fast-pt · 22 2 {j ↵`} j ↵`(k)= z d3q 1 (2⇡)3 q↵ 1 q 2 p `(ˆq 1 · qˆ 2)p lin(q 1)p lin(q...

16
FAST-PT An Extremely Efficient Algorithm for Mode-Coupling Integrals in Cosmological Perturbation Theory Xiao Fang The Ohio State University Collaborators: Jonathan Blazek, Christopher Hirata, Joseph McEwen McEwen et al. JCAP 09,015(2016) Fang et al. JCAP 02,030(2017)

Upload: others

Post on 21-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

FAST-PTAn Extremely Efficient Algorithm for Mode-Coupling

Integrals in Cosmological Perturbation Theory

Xiao FangThe Ohio State University

Collaborators: Jonathan Blazek, Christopher Hirata, Joseph McEwen

McEwen et al. JCAP 09,015(2016) Fang et al. JCAP 02,030(2017)

Page 2: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Perturbation Theory for LSS

© NCSA/A. Kravtsov (U.Chicago)/A. Klypin (NMSU)Initial: Homogeneous

+ Tiny Density Fluctuations LSS

PT is very important for cosmology

PT:• Much faster • Valid at linear and mildly nonlinear regime

Simulation

PT

2/11

Page 3: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Practical Issue in PT

Slow!

3/11

Page 4: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

How Fast is Fast?

NL Matter Distribution

Galaxy Distribution

Data

Initial matter distribution

Model Params

PT PT

Example Sketch: Galaxy Clustering

A chain may run 104-105 or more evaluations!

Observables

4/11

Page 5: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Solution: FAST-PTScalar quantity:

Fang et al. (2017)

I(k) =

Zd3q1(2⇡)3

K(q̂1 · q̂2, q1, q2)P (q1)P (q2)

I(k) =

Zd3q1(2⇡)3

K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2)P (q1)P (q2)

~q1

~q2~k

P (k)

Kernel K

I(k)

McEwen et al. (2016)

Tensor quantity:

5/11

Page 6: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Scalar Quantity

with leading order NL:

P22(k) = 2

Zd3q1(2⇡)3

Plin(q1)Plin(|~k � ~q1|)F 22 (~q1,~k � ~q1)

Convolution, 3d: SLOW!O(N3) �! O(N logN)Brute-force:

Kernel

Example: Matter Power Spectrum

PNL(k) = Plin(k) + P22(k) + P13(k)

Linear Power

Kernel

P22(k)Plin(k)

F 22

6/11

Page 7: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Scalar FAST-PT AlgorithmKey Ideas:

1. Convolution ————> Multiplication

2. Dark matter fluid eqs. with gravity: scale-invariant —> Eigenfunction of scale translation: power-law

P22 2 {J↵�`} J↵�`(k) =

Zd3q1(2⇡)3

q↵1 q�2P`(q̂1 · q̂2)Plin(q1)Plin(q2)

Basis, Finite F.T.

I↵`(r) =

Zdk k↵+2j`(kr)Plin(k)

N/2X

m=�N/2

cmk⌫+i⌘m

Power-law decomposition

F.T.

Reduce to 1d:

All we need: log-spaced FFTs —> NlogN

J̄↵�`(r) =(�1)`

4⇡4I↵`(r)I�`(r)

~q2 = ~k � ~q1

McEwen et al. (2016)

7/11

Page 8: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Runtime Achievement

≤0.01sec ! vs.

Conventional Method: ~minutes for 3000 points

O(N3) �! O(N logN)

time (sec)

number of grid points

McEwen et al. (2016)

8/11

Page 9: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Tensor FAST-PT Algorithm

I(k) =

Zd3q1(2⇡)3

K(q̂1 · q̂2, q̂1 · k̂, q̂2 · k̂, q1, q2)P (q1)P (q2)

Basis, FiniteI 2 {I↵�`1`2`}

I↵�`1`2`(k) =

Zd3q1(2⇡)3

q↵1 q�2P`1(q̂2 · k̂)P`2(q̂1 · k̂)P`(q̂1 · q̂2)P (q1)P (q2)

YJ1M1(q̂1)YJ2M2

(q̂2)YJkMk(k̂)

Change Basis

~q2 = ~k � ~q1

k-dependence Separable!

Reduce to scalar FAST-PT !

General Form:Fang et al. (2017)

9/11

Page 10: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

ApplicationsScalar:

Nonlinear matter power in Standard PT

Renormalization Group Approach

Nonlinear Galaxy Bias, …

Tensor:

Intrinsic Alignment

Secondary Effects in CMB

Redshift Space Distortions, …

DES is using FAST-PT for galaxy bias and IA calculations! Krause et al. (2017)

10/11

Page 11: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

SummaryScalar: Nonlinear matter power, Renormalization Group Approach, Galaxy Bias, etc.

Tensor: Intrinsic Alignment, Secondary Effects in CMB, Redshift Space Distortions, etc.

• Versatile • Fast • In Python, User-Friendly! • Public on Github with User

Manual • Incorporated in DES pipeline

https://github.com/JoeMcEwen/FAST-PT

Powerful Tool For Your 1-Loop Calculations!

11/11

Page 12: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Backup: Flow chart

Page 13: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Backup Slide

Page 14: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Scalar Quantityh�(~k)�⇤(~k0)i ⌘ (2⇡)3�3D(~k � ~k0)P (k)

1-loop order

…0

0

��⇤

�(1)⇤

�(2)⇤

�(3)⇤

�(3)�(2)�(1)

Plin

P22

P131

2

P131

2

Linear Power

P22(k) = 2

Zd3q1(2⇡)3

Plin(q1)Plin(|~k � ~q1|)F 22 (~q1,~k � ~q1)

Convolution, 3d: SLOW!O(N3

) �! O(N logN)Brute-force:Kernel

Example: Matter Power Spectrum

Page 15: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Backup Slide

Page 16: FAST-PT · 22 2 {J ↵`} J ↵`(k)= Z d3q 1 (2⇡)3 q↵ 1 q 2 P `(ˆq 1 · qˆ 2)P lin(q 1)P lin(q 2) Basis, Finite F.T. I ↵`(r)= Z dk k↵+2j `(kr)P lin(k) N/X2 m=N/2 c mk ⌫+i⌘m

Scale InvarianceEnsured by Locality

Backup Slide