt25c 0.88 1.6Dynamic(mW/MHz) @ tt25c * 0.119 0.176

Total Power (mW) @ tt25c 96.2 139.9

* Note: Dynamic power is based on 10% toggle rate on all data path.* * Note: To achieve 800MHz, Samsung 28nm LPP needs 0.9V supply voltage, while 28nm FD-SOI only needs 0.8V supply voltage. Lower supply voltage enables 28FD-SOI to consume lower dynamic power.

• FD-SOI saves 16.2% area• FD-SOI dramatically reduces the die size and costArea

• FD-SOI consumes 32.4% less dynamic power• FD-SOI consumes 45.0% less leakage power

Leakage and Dynamic Power

• FD-SOI consumes 31.2% less total powerTotal Power

PPA at 800MHz, 28nm FD-SOI (no FBB) vs. Samsung 28nm LPP

Page 34: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Cortex A7 Benchmark – 800MHz (2)

PPA at 800MHz – 28nm FD-SOI (0.6v-FBB) vs. Samsung 28nm LPP

* Note: Dynamic power is based on 10% toggle rate on all data path.* * Note: To achieve 800MHz, Samsung 28nm LPP needs 0.9V supply voltage, while 28nm FD-SOI only needs 0.8V supply voltage. Lower supply voltage enables 28nm FD-SOI to consume lower dynamic power.

• FD-SOI saves 8.2% area• FD-SOI dramatically reduces the die size and costArea

• FD-SOI consumes 42.0% less dynamic power• FD-SOI consumes 21.3% more leakage power

Leakage and Dynamic Power

• FD-SOI consumes 40.2% less total powerTotal Power

Tech Node 28nm FD-SOI (with 0.6v FBB) Samsung 28nm LPPTarget Performance 800 MHz 800 MHz

Sign-off Corner ss_0.70v_m40c* * ss_0.9v_m40c* * Post-Shrink Area(mm²) w/o utilization 0.492 0.536

Leakage(mW) @ tt25c 1.94 1.6

Dynamic(mW/MHz) @ tt25c * 0.102 0.176

Total Power (mW) @ tt25c 83.64 139.9

Page 35: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

Cortex A7 Benchmark – 1.2GHz

PPA at 1.2GHz – 28nm FD-SOI vs. Samsung 28nm LPH

* Note: Dynamic power is based on 10% toggle rate on all data path.

• FD-SOI saves 23.8% area• FD-SOI dramatically reduces the die size and costArea

• FD-SOI consumes 6.2% more dynamic power• FD-SOI consumes 74.0% less leakage power

Leakage and Dynamic Power

• FD-SOI consumes 4.8% more total powerTotal Power

Tech Node 28nm FD-SOI (no BB) Samsung 28nm LPHTarget Performance 1200 MHz 1200 MHz

Sign-off Corner ss_0.90v_m40c ss_0.81v_m40cPost-Shrink Area(mm²) w/o utilization 0.403 0.529

Leakage(mW) @ tt25c 1.462 5.633Dynamic(mW/MHz) @ tt25c * 0.172 0.162

Total Power (mW) @ tt25c 208.2 198.6

Samsung 28nm LPH has less dynamic power, but more leakage consumption.

Page 36: FD-SOI Harnessing the Power - DAC 2016 Austin Presentation

THANKS!