falk lederer and oleg egorov - uni-dortmund.detdohnal/iciam_talks/lederer.pdf · falk lederer and...

58
Discrete Discrete Cavity Cavity Solitons Solitons Falk Lederer and Oleg Egorov Institute of Condensed Matter Theory and Solid State Optics Friedrich-Schiller-Universität Jena, Germany mail: [email protected] web: www.photonik.uni-jena.de F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

Upload: others

Post on 21-Oct-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

  • Discrete Discrete Cavity Cavity SolitonsSolitons

    Falk Lederer and Oleg Egorov

    Institute of Condensed Matter Theory and Solid State Optics

    Friedrich-Schiller-Universität Jena, Germany

    mail: [email protected]

    web: www.photonik.uni-jena.de

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • CreditsCredits

    Most of the work was done by Oleg Egorov

    - U. Peschel, O. Egorov, and F. Lederer, ‘Discrete cavity solitons’, Opt. Lett. 29 (2004) 1909

    - O. Egorov, U. Peschel, and F. Lederer, 'Mobility of discrete cavity solitons', g , , , y y ,Phys. Rev. E 72 (2005) 066603

    - O. Egorov, U. Peschel, and F. Lederer, 'Discrete quadratic cavity solitons’ Phys. Rev. E 71 (2005) 056612 y ( )

    - O. Egorov and F. Lederer, and K. Staliunas, ‘Sub-diffractive discrete cavity solitons’, Opt. Lett. (to appear August 1)

    O E d F L d d Y S Ki h ’ H d i li d- O. Egorov and F. Lederer, and Y. S. Kivshar,’ How does an inclined holding beam affect discrete modulational instability and soliton formation in arrays of nonlinear cavities? ‘ Opt. Exp. 15 (07) 4149

    The work was supported by a grant of the Deutsche Forschungs-gemeinschaft, Forschergruppe 532.

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • CreditsCredits -- CollaborationsCollaborations

    - U. Peschel, O. Egorov, and F. Lederer, ‘Discrete cavity solitons’, Opt. Lett. 29 (2004) 1909

    - O. Egorov, U. Peschel, and F. Lederer, 'Mobility of discrete cavity solitons', g , , , y y ,Phys. Rev. E 72 (2005) 066603

    - O. Egorov, U. Peschel, and F. Lederer, 'Discrete quadratic cavity solitons’ Phys. Rev. E 71 (2005) 056612 y ( )

    - O. Egorov and F. Lederer, and K. Staliunas, ‘Sub-diffractive discrete cavity solitons’, Opt. Lett. (to appear August 1)

    O E d F L d d Y S Ki h ’ H d i li d- O. Egorov and F. Lederer, and Y. S. Kivshar,’ How does an inclined holding beam affect discrete modulational instability and soliton formation in arrays of nonlinear cavities? ‘ Opt. Exp. 15 (07) 4149

    The work was supported by a grant of the Deutsche Forschungs-gemeinschaft, Forschergruppe 532.

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • OutlineOutline

    1 I d i1. Introduction

    2 Resting Discrete Cavity Solitons (DCS)2. Resting Discrete Cavity Solitons (DCS)

    3. Mobility of Resting DCS vs. Moving DCS

    4. Sub-diffractive DCS

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • OutlineOutline

    1 I d i1. Introduction

    2 Resting Discrete Cavity Solitons (DCS)2. Resting Discrete Cavity Solitons (DCS)

    3. Mobility of Resting DCS vs. Moving DCS

    4. Sub-diffractive DCS

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Cavity Solitons Cavity Solitons

    INTRACAVITY FIELD

    TRANSMITTED FIELDREFLECTED FIELD

    FIELD

    PUMP FIELD

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Cavity Cavity Solitons Solitons

    wide aperture passive resonators

    2 22

    NL2 2 in ( , )1 ( ) ( , )2

    i u t xi u u t xt x y

    ⎡ ⎤⎛ ⎞∂ ∂ ∂+ + + + +α χ =⎢ ⎥⎜ ⎟ Δ∂ ∂ ∂⎝ ⎠⎣ ⎦

    F. Lederer, et al.

    Phys. Rev. A56, R3366 (1998)

    L. Lugiato et al.

    Phys. Rev. Lett. 79, 2042 (1998)

    EU project FUNFACSEU project FUNFACSJ Tredicce M Giudici Univ Nice

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    J. Tredicce, M. Giudici, Univ. Nice

  • Discrete Solitons Discrete Solitons waveguide arrayg y

    ( ) 2u∂ ( )12

    1 0n n nn nC u uui u uz + −

    ∂+ γ =

    ∂+ +

    D N Christodoulides and R I Joseph

    Y. Silberberg et al., Phys. Rev.Lett. 91(98) 3383

    D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13 (1988) 794

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Discrete Cavity SolitonsDiscrete Cavity Solitons

    wide pump field

    Bragg mirrors

    + mirrors → feedback and radiation losses

    array of nonlinear waveguides

    + pump field → energy supply

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Array of Nonlinear Waveguide ResonatorsArray of Nonlinear Waveguide Resonators

    PPLNPeriodically Poled Lithium Niobate

    AlGaAs below half band gapLithium Niobate

    Bragg mirrorsg p

    W Sohler Paderborn

    fast quadratic nonlinearity

    I S Aitchison Toronto

    fast cubic nonlinearity

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    W. Sohler, Paderborn I.S.Aitchison,Toronto

  • Array of Coupled Array of Coupled Defects Defects in in PCs PCs Lithium Niobate – quadratic NL

    pump

    H. Hartung, E.-B. Kley, A.Tünnermann, p pW. Wesch, FSU Jena

    Semiconductor – cubic NL

    A. Scherer et al.Appl Phys Lett 79 4289 (2001)

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    Appl. Phys. Lett 79, 4289 (2001)

  • Single Single Cavity ResponseCavity Response

    mean-field model for the single cavity E0

    20( )

    ui i u u u ET

    ∂+ + Δ + γ =

    upumplosses

    detuningKerr NL

    bistability

    |u|2← stable← unstable 3 solutions for 3Δ ⋅ γ < −

    |E0|2← stable

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Array of Array of Coupled CavitiesCoupled Cavities

    evanescent coupling

    ( , )x yenu 1nu +1nu −

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Array of Array of Coupled CavitiesCoupled Cavities

    evanescent coupling

    ( , )x yenu 1nu +1nu −

    Mean-field and tight-binding approximations

    ( ) 2 01 1 (2 )n n nn n n nC u u uui i u u u ET + −

    +∂

    + + Δ +∂

    + =− γ

    Mean field and tight binding approximations

    T∂

    coupling or discrete diffraction

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Array of Array of Coupled Cavities Coupled Cavities -- LimitsLimits

    evanescent coupling

    ( , )x yenu 1nu +1nu −

    Mean-field and tight-binding approximations

    22

    02

    ( ) (( ) ) ( ) ( )u xi i u x uD u x uT x

    x E∂ + + Δ + γ∂

    =∂

    ∂+

    Mean field and tight binding approximations

    T x∂∂

    ‘ordinary‘ continuous model for wide beams and normal incidence

    “continuous” limitC → ∞

    Cavity Solitons

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Array of Array of Coupled Cavities Coupled Cavities -- LimitsLimits

    evanescent coupling

    ( , )x yenu 1nu +1nu −

    Mean-field and tight-binding approximations

    ( ) 2 01 1 (2 )n n nn n n nC u u uui i u u u ET + −

    +∂

    + + Δ +∂

    + =− γ

    Mean field and tight binding approximations

    T∂

    “anti-continuous” limitC=0C 0

    arbitrary shapes

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Array of Array of Coupled CavitiesCoupled Cavities

    evanescent coupling

    ( , )x yenu 1nu +1nu −

    Mean-field and tight-binding approximations

    ( ) 2 01 1 (2 )n n nn n n nC u u uui i u u u ET + −

    +∂

    + + Δ +∂

    + =− γ

    Mean field and tight binding approximations

    T∂

    increasing C“anti-continuous” limitC=0

    “continuous” limitC → ∞C 0

    arbitrary shapes Cavity SolitonsDiscrete Cavity Solitons

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Discrete DiffractionDiscrete Diffraction

    1D 1D waveguide arraywaveguide array

    NM: Bloch waves → DR: z 2 ( )cos( )xC k dk = β + ω

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Discrete DiffractionDiscrete Diffraction

    1D 1D waveguide arraywaveguide array

    NM: Bloch waves → DR: z 2 ( )cos( )xC k dk = β + ω

    kz positive

    zero curvature

    πK=kxd

    πβ

    negative2C

    −π π

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • T. Pertsch, U. Peschel, and F. Lederer, Phys. Rev. Lett., 88 (02) 093901Discrete DiffractionDiscrete Diffraction

    z 2 ( )cos( )xC k dk = β + ω

    anomalous diffraction anom. refraction and diffractioncanonical

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • OutlineOutline

    1 I d i1. Introduction

    2 Resting Discrete Cavity Solitons (DCS)2. Resting Discrete Cavity Solitons (DCS)

    3. Mobility of Resting DCS vs. Moving DCS

    4. Sub-diffractive DCS

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Discrete Cavity Discrete Cavity Soliton Soliton –– Simplest SolutionsSimplest Solutions

    1) focusing nonlinearity

    → bright solitons in continuous limit

    8

    u n|2

    4

    6

    pow

    er |u

    0

    2

    0 5 10 15

    peak

    p

    → coupling (discrete diffraction) controls soliton formation

    0 5 10 15coupling C Hopf instability

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    p g ( )

  • Discrete Cavity Discrete Cavity Soliton Soliton –– Simplest SolutionsSimplest Solutions

    2) defocusing nonlinearity

    → dark solitons in continuous limit

    4u n|2

    2

    3

    4

    pow

    er |u

    0

    1

    0 0.1 0.2 0

    peak

    li C0 0.1 0.2

    → bright solitons disappear for large coupling

    coupling C

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Effect of an Inclined Holding BeamEffect of an Inclined Holding Beam

    2u∂ i

    inclined holding beam

    ( ) 21 1 02 ( )n n n n n n nui C u u u i u u u ET + −

    ∂+ + − + + Δ + γ =

    ∂iqne

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Effect of an Inclined Holding BeamEffect of an Inclined Holding Beam

    2u∂ i

    inclined holding beam

    ( ) 21 1 02 ( )n n n n n n nui C u u u i u u u ET + −

    ∂+ + − + + Δ + γ =

    ∂iqne

    “anti-continuous” limitC = 0

    no power transfer;

    “continuous” limitC → ∞

    translational symmetry;no power transfer;→ at rest - q < qcrit → at rest

    - q > qcrit → motion

    translational symmetry;→ motion

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Reminder Reminder -- Discrete Diffraction Discrete Diffraction

    z 2 ( )cos( )2 cos( )

    xk C k dC q

    = β + ω

    = β +

    anomalous diffraction anom. refraction and diffractioncanonical

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Stability of Stability of Discrete Plane WavesDiscrete Plane Waves

    Discrete model

    ( ) 21 1 02 ( ) iqnn n n n n n nui C u u u i u u u E eT + −

    ∂+ + − + + Δ + γ =

    ∂T∂

    cw plane wave solution

    eiqnnu b=

    O. Egorov and F. Lederer, and Y. S. Kivshar,

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    ,Opt. Exp. 15 (07) 4149

  • Stability of discrete plane wavesStability of discrete plane waves

    Discrete model

    ( ) 21 1 02 ( ) iqnn n n n n n nui C u u u i u u u E eT + −

    ∂+ + − + + Δ + γ =

    perturbed plane wave

    T∂

    bistability condition

    ( )( )exp eiqnnu b a T iQn+ λ += ( )s 32 co 1C q −⎡ ⎤γ Δ + < −⎣ ⎦

    modulational instability → ℜ(λ) > 0

    perturbation

    ( )( ) ( )( )2 2c( , ) 1 2 cos 1 2 cos 1 32 s

    os cos

    sii nn

    Q C Q b C Q b

    iC

    q q

    qQ

    qλ = − ± − + Δ + γ − + Δ + γ −

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    2 s sii nniC qQ

  • Modulational Modulational Instability Instability of PWof PW

    3′γ Δ < − - bistable case

    2.4

    2.8

    |b| Q=π3π/4 q=0

    2 MI

    1.2

    1.6

    π/2π/4

    0 0.25 0.5 0.75 1q / π0.8

    π/40 4 8 12E

    normal diffractionE0

    MI domains vs. modulation plane wave responseO. Egorov and F. Lederer, and Y. S. Kivshar,

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    ,Opt. Exp. 15 (07) 4149

  • Modulational Modulational Instability Instability of PWof PW

    3′γ Δ < − - bistable case

    2.4

    2.8

    |b| Q=π3π/4 q=0.5 π

    2

    1.2

    1.6

    π/2π/4

    tiny MI

    0 4 8 12E0 0.25 0.5 0.75 1q / π0.8

    π/4

    diffraction arrestedE0

    MI domains vs. modulation plane wave response

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Modulational Modulational Instability Instability of PWof PW

    3′γ Δ < − - bistable case

    2.4

    2.8

    |b| Q=π3π/4 q= π

    2

    1.2

    1.6

    π/2π/4

    MI

    1.6 1.8 2 2.2 2.4E0 0.25 0.5 0.75 1q / π0.8

    π/4

    “anomalous” diffractionE0

    MI domains vs. modulation plane wave response

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Soliton SolutionsSoliton Solutions

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Bright SolitonsBright Solitons

    q = 0

    2.5

    |b|2.5 bright

    q

    2

    |b|

    1 5

    2|u|

    MI

    1

    1.5

    1

    1.5

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    0 2 4 6 8 10 12E0

    0.5

    l diff ti

    bright DCS

    3′Δ < − 1C = 1γ =

    normal diffractionDCS domains vs. inclination

    DCS domains vs. holding beamO. Egorov and F. Lederer, and Y. S. Kivshar,

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    ,Opt. Exp. 15 (07) 4149

  • Dark Solitons on a PatternDark Solitons on a Pattern

    q = 0

    2.5 brightpatterndark DCS

    2.5

    |b|

    q

    1 5

    2|u| pattern

    dark DCS

    MI2

    |b|

    1

    1.5

    darkbright DCS1

    1.5

    0 2 4 6 8 10 12E0

    0.5dark

    l diff ti

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    3′Δ < − 1C = 1γ =

    normal diffractionDCS domains vs. inclination DCS domains vs. holding beam

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Dark Dark SolitonsSolitons

    q = π/2

    2.4

    dark DCS2.5

    |b|

    q

    1.6

    2dark DCS

    MI2

    |b|

    0.8

    1.2dark

    bright DCS1

    1.5

    1.5 2 2.5 3 3.5 4E0

    0.4

    diff ti t d

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    3′Δ < − 1C = 1γ =

    diffraction arrestedDCS domains vs. inclination DCS domains vs. holding beam

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Dark Dark SolitonsSolitons

    q = π

    22.5

    |b| dark DCS

    q

    1 2

    1.62

    |b| dark DCS

    MI

    0.8

    1.2

    dark1

    1.5

    bright DCS

    1.7 1.9 2.1 2.3E0

    0.40 0.2 0.4 0.6 0.8 1q / π

    0.5

    “ l ” diff ti

    bright DCS

    3′Δ < − 1C = 1γ =

    “anomalous” diffractionDCS domains vs. inclination DCS domains vs. holding beam

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • OutlineOutline

    1 I d i1. Introduction

    2 Resting Discrete Cavity Solitons (DCS)2. Resting Discrete Cavity Solitons (DCS)

    3. Mobility of Resting DCS vs. Moving DCS

    4. Sub-diffractive DCS

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Mobility of Discrete SolitonsMobility of Discrete Solitons

    motion trapping

    conservative systems

    continuous system – Galileian invariance discrete system – no Galileian invariance

    crq q>h/E

    crq q<h/E Peierls - Nabarro potential

    0 1 2 3x0

    moving soliton

    0 1 2 3x0

    resting soliton

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    moving solitonresting soliton

  • Mobility Mobility -- Continuous Model Continuous Model →→ Translational ModeTranslational Mode

    Linear stability analysis:

    ( ) ( ) ( ) Tsu x U x u x eλ= + δ

    ( ) ( ) ( ) Tsv x V x v x eλ= + δ U dxU U

    soliton translational mode

    shifted soliton

    x

    + =1) continuous case(translational symmetry)

    0λ =( ) ( )x su x U xδ = ∂( ) ( )x sv x V xδ = ∂

    translational mode

    ( ) ( ) ( ) ( )s x s su x U x a U x U x a= + ∂ ≈ +( ) ( ) ( ) ( )s x s sv x V x a V x V x a= + ∂ ≈ +( ) ( )x s ( ) ( ) ( ) ( )s x s s

    2) Discrete case(loss of translational symmetry)

    0λ ≠( ) ( )x su x U xδ ≈ ∂

    quasi-translational

    (loss of translational symmetry)

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    ( ) ( )x s( ) ( )x sv x V xδ ≈ ∂ mode

  • Motion of DCS Motion of DCS -- PPerturbation Theoryerturbation Theory

    1) Resting DCS

    “odd” “even”

    q < q crit

    O. Egorov, U. Peschel, and F. Lederer

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    PRE 72 (05) 066603

  • Motion of Motion of DCS DCS -- PPerturbation Theoryerturbation Theory

    1) resting DCS

    1.5

    "even"

    “odd” “even”

    2) R0.5

    1

    e λ

    δuq < q crit

    “odd” “even” “odd”

    2) Rresting DCS are forced to move

    -0.5

    0Re

    δu"odd"

    motion → transition between „odd“ and „even“

    q > q crit0 5 10 15 20 25

    C1

    -1

    i l f h “ iC„ „

    DCSs eigenvalue of the “quasi-translational” mode

    O. Egorov, U. Peschel, and F. Lederer

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    PRE 72 (05) 066603

  • Motion of Motion of DCS DCS -- PPerturbation Theoryerturbation Theory

    1) resting DCS

    crit

    ( ) ( )odd evenC Cq K

    Cℜλ − ℜλ

    ≈ ⋅

    “odd” “even”

    0 02q

    critq C

    q crit2) motion of DCS

    qq critical

    9 12 15 18 C0

    0.005 restingDCS

    C

    DCSs

    O. Egorov, U. Peschel, and F. Lederer

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

    C1CPRE 72 (05) 066603

  • Moving DCS Moving DCS

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • QuasiQuasi--Continuous ApproachContinuous Approach O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603

    aim: - to establish an analytical modely

    idea: - to derive a quasi-continuous model for the DCS envelope by keeping properties of discrete diffraction (phase difference coupling strength)diffraction (phase difference, coupling strength)

    → soliton can be narrow9

    U

    5

    7

    U

    envelope

    -10 -5 0 5

    3

    -10 -5 0 5 10

    , 1, 2,..nx n h n= =

    x1 2 3 4

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603QuasiQuasi--Continuous ApproachContinuous Approach

    Continuous envelope:

    7

    9U( ) iqn nu x n h e u= ≡

    Continuous envelope:

    3

    5

    7

    2 31 1h h h∂ ∂ ∂

    Taylor expansion:envelop

    -10 -5 0 5 -10 -5 0 5 10

    2 31 11 2 6 ...n n x xx xxxu u h u h u h u± ≈ ± ∂ + ∂ ± ∂

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603QuasiQuasi--Continuous ApproachContinuous Approach

    ( )(0) 2 cos 1D C q= −-20

    - detuning

    (1) 2 sinD C h q=

    -4

    -2

    0

    2

    2

    - inclination, velocity

    2(2) coshD C q=

    ( )-2

    0

    2

    2

    - 2-order diffraction coefficient

    ( )3(3) 3 sinhD C q=-2

    0

    q−π −π/2 0 π/2

    - 3-order diffraction coefficient

    ( )(1) (2) (2 3

    21

    3) (03

    )02u u u u

    u u u ui i i i u u u ED D D D∂ ∂ ∂ ∂ ⎡ ⎤+ + + + + Δ + + γ =⎣ ⎦∂ ∂ ∂ ∂ ( )13 02u u u uT x x x γ⎣ ⎦∂ ∂ ∂ ∂

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • O. Egorov, U. Peschel, and F. Lederer PRE 72 (05) 066603QuasiQuasi--Continuous ApproachContinuous Approach

    ( )(0) 2 cos 1D C q= −-20

    - detuning

    (1) 2 sinD C h q=

    -4

    -2

    0

    2

    2

    - inclination, velocity

    2(2) coshD C q=

    ( )-2

    0

    2

    2

    - 2-order diffraction coefficient

    ( )3(3) 3 sinhD C q=-2

    0

    q−π −π/2 0 π/2- 3-order diffraction coefficient

    i f

    ( )(1) (2) (2 3

    21

    3) (03

    )02u u u u

    u u u ui i i i u u u ED D D D∂ ∂ ∂ ∂ ⎡ ⎤+ + + + + Δ + + γ =⎣ ⎦∂ ∂ ∂ ∂

    moving frame

    ( )13 02u u u uT x x x γ⎣ ⎦∂ ∂ ∂ ∂

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Moving Discrete Cavity SolitonsMoving Discrete Cavity Solitons O. Egorov and F. Lederer, and Y S Kivsharand Y. S. Kivshar,Opt. Exp. 15 (07) 4149

    2.5

    |b| dark DCS2

    |b| dark DCS

    MI

    1

    1.5

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    bright DCS

    domains of resting DCSs 3′Δ < − 1C = 1γ =

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Moving Discrete Cavity SolitonsMoving Discrete Cavity Solitons O. Egorov and F. Lederer, and Y S Kivsharand Y. S. Kivshar,Opt. Exp. 15 (07) 4149

    2.5

    |b|1.5 continuous

    Moving DCSs

    2

    |b|

    1

    eloc

    ity

    continuous

    dark DCSMI

    1

    1.5

    0.5

    ve

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    0 0.2 0.4 0.6q / π

    0

    g

    moving DCSs in the quasi-continuous model 3′Δ < − 1C = 1γ =

    q

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Moving Discrete Cavity SolitonsMoving Discrete Cavity Solitons O. Egorov and F. Lederer, and Y S Kivsharand Y. S. Kivshar,Opt. Exp. 15 (07) 4149

    1.5 continuous2.5

    |b|Moving DCSs

    1

    eloc

    ity

    continuousdiscrete

    2

    |b|dark DCS

    MI

    0.5

    ve

    1

    1.5

    bright DCS

    0 0.2 0.4 0.6q / π

    00 0.2 0.4 0.6 0.8 1q / π

    0.5

    g

    q

    3′Δ < − 1C = 1γ =moving DCSs in the discrete model

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Moving Discrete Cavity SolitonsMoving Discrete Cavity Solitons O. Egorov and F. Lederer, and Y S Kivsharand Y. S. Kivshar,Opt. Exp. 15 (07) 4149

    1.5 continuous2.5

    |b|Moving DCSs

    1

    eloc

    ity

    continuousdiscrete

    2

    |b|dark DCS

    MI

    0.5

    ve

    1

    1.5

    bright DCS

    0 0.2 0.4 0.6q / π

    00 0.2 0.4 0.6 0.8 1q / π

    0.5

    bi t bilitresting and moving DCSs

    g

    qbistabilityresting and moving DCSs

    3′Δ < − 1C = 1γ =moving DCSs in the discrete model

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Moving Discrete Cavity SolitonsMoving Discrete Cavity Solitons O. Egorov and F. Lederer, and Y S Kivsharand Y. S. Kivshar,Opt. Exp. 15 (07) 4149

    2.5

    |b|Moving DCSs

    2

    |b|dark DCS

    MI

    1

    1.5

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    Resting and Moving DCSscollision between resting and moving

    di t C it S lit

    g

    Resting and Moving DCSs discrete Cavity Solitons

    3′Δ < − 1C = 1γ =moving DCSs in the discrete model

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Moving Discrete Cavity SolitonsMoving Discrete Cavity Solitons O. Egorov and F. Lederer, and Y S Kivsharand Y. S. Kivshar,Opt. Exp. 15 (07) 4149

    2.5

    |b|Moving DCSs

    soliton ménage à troissoliton ménage à trois

    2

    |b|dark DCS

    MI

    1

    1.5

    bright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    resting and moving DCSsCollision between resting and moving

    Di t C it S lit

    g

    resting and moving DCSs Discrete Cavity Solitons

    3′Δ < − 1C = 1γ =moving DCSs in the discrete model

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • OutlineOutline

    1 I d i1. Introduction

    2 Resting Discrete Cavity Solitons (DCS)2. Resting Discrete Cavity Solitons (DCS)

    3. Mobility of Resting DCS vs. Moving DCS

    4. Sub-diffractive DCS

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • Subdiffractive Subdiffractive SolitonsSolitons O. Egorov and F. Lederer, and K. StaliunasOpt. Lett. (to appear August 1)

    ( )2 3

    2(1) (3)1 02 3

    (2) (0)u uu u

    u u u ui iD iD i u u u ET x x x

    D D∂ ∂ ∂ ∂ ⎡ ⎤+ + + + + Δ + + γ =⎣ ⎦∂ ∂ ∂ ∂2(2) coshD C q=

    2.5

    |b|Moving DCSs

    2.5

    |u| bright

    q = π/2

    2

    |b|

    1.5

    2| | bright

    dark DCSMI

    1

    1.5

    1PWbright DCS

    0 0.2 0.4 0.6 0.8 1q / π0.5

    diff ti t d1.75 2 2.25E0

    0.5 dark g

    3′Δ < − 1C = 1γ =diffraction arrested

    moving DCSs in the discrete model

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • O. Egorov and F. Lederer, and K. StaliunasOpt. Lett. (to appear August 1)Subdiffractive Subdiffractive SolitonsSolitons

    fundamental higher-order

    1.5

    2|u|

    2.5

    |u| bright

    fundamental higher-order

    0.5

    1

    1.5

    2| | bright

    0 9

    1.5

    2.1|u|

    1PW

    10 20 30waveguides

    0.3

    0.9

    10 20 30waveguides

    1.75 2 2.25E0

    0.5 dark

    3′Δ < − 1C = 1γ =

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • O. Egorov and F. Lederer, and K. StaliunasOpt. Lett. (to appear August 1)Subdiffractive Subdiffractive SolitonsSolitons

    2.5

    |u| bright

    1.5

    2| | bright

    1PW

    1.75 2 2.25E0

    0.5 dark

    3′Δ < − 1C = 1γ =

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07

  • ConclusionsConclusions

    - MI and discrete cavity soliton formation depend strongly on the holding beam inclination

    - beyond a critical inclination resting solitons start to move

    - a quasi-continuous approach permits to identify moving DCSsDCSs

    - subdiffractive DCS exist if second order diffraction dissapearsdissapears

    F. Lederer, FSU Jena, Discrete Cavity Solitons, Zürich 07/07