[email protected] 1 updates on thermal tests [email protected] updates on thermal tests f....

28
[email protected] 1 Updates on thermal tests [email protected] Updates on thermal tests F. Rossi September 5, 2012

Upload: arthur-hampton

Post on 03-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

1 Updates on thermal tests

[email protected]

Updates on thermal testsF. Rossi

September 5, 2012

Page 2: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

2 Updates on thermal tests

EXPERIMENTAL PROGRAM FOR THERMAL TESTS

HEATING

No active heating in RF structures

COOLING

No active cooling in RF structures

MEASUREMENTS

1. Temperature

2. Alignment• Laser tracker• Romer arm• WPS• Micro-Triangulation

system

STEP 1 – Heating environment

ENVIRONMENT

Tamb = 20 - 40 °Cin steady-state conditions and by steps of 5 °C

HEATING

PETSby steps up to 110 W/unit

COOLING

PETS< max calculated T

MEASUREMENTS

1. Temperature

2. Volumetric flow rate

3. Alignment• Laser tracker• Romer arm• WPS• Micro-Triangulation

system

STEP 2 – Heating only PETS

ENVIRONMENT

Tamb = 20 °Cin steady-state conditions

HEATING

ASby steps up to 400 W/unit

COOLING

AS< max calculated T

MEASUREMENTS

1. Temperature

2. Volumetric flow rate

3. Alignment• Laser tracker• Romer arm• WPS• Micro-Triangulation

system

STEP 3 – Heating only AS

ENVIRONMENT

Tamb = 20 °Cin steady-state conditions

HEATING

AS + PETS + DBQby steps up to max power/unit

COOLING

AS + PETS + DBQ< max calculated T

MEASUREMENTS

1. Temperature

2. Volumetric flow rate

3. Alignment• Laser tracker• Romer arm• WPS• Micro-Triangulation

system

STEP 4 – Heating all module

ENVIRONMENT

Tamb = 20 - 40 °Cin steady-state conditions and by steps of 5 °C

MEASUREMENTS

a. Comparison between laser tracker and WPS measurements (no movements of girders)

b. Alignment tests by moving girders via actuators and comparison between laser tracker and WPS measurements

STEP 0 – Alignment tests

ENVIRONMENT

Tamb = 20 & 40 °C

ALL THE TESTS ARE PERFORMED WITH NO VACUUM

Page 3: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

3 Updates on thermal tests

Topics and updates concerning the status of:

1. CLIC prototype module type 0

2. Laboratory environment (air conditioning, ventilation, etc. )

3. Heating system (heaters, temperature sensors, etc.)

4. Cooling system (water supply, inlet/outlet cooling circuits, control valves, etc.)

5. Numerical simulations

Page 4: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

4 Updates on thermal tests

1. CLIC prototype module type 0

• First module type 0 ready by the end of September (RF network, vacuum network, compact load, cooling system inside module, etc. )

Page 5: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

5 Updates on thermal tests

2. LABORATORY ENVIRONMENT: air conditioning and ventilation system

AIR COOLING

T = 20 - 40 °Cv = 0.2 - 0.8 m/s AIR

CIRCULATION (v = 4 m/s)

• Air conditioning and ventilation system to reproduce thermal conditions inside CLIC tunnel

• Installation: end of October 2012

• Cupboards inside and outside experimental area are being moved to bld. 162

Page 6: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

6 Updates on thermal tests

3. HEATING SYSTEM: heaters

• Experimental conditions to be reproduced:G. Riddone, A. Samoshkin, CLIC Test Module meeting 25.07.2011

GROUPHEATER

Q.TY S/N Dimensions (mm) Voltage Pmax (W) Imax (A) Operating condition

8 AS 1 0680/TC31-80/6065W240V/SF Ø8 x 2032240V

AC

6095 25.4 50%

2 PETS unit 1 S/N 0680/TS44-80/2175W240V/SF Ø11.17 x 2032 2175 9.1 20%

2 DBQ 8+8=16 CSS-303200_220v Ø12.7 x 76 3200 13.3 9%

TOTAL 11470 47.8 35%

DBQ heaters

AS + PETS heaters

Page 7: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

7 Updates on thermal tests

3. HEATING SYSTEM: temperature sensors

solid state relay

heaters

ILHardware thermal

interlock (2 for AS, 1 for each PETS and DBQ)

max. temp. limit: 50 °C

All temperature sensors are currently stored in the lab

1 DOF for each heating sub-

system (AS, PETS and DBQ)

temperature sensors

PWM signal for controlling the heaters

T = 10 s

Duty cycle (%)

Page 8: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

8 Updates on thermal tests

3. HEATING SYSTEM: temperature sensors

2 m

1.2 m

1 m

1.3 m

• 5 thermocouples for each section

o Thermocouple type T (± 0.5 °C)

• 15 thermocouples in total

• Continuous acquisition during tests

NI 921416-Channel Isothermal Thermocouple Input Module

Page 9: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

9 Updates on thermal tests

3. HEATING SYSTEM: software

Software interface

Panel for control valves

• Modifications to the previous configuration are being integrated in the software

Page 10: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

10 Updates on thermal tests

3. HEATING SYSTEM: status

• Heaters: DELIVERED

• RTD sensors: DELIVERED

• NI hardware: DELIVERED

• Thermocouples + DAQ card: mid of September

• Electric scheme (IL, SSR, etc.): end of September

Page 11: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

11 Updates on thermal tests

4. COOLING SYSTEM

•Demineralized water

•Nominal volumetric flow rate: 0.36 m3/h

•Water inlet temperature: 25 °C

•Water outlet temperature: ~45 °C

•Max. pressure allowed: 5 bar

Page 12: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

12 Updates on thermal tests

4. COOLING SYSTEM: AS

TS7

TS1 TS2

TS6

TS4

Page 13: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

13 Updates on thermal tests

4. COOLING SYSTEM: PETS

TS17

TS22

TS23

TS24

TS25

TS26

Page 14: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

14 Updates on thermal tests

4. COOLING SYSTEM: hydraulic circuit

Water pump

Heat exchanger

Temperature regulator

Inlet/outlet port

Water tank

POWER SOCKETMax. 16 A

POWER SOCKETMax. 32 A

air cooling

safety valves

control valves

flow (+temperature) transducer

PRV

pressure transducer

inlet/outlet hydraulic circuit

Page 15: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

15 Updates on thermal tests

4. COOLING SYSTEM: status

• Water supply: DELIVERED

• Hydraulic parts (pipes, elbows, etc. ): DELIVERED

• Control valves: DELIVERED

• Measuring devices (pressure transducer, flow rate transducer, etc. ): DELIVERED

• PRV: DELIVERED

• Safety valves: end of September

• Supporting frames (beams, ladders, etc. ): end of September

• Electric scheme: end of September

Page 16: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

16 Updates on thermal tests

FINAL LAYOUT

AS heaterPETS heaterDBQ heaters

Temperature sensors (q.ty 29)

POWER SOCKETMax. 63 A

POWER SOCKETMax. 63 A

• Improvement of current electric network of Lab completed

POWER SOCKETMax. 16 A

POWER SOCKETMax. 32 A

Supporting system for:• Control valves (q.ty 7)• Flow transducer (q.ty 1)• Pressure sensor (q.ty 1)

• Electric scheme for control valves, heaters, temperature sensors, etc. (J. Blanc)

CUPBOARD for:• NI cDAQ-9178 8 slots (q.ty 1)• NI cDAQ-9174 4 slots (q.ty 1)• 24 V supply• Digital control electronics for proportional valves (q.ty 7)

SSR

Page 17: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

17 Updates on thermal tests

SCHEDULE

• End of September:o 1st TM0 ready

• End of October:o Installation of air conditioning and ventilation systemo Preliminary tests for heaters, cooling system and data acquisition process

• Beginning of November:o Preliminary thermal tests

Page 18: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

18 Updates on thermal tests

5. NUMERICAL SIMULATIONS: thermo-mechanical modelling

Deformed shape of prototype module type 0 due to applied thermal RF loads (values in

µm)

Displacements [m]

(location and load type)Prototype type

0

MB (RF load) 183

DB (RF load) 47

MB (vacuum load) 30

DB (vacuum load) 131

MB (gravity load) 27

DB (gravity load) 40

Resulting displacements on the DB and MB lines due to thermal, vacuum and

gravity loads

Temperature [°C]Prototype type

0

Max temp. of module 43

Water output temp. MB 35

Water output temp. DB 30

Resulting temperatures inside the modules

R. Raatikainen

(SAS = 820 W, PETS unit = 78 W, Tamb = 25 °C)

Page 19: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

19 Updates on thermal tests

5. NUMERICAL SIMULATIONS: hydraulic circuit modelling

SAS CLs

SAS CLs

SAS CLs

SAS CLs

PETS unit PETS unit WG1 WG2 WG3 WG4

CV1

PUMPPRV

CV2

CV7

CV3

CV4

CV5

Q11

Q12

Q13

Q14

Q2

Q

Q = total flow rate [m3/h]

Q1i = flow rate for SAS [m3/h]

Q2 = flow rate for PETS unit [m3/h]

PPRV = set pressure for PRV [bar]

CV = control valve

PUMP = water pump

Ji = pipe distributed energy loss (Li = pipe length)

PPRV

SAS = super accelerating structure

CL = compact load

WG = waveguide

L11, J11

L12, J12

L13, J13

L14, J14

L2, J2

EDMS 1233096

Page 20: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

20 Updates on thermal tests

5. NUMERICAL SIMULATIONS: hydraulic circuit modelling

# BURKERT REFERENCE kVs [m3/h] DN [mm]

CV1

Type 1(2835, n. 175996) 0.12 2

CV2CV3CV4

CV5 Type 2(2833, n. 175869) 0.04 1.2

CV7 Type 4(2835, n. 176006) 0.45 4

kVs value: Flow rate value for water, measured at +20 °C and 1 bar pressure differential over a fully opened valve

CHARACTERISTICS OF PROPORTIONAL VALVES

[0−10𝑣𝑜𝑙𝑡 ]→𝑘𝑉→∆𝑝= ρ∙( 𝑄𝑘𝑉)2

𝑘𝑉=𝑘𝑉𝑠10∙V

kV = flow coefficient for a certain opening position of control valve

V = input voltage signal for control valve [0 - 10 volt]

Δp = pressure drop across control valve for a certain opening position [bar]

ρ = water density [kg/dm3]

Page 21: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

21 Updates on thermal tests

5. NUMERICAL SIMULATIONS: hydraulic circuit modelling

CV1,..7 (% open) pPRV [bar]* Q [m3/h] Q1i [m3/h] ΔpCV1i [bar] Q2 [m3/h] ΔpCV2 [bar] ΔpCV7 [bar]

50% 3.25 0.31 0.071 1.39 0.024 1.39 1.85

75% 1.45 0.31 0.071 0.62 0.024 0.62 0.82

100% 0.82 0.31 0.071 0.35 0.024 0.35 0.46

*all pressure values are relative to the atmospheric pressure

Independent variables Dependent variables (calculated)

Page 22: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

22 Updates on thermal tests

5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system

• Total RF power per module: 4 kW

• Number of modules: 4

• Assumptions per module:o Heat dissipation to cooling system: 80 %

(3200 W)o Heat dissipation to air: 20 % (800 W)

Page 23: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

23 Updates on thermal tests

5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system

2 m

4.6 m

14.6 m

2.3 mVertical cutviewLab volume

TM0(2 x 1 x 1 m)

vx = 0.5 m/sTi = 20 °C

vy = 0(no-penetration condition)

vx = 0.5 m/s

vz = 0(no-penetration condition)

yz

x

• Initial temperature = 25 °C• Time period = 300 s

Page 24: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

24 Updates on thermal tests

5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system

T = 23 °C

T = 20 °C

Ti = 20 °Cvx = 0.5 m/sQ = 800 W

Page 25: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

25 Updates on thermal tests

5. NUMERICAL SIMULATIONS: CFD model of air conditioning and ventilation system

Ti = 30 °Cvx = 0.7 m/sQ = 1600 W

T = 35 °C

T = 30 °C

Page 26: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

26 Updates on thermal tests

CONCLUSIONS: THERMAL TESTS STRATEGY

NAME LAB CONFIGURATIONPARAMETERS

Heating Cooling Vacuum

TT1 TM0 V V X

TT2 TM0 + TM0 V V X

TT3 TM1 + TM0 V V V

TT2

TT3

Page 27: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

27 Updates on thermal tests

THERMAL TESTS: people

Roberto Mondello• Experimental tests

Ioannis Kossyvakis• Software and data

acquisition

Shoaib Azhar• Design and modelling

of cooling system

Lauri Kortelainen• FEA analysis of

thermo-mechanical behaviour of CLIC modules

• CFD analysis

Anastasia Xydou• Theoretical and

experimental investigation on the bonding/brazing process

Jeremy Blanc• Electric design of

data acquisition and control system

Page 28: Fabrizio.rossi@cern.ch 1 Updates on thermal tests fabrizio.rossi@cern.ch Updates on thermal tests F. Rossi September 5, 2012

[email protected]

28 Updates on thermal tests

NEXT CLIC TEST MODULE MEETINGS

1. CLIC Test Module Meeting (19.09.2012)• A. Schoaib: "Modelling of hydraulic system of CLIC prototype type 0"

2. CLIC Test Module Meeting (03.10.2012)

3. CLIC Test Module Meeting (17.10.2012)

4. CLIC Test Module Meeting (31.10.2012)

5. CLIC Test Module Meeting (14.11.2012)

6. CLIC Test Module Meeting (28.11.2012)

7. CLIC Test Module Meeting (12.12.2012)