f detection and zn2+ recognition by imine hydrolysis ... · pritam ghosh‡1±, suparna paul‡1,5,...

23
1 | Page Supporting Information Engineering Bio-molecular device by biocompatible sensor via symmetric encryption-decryption of spectroscopic signal towards F - detection and Zn 2+ recognition by imine hydrolysis pathway Pritam Ghosh ‡1± , Suparna Paul ‡1,5 , Debanjan Dey ‡1,5 , Saibal Jana 2 , Biswajit Gopal Roy 3 , Subhra Kanti Mukhopadhyay 4 and Priyabrata Banerjee 1,5* 1 Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India. 2 Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea. 3 Department of Chemistry, Sikkim University, Gangtok-737102, India. 4 Department of Microbiology, The University of Burdwan, Burdwan 713104, West Bengal, India. 5 Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad-201002, Uttar Pradesh, India. ± Present address of Dr Pritam Ghosh: Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel. ‡ These authors contributed equally to this work. * E-mail: [email protected] & [email protected] Webpage: www.cmeri.res.in & www.priyabratabanerjee.in Fax: +91-343-2546745; Tel: +91-9433814081. Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Upload: others

Post on 17-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

1 | P a g e

Supporting InformationEngineering Bio-molecular device by biocompatible sensor via

symmetric encryption-decryption of spectroscopic signal towards

F- detection and Zn2+ recognition by imine hydrolysis pathway Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3,

Subhra Kanti Mukhopadhyay4 and Priyabrata Banerjee1,5*

1Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.

2 Department of Bionano Technology, Hanyang University, Ansan 15588, Republic of Korea.

3 Department of Chemistry, Sikkim University, Gangtok-737102, India.

4 Department of Microbiology, The University of Burdwan, Burdwan 713104, West Bengal, India.

5 Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad-201002, Uttar Pradesh, India.

± Present address of Dr Pritam Ghosh: Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel.

‡ These authors contributed equally to this work.

* E-mail: [email protected] & [email protected] Webpage: www.cmeri.res.in &

www.priyabratabanerjee.in Fax: +91-343-2546745; Tel: +91-9433814081.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Page 2: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

2 | P a g e

Table of Contents

Captions Contents Page No.

Scheme S1 Synthetic scheme of PBCMERI-24 3

Fig. S1 ESI-MS of PBCMERI-24 3

Fig. S2 1H-NMR of PBCMERI-24 4

Table S1 Crystal Data and Details of the Structure Determination for: PBCMERI-24 4-5

Table S2-S3 Bond Distances (Angstrom) for: PBCMERI-24 5-7

Table S4-S8 Bond Angles (Degrees) and Hydrogen bonds of PBCMERI-24 7-10

Table S9 Comparison table of bond distances between XRD and Gaussian data of PBCMERI-24 11

Fig. S3 Colorimetric response of PBCMERI-24 in presence of varying cations 12

Fig. S4 Cross Interference study of PBCMERI-24 with Zn2+ along with other cationic contaminants 12

Fig. S5 Colorimetric detection of F- by PBCMERI-24 in ACN. 12

Fig. S6 Calibration curve from fluorescence titration of chemosensor PBCMERI-24 with Zn2+ 13

Fig. S7 Calibration curve from fluorescence titration of chemosensor PBCMERI-24 with F- 13

Fig. S8 Job’s plot of chemosensor PBCMERI-24 with Zn2+ 13

Fig. S9 Association constant determination of chemosensor PBCMERI-24 vs. Zn2+. 14

Fig. S10 ESI-MS of Zn2+···PBCMERI-24 complex in acetonitrile:water (1:1, v/v). 14

Fig. S11 1H-NMR titration of PBCMERI-24 with concomitant addition of Zn2+ 14

Fig. S12 Fluorescence titration of PBCMERI-24 (10-5M) in acetonitrile: water (4:1, v/v, pH 7.4, HEPES buffer)

15

Fig. S13 Job’s plot of chemosensor PBCMERI-24 with F- with a total concentration of 5 x 10−3 M 15

Fig. S14 Association constant determination of chemosensor PBCMERI-24 vs. F- 15

Fig. S15-S16 1H-NMR titration of PBCMERI-24 with F- and OH- in acetonitrile-d3. 16

Fig. S17 Plot of fluorescence intensity of PBCMERI-24 in varying pH. 17

In vitro recognition of Zn2+ and F- and preparation of cell image 17-18

Fig. S18-S19 Turn over study of PBCMERI-24 after sequential addition of F- and Al3+; Zn2+ and CN-. 18

Fig. S20-S21 Simulation of Biomolecular logic gate of PBCMERI-24 with Zn2+ / CN- and F-/ Al3+ 19-20

Table S10-S11 Comparative data of PBCMERI-24 with other Zn2+ and F- chemosensors 21-22

Page 3: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

3 | P a g e

Scheme S1 Synthesis of sensor PBCMERI-24.

Fig. S1 ESI-MS of PBCMERI-24 in Methanol.

OH

CH O

NH 2

OH

5 hrsN

OH H OH

MeOH

2-(3,5-di-tert-butyl-2-hydroxybenzylideneamino)phenol

Page 4: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

4 | P a g e

Fig. S2 1H-NMR of PBCMERI-24 in ACN-d3.

Table S1 - Crystal Data and Details of the Structure Determination for: PBCMERI-24

Crystal Data

Formula C21 H27 N O2

Formula Weight 325.43

Crystal System triclinic

Space group P-1 (No. 2)

a, b, c [Angstrom] 9.6448(9) 10.4761(10) 20.407(2)

alpha, beta, gamma [deg] 99.834(3) 90.618(3) 113.963(3)

Volume [Å3] 1849.1(3)

Z 4

D(calc) [g/cm3] 1.169

Mu(MoKa) [ /mm ] 0.074

F(000) 704

Crystal Size [mm] 0.14 x 0.16 x 0.18

Page 5: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

5 | P a g e

Data Collection

Temperature (K) 111

Radiation [Angstrom] MoKa 0.71073

Theta Min-Max [Deg] 2.2, 25.0

Dataset -11: 11 ; -12: 12 ; -24: 24

Tot., Uniq. Data, R(int) 19043, 6453, 0.049

Observed Data [I > 2.0 sigma(I)] 5938

Refinement

Nref, Npar 6453, 455

R, wR2, S 0.0406, 0.1069, 1.03

w = ^2^(FO^2^)+(0.1621P)^2^+0.2213P] where P=(FO^2^+2FC^2^)/3'

Max. and Av. Shift/Error 0.00, 0.00

Min. and Max. Resd. Dens. [e/Ang^3] -0.20, 0.27

Table S2 - Bond Distances (Angstrom) for: PBCMERI-24

Bond Distances (Angstrom)

O001 -C008 1.3531(18) C00U -C00Z 1.386(2)

O003 -C00S 1.3734(17) N006 -C009 1.4193(18)

N005 -C00A 1.2893(19) N006 -C00I 1.2856(17)

N005 -C00K 1.4189(17) O002 -H002 0.8400

O001 -H001 0.8400 C00A -H00A 0.9500

O003 -H003 0.86(2) O004 -H004 0.90(2)

C007 -C00A 1.4520(18) C00B -H00B 0.9500

C007 -C00B 1.404(2) C00C -H00C 0.9500

C007 -C008 1.4047(18) C00G -H00G 0.9500

C008 -C00E 1.4110(18) C00L -H00L 0.9500

O002 -C00D 1.3556(16) C00T -H00D 0.9800

O004 -C00J 1.3598(19) C00T -H00F 0.9800

C00B -C00N 1.3801(18) C00T -H00E 0.9800

C00C -C00E 1.387(2) C00U -H00U 0.9500

C00C -C00N 1.4061(19) C00V -H00H 0.9800

C00E -C00O 1.5377(19) C00V -H00I 0.9800

C00G -C00Z 1.385(2) C00V -H00J 0.9800

C00G -C00S 1.387(2) C00Z -H00Z 0.9500

C00K -C00S 1.3938(19) C010 -H01B 0.9800

C00K -C00L 1.3926(19) C010 -H01C 0.9800

Page 6: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

6 | P a g e

C00L -C00U 1.387(2) C010 -H01A 0.9800

C00N -C00R 1.533(2) C012 -H01D 0.9800

C00O -C014 1.535(2) C012 -H01F 0.9800

C00O -C00V 1.539(2) C012 -H01E 0.9800

C00O -C00T 1.541(2) C014 -H01H 0.9800

C00R -C012 1.534(2) C014 -H01G 0.9800

C00R -C018 1.534(2) C014 -H01I 0.9800

C00R -C010 1.531(2) C018 -H01L 0.9800

Table S3 - Bond Distances (Angstrom) continued for PBCMERI-24

C018 -H01K 0.9800 C00I -H00M 0.9500

C018 -H01J 0.9800 C00P -H00P 0.9500

C009 -C00X 1.392(2) C00X -H00X 0.9500

C009 -C00J 1.3968(19) C00Y -H00Y 0.9500

C00D -C00H 1.4073(19) C011 -H011 0.9500

C00D -C00M 1.411(2) C013 -H013 0.9500

C00F -C00Q 1.399(2) C016 -H01M 0.9800

C00F -C00H 1.3963(18) C016 -H01N 0.9800

C00H -C00W 1.536(2) C016 -H01O 0.9800

C00I -C00M 1.453(2) C017 -H01P 0.9800

C00J -C00Y 1.392(2) C017 -H01Q 0.9800

C00M -C00P 1.3996(19) C017 -H01R 0.9800

C00P -C00Q 1.384(2) C019 -H01S 0.9800

C00Q -C015 1.539(2) C019 -H01T 0.9800

C00W -C017 1.534(2) C019 -H01U 0.9800

C00W -C016 1.533(2) C01A -H01V 0.9800

C00W -C019 1.532(2) C01A -H01W 0.9800

C00X -C011 1.388(2) C01A -H01X 0.9800

C00Y -C013 1.383(2) C01B -H 0.9800

C011 -C013 1.385(2) C01B -H01Y 0.9800

C015 -C01C 1.534(2) C01B -Ha 0.9800

C015 -C01A 1.532(2) C01C -H01Z 0.9800

Page 7: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

7 | P a g e

C015 -C01B 1.529(2) C01C -Hb 0.9800

C00F -H00K 0.9500 C01C -Hc 0.9800

Table S4 - Bond Angles (Degrees) for PBCMERI-24

C00A -N005 -C00K 117.87(11) C00T -C00O -C00V 110.50(13)

C008 -O001 -H001 109.00 C00N -C00R -C010 111.89(12)

C00S -O003 -H003 109.2(13) C010 -C00R -C012 107.74(12)

C008 -C007 -C00B 119.99(12) C00N -C00R -C012 111.70(12)

C00A -C007 -C00B 118.06(12) C00N -C00R -C018 107.64(12)

C008 -C007 -C00A 121.64(13) C012 -C00R -C018 108.94(12)

C007 -C008 -C00E 120.29(13) C010 -C00R -C018 108.88(12)

O001 -C008 -C007 119.99(11) O003 -C00S -C00K 121.60(12)

O001 -C008 -C00E 119.69(11) O003 -C00S -C00G 117.84(13)

N005 -C00A -C007 123.72(12) C00G -C00S -C00K 120.54(13)

C007 -C00B -C00N 121.37(12) C00L -C00U -C00Z 119.70(14)

C00E -C00C -C00N 124.62(12) C00G -C00Z -C00U 120.30(14)

C008 -C00E -C00O 120.78(13) C00D -O002 -H002 109.00

C00C -C00E -C00O 122.30(11) C009 -N006 -C00I 118.99(13)

C008 -C00E -C00C 116.88(12) C00J -O004 -H004 109.6(13)

C00S -C00G -C00Z 119.83(14) N005 -C00A -H00A 118.00

N005 -C00K -C00S 118.62(12) C007 -C00A -H00A 118.00

N005 -C00K -C00L 122.43(12) C007 -C00B -H00B 119.00

C00L -C00K -C00S 118.92(12) C00N -C00B -H00B 119.00

C00K -C00L -C00U 120.66(14) C00E -C00C -H00C 118.00

C00B -C00N -C00R 122.38(12) C00N -C00C -H00C 118.00

C00B -C00N -C00C 116.83(13) C00S -C00G -H00G 120.00

C00C -C00N -C00R 120.53(12) C00Z -C00G -H00G 120.00

C00E -C00O -C00V 110.26(10) C00K -C00L -H00L 120.00

Page 8: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

8 | P a g e

C00E -C00O -C00T 109.24(11) C00U -C00L -H00L 120.00

C00T -C00O -C014 107.24(11) H00D -C00T -H00E 109.00

C00V -C00O -C014 107.50(11) H00D -C00T -H00F 109.00

C00E -C00O -C014 112.05(13) H00E -C00T -H00F 109.00

Table S5 - Bond Angles (Degrees) continued for PBCMERI-24

C00O -C00T -H00F 109.00 H01G -C014 -H01H 109.00

C00O -C00T -H00E 109.00 H01G -C014 -H01I 109.00

C00O -C00T -H00D 109.00 H01H -C014 -H01I 109.00

C00L -C00U -H00U 120.00 C00R -C018 -H01L 109.00

C00Z -C00U -H00U 120.00 C00R -C018 -H01K 109.00

H00H -C00V -H00I 109.00 H01K -C018 -H01L 109.00

H00H -C00V -H00J 109.00 H01J -C018 -H01K 109.00

C00O -C00V -H00J 109.00 H01J -C018 -H01L 109.00

C00O -C00V -H00H 109.00 C00R -C018 -H01J 109.00

H00I -C00V -H00J 109.00 N006 -C009 -C00X 123.01(12)

C00O -C00V -H00I 109.00 C00J -C009 -C00X 119.12(13)

C00G -C00Z -H00Z 120.00 N006 -C009 -C00J 117.82(13)

C00U -C00Z -H00Z 120.00 C00H -C00D -C00M 120.44(12)

H01A -C010 -H01B 109.00 O002 -C00D -C00H 119.46(13)

H01A -C010 -H01C 109.00 O002 -C00D -C00M 120.09(12)

H01B -C010 -H01C 109.00 C00H -C00F -C00Q 124.48(13)

C00R -C010 -H01C 109.00 C00F -C00H -C00W 121.74(12)

C00R -C010 -H01A 109.00 C00D -C00H -C00F 116.76(14)

C00R -C010 -H01B 109.00 C00D -C00H -C00W 121.48(12)

C00R -C012 -H01F 109.00 N006 -C00I -C00M 123.11(14)

C00R -C012 -H01D 109.00 O004 -C00J -C009 122.14(13)

H01E -C012 -H01F 109.00 O004 -C00J -C00Y 117.88(13)

Page 9: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

9 | P a g e

H01D -C012 -H01E 109.00 C009 -C00J -C00Y 119.93(14)

C00R -C012 -H01E 109.00 C00D -C00M -C00I 121.78(12)

H01D -C012 -H01F 109.00 C00I -C00M -C00P 118.47(13)

C00O -C014 -H01G 109.00 C00D -C00M -C00P 119.74(13)

C00O -C014 -H01H 109.00 C00M -C00P -C00Q 121.54(14)

C00O -C014 -H01I 109.00 C00F -C00Q -C00P 116.96(13)

Table S6 - Bond Angles (Degrees) continued for PBCMERI-24

C00F -C00Q -C015 122.65(13) C00X -C011 -H011 120.00

C00P -C00Q -C015 120.39(14) C013 -C011 -H011 120.00

C00H -C00W -C016 110.98(12) C00Y -C013 -H013 120.00

C016 -C00W -C017 109.86(13) C011 -C013 -H013 120.00

C016 -C00W -C019 107.22(13) C00W -C016 -H01M 109.00

C017 -C00W -C019 107.46(12) C00W -C016 -H01N 109.00

C00H -C00W -C017 109.31(13) C00W -C016 -H01O 109.00

C00H -C00W -C019 111.93(12) H01M -C016 -H01N 109.00

C009 -C00X -C011 120.72(14) H01M -C016 -H01O 109.00

C00J -C00Y -C013 120.24(14) H01N -C016 -H01O 109.00

C00X -C011 -C013 119.75(16) C00W -C017 -H01P 109.00

C00Y -C013 -C011 120.18(15) C00W -C017 -H01Q 109.00

C00Q -C015 -C01B 112.65(14) C00W -C017 -H01R 109.00

C00Q -C015 -C01C 108.78(12) H01P -C017 -H01Q 109.00

C01A -C015 -C01C 109.15(14) H01P -C017 -H01R 109.00

C01B -C015 -C01C 108.22(13) H01Q -C017 -H01R 109.00

C01A -C015 -C01B 108.43(12) C00W -C019 -H01S 109.00

C00Q -C015 -C01A 109.54(12) C00W -C019 -H01T 109.00

C00H -C00F -H00K 118.00 C00W -C019 -H01U 109.00

C00Q -C00F -H00K 118.00 H01S -C019 -H01T 109.00

Page 10: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

10 | P a g e

N006 -C00I -H00M 118.00 H01S -C019 -H01U 109.00

C00M -C00I -H00M 118.00 H01T -C019 -H01U 109.00

C00M -C00P -H00P 119.00 C015 -C01A -H01V 109.00

C00Q -C00P -H00P 119.00 C015 -C01A -H01W 109.00

C009 -C00X -H00X 120.00 C015 -C01A -H01X 109.00

C011 -C00X -H00X 120.00 H01V -C01A -H01W 109.00

C00J -C00Y -H00Y 120.00 H01V -C01A -H01X 109.00

C013 -C00Y -H00Y 120.00 H01W -C01A -H01X 109.00

Table S7 - Bond Angles (Degrees) continued for PBCMERI-24

C015 -C01B -H 109.00 C015 -C01C -H01Z 109.00

C015 -C01B -H01Y 109.00 C015 -C01C -Hb 109.00

C015 -C01B -Ha 109.00 C015 -C01C -Hc 109.00

H -C01B -H01Y 109.00 H01Z -C01C -Hb 109.00

H -C01B -Ha 109.00 H01Z -C01C -Hc 109.00

H01Y -C01B -Ha 109.00 Hb -C01C -Hc 109.00

Table S8 – Hydrogen Bonds (Angstrom, Deg) for PBCMERI-24

O001 -- H001 .. N005 0.8400 1.8700 2.6215(14) 149.00

O002 -- H002 .. N006 0.8400 1.8600 2.6176(17) 149.00

O003 -- H003 .. N005 0.86(2) 2.33(2) 2.7942(16) 114.1(16)

O004 -- H004 .. O003 0.90(2) 2.16(2) 2.9046(16) 139.4(17)

O004 -- H004 .. N006 0.90(2) 2.34(2) 2.7848(15) 110.9(16)

C00T -- H00F .. O001 0.9800 2.3200 2.9879(16) 125.00

C00V -- H00H .. O001 0.9800 2.3200 2.9787(17) 123.00

C010 -- H01B .. O001 0.9800 2.5000 3.3841(19) 150.00 1_455

C016 -- H01N .. O002 0.9800 2.3500 2.969(2) 121.00

C017 -- H01Q .. O002 0.9800 2.3900 3.029(2) 123.00

Page 11: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

11 | P a g e

Table S9 - Comparison table of bond distances between XRD and Gaussian data of PBCMERI-24

Bond length (Å)

From DFT calculation From XRD data

C1-C2 1.408 1.400

C2-C3 1.413 1.410

C3-C4 1.417 1.407

C4-C5 1.397 1.396

C5-C6 1.404 1.399

C6-C1 1.387 1.384

C2-C7 1.463 1.452

C7-N8 1.285 1.286

N8-C9 1.405 1.419

C9-C10 1.414 1.397

C10-C11 1.396 1.392

C11-C12 1.397 1.383

C12-C13 1.395 1.385

C13-C14 1.396 1.388

C14-C9 1.404 1.392

C10-O15 1.367 1.360

C3-O16 1.362 1.356

Page 12: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

12 | P a g e

Fig. S3 Colorimetric response of PBCMERI-24 in presence of varying cations; (a) PBCMERI-24; (b) Zn2+; (c) Cd2+; (d) Cu2+; (e) Hg2+; (f) Fe3+; (g) Pb2+; (h) Ni2+; (i) Co2+; (j) Na+; (k) K+

Fig. S4 Fluorogenic cross Interference study of PBCMERI-24 with Zn2+ along with other cationic contaminants (1) PBCMERI-24 + Cd2+ + Zn2+; (2) PBCMERI-24 + Hg2+ + Zn2+; (3) PBCMERI-24 + Pb2+ + Zn2+; (4) PBCMERI-24 + Co2+ + Zn2+; (5) PBCMERI-24 + Cu2+ + Zn2+; (6) PBCMERI-24 + Fe3+ + Zn2+; (7) PBCMERI-24 + Mn2+ + Zn2+; (8) PBCMERI-24 + Na+ + Zn2+; (9) PBCMERI-24 + K+ + Zn2+.

Colorimetric perturbation by anions has been measured with 10-4 M concentration of PBCMERI-24 in acetonitrile. Instant change in color has been noticed with F- from faint yellow to reddish yellow. However other TBA salts of anions don’t have any such effect. Significantly, acetate anion doesn’t have any effect to PBCMERI-24.

Fig. S5 Colorimetric detection of F- by PBCMERI-24 in ACN.

Page 13: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

13 | P a g e

Fig. S6 Calibration curve obtained from fluorescence titration of chemosensor PBCMERI-24 with Zn2+ (herein the plotted concentration of Zn2+ represents the final concentration after each time addition of Zn2+ into the chemosensor solution).

Fig. S7 Calibration curve obtained from fluorescence titration of chemosensor PBCMERI-24 with F- (herein the plotted concentration of F- represents the final concentration after each time addition of F- into the chemosensor solution).

Fig. S8 Job’s plot of chemosensor PBCMERI-24 with Zn2+ with a total concentration of 1 x 10−4 M.

Page 14: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

14 | P a g e

N

OH

OH

OHCH O

NH 2OH

A

B

C

Fig. S9 Association constant determination of chemosensor PBCMERI-24 vs. Zn2+.

Fig. S10 ESI-MS of Zn2+···PBCMERI-24 complex in acetonitrile : water (1:1, v/v).

N

H O OHH

Zn2+

HN

OZn2+

NO3

H 2O

Page 15: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

15 | P a g e

Fig. S11 1H-NMR titration of PBCMERI-24 with concomitant addition of Zn2+ upto 5 eqv.

Fig. S12 Fluorescence titration of PBCMERI-24 (10-5M) in acetonitrile: water (4:1, v/v, pH 7.4, HEPES buffer) with (H2O : ACN = 2:1 v/v) at ambient temperature.

Fig. S13 Job’s plot of chemosensor

PBCMERI-24 with F- with a total

concentration of 5 x 10-3 M

Page 16: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

16 | P a g e

Fig. S14 Association constant determination of chemosensor PBCMERI-24 vs. F-

Figure S15. 1H-NMR titration of PBCMERI-24 with F- in acetonitrile-d3.

Page 17: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

17 | P a g e

Fig S16. 1H-NMR titration of PBCMERI-24 with OH- in acetonitrile-d3.

Fig. S17 Plot of fluorescence intensity of PBCMERI-24 in varying pH.

In vitro recognition of Zn2+ and F-

In particular, the cells have been cultured in yeast extract glucose broth medium. The cells are suspended in

saline and centrifuged at 4000 rpm for 15 minutes. Afterwards, the cells are washed with HEPES buffer (pH

7.4) and used for further study. In case of Zn2+, the cultured cells are initially suspended in saline, centrifuged

Page 18: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

18 | P a g e

and washed with HEPES buffer prior to use. Later on incubated in Zn2+ (10 μM) for one hour. The cells are

washed then with HEPES buffer for two times. Then the cells are separated in two parts, one part is treated as

control and other portion has been incubated in PBCMERI-24 (10 μM) for the next 40 minutes. Later the cells

are collected and washed with HEPES buffer for two times and placed under fluorescence microscope with UV

filter. Likewise the cells are incubated in F- (100 μM) for one hour. Later on the cells are collected and washed

with HEPES buffer two times. Finally these cells are also divided in two parts, one is used as control and

another portion has been incubated in PBCMERI-24 (10 μM) for the next 40 minutes. Later the cells are

collected and washed with HEPES buffer for two times.

Imaging System. The imaging system was comprised of an inverted fluorescence microscope (Leica DM 1000

LED), digital compact camera (Leica DFC 420C), and an image processor (Leica Application Suite v3.3.0). The

microscope was equipped with a mercury 50 watt lamp.

Preparation of Cell image.

Candida albicans cells (IMTECH No. 3018) from exponentially growing culture in yeast extract glucose broth

medium (pH 6.0 and incubation temperature 370C) were washed by suspending them in normal saline and

centrifuged at 3000 rpm for 10 minutes. It was washed twice with 0.1 M HEPES buffer (pH 7.4). Then cells

were treated with Zn2+ (100 μM) and F- solution (10 μM) for one hour. After incubation, the cells were again

washed with HEPES buffer and then incubated with PBCMERI-24 (10 μM) for another forty minutes. Cells

obtained this way are mounted on grease free glass slide and observed under a Leica DM 1000 Fluorescence

microscope with UV filter.

Literature survey reveals that during Pick’s disease the Zn2+ concentration in blood cells increases and the detection

could be termed as pathogenesis of the disease. Thus we became curious to detect Zn2+ inside eukaryotic cells such as

pollens of flower. In doing so the pollens were initially collected and then incubated in Zn2+ (100 μM) salt

solution for 45 minutes followed by centrifugation at 3000 rpm for 10 minutes. After that those cells were

washed twice with 0.1 M HEPES buffer (pH 7.4). The cells were then incubated in the chemoreceptor

PBCMERI-24 solution ((10 μM) for 40 minutes and then centrifuged in the similar manner and were again

thoroughly washed with HEPES buffer to avoid the emergence of any background emission. Finally the cells

obtained are mounted on a grease free glass slide. Thereafter Leica DM 1000 Fluorescence microscope with UV

filter had been used in order to visualize the cells. Interestingly, the cells treated with Zn2+ and PBCMERI-24

displayed sparkling green emission which in turn reveals biomimetic detection of Zn2+ inside human blood cells

towards diagnosis of Pick’s disease. The outcome is interesting towards application of Pick’s disease diagnosis.

Page 19: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

19 | P a g e

Fig.S18 Turn over study of the chemosensor PBCMERI-24 after sequential addition of F- and Al3+.

Fig.S19 Turn over study of the chemosensor PBCMERI-24 after sequential addition of Zn2+ and CN-.

Page 20: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

20 | P a g e

Fig. S20 Simulation of Biomolecular logic gate of PBCMERI-24 (mentioned as hp in the circuit) with Zn2+ and CN-.

Page 21: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

21 | P a g e

Fig. S21 Simulation of Biomolecular logic gate of PBCMERI-24 (mentioned as hp in the circuit) with F- and Al3+.

Page 22: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

22 | P a g e

Table S10 - Comparative data of PBCMERI-24 with other Zn2+ chemosensors.

Sl No.

LOD In vitro detection

Application in

molecular electronics

Ref

Zn2+ sensing1 88 nM No No 12 0.69 μM No No 23 65.4 μM No No 34 7.2 nM Yes No 45 66 nM No No 56 0.1 μM No No 67 94 nM No No 78 1.47 μM Yes No 89 4.71 × 10−8

MNo No 9

10 0.35 μM No No 1011 Sub

micromolarNo No 11

12 3 x 10-8 No Yes 1213 60 nM No Yes 1314 2.5 x 10-6 M No Yes 1415 50 nM Yes Yes Present Work

Table S11 - Comparative data of PBCMERI-24 with other F- chemosensors.

Sl No.

LOD In vitro detection

Application in molecular electronics

Ref

F- sensing1 12.9 x 10-6 M No No 15

2 0.015 x 10-3 M & 0.020 x 10-3

M

No No 16

3 0.30 mM No No 174 100 μM No No 185 10 ppm No No 196 1x 10−5M No No 207 6.25 x 10-5 M No No 218 4.90 ppm No No 229 3.03 x 10-6 M No No 2310 1.63 10-5 M No Yes 2411 3.5 × 10−6 M No No 2512 60 μM No No 2613 5.37 μM No No 2714 600 μM No No 2815 3 μM Yes Yes Presen

t Work

Page 23: F detection and Zn2+ recognition by imine hydrolysis ... · Pritam Ghosh‡1±, Suparna Paul‡1,5, Debanjan Dey‡1,5, Saibal Jana2, Biswajit Gopal Roy3, Subhra Kanti Mukhopadhyay4

23 | P a g e

References:

1 M. Hosseini, A. Ghafarloo, M. R. Ganjali, F. Faridbod, P. Norouzi and M. S. Niasari, Sensors Actuators B Chem.,

2014, 198, 411–415.

2 S. S. Mati, S. Chall, S. Konar, S. Rakshit and S. C. Bhattacharya, Sensors Actuators B Chem., 2014, 201, 204–212.

3 D. Sarkar, A. K. Pramanik and T. K. Mondal, RSC Adv., 2014, 4, 25341–25347.

4 T. Wei, J. Wang, Y. Chen and Y. Han, RSC Adv., 2015, 5, 57141–57146.

5 E. J. Song, J. Kang, G. R. You, G. J. Park, Y. Kim, S.-J. Kim, C. Kim and R. G. Harrison, Dalt. Trans., 2013, 42, 15514.

6 Z. Dong, X. Le, P. Zhou, C. Dong and J. Ma, RSC Adv., 2014, 4, 18270–18277.

7 M. T. Gabr and F. C. Pigge, Dalt. Trans., 2016, 45, 14039–14043.

8 A. K. Saini, M. Srivastava, V. Sharma, V. Mishra and S. M. Mobin, Dalt. Trans., 2016, 45, 3927–3935.

9 D. Bansal and R. Gupta, Dalt. Trans., 2016, 45, 502–507.

10 A. Ganguly, B. K. Paul, S. Ghosh, S. Kar and N. Guchhait, Analyst, 2013, 138, 6532.

11 C. Ripoll, M. Martin, M. Roldan, E. M. Talavera, A. Orte and M. J. Ruedas-Rama, Chem. Commun., 2015, 51,

16964–16967.

12 D. Karak, S. Das, S. Lohar, A. Banerjee, A. Sahana, I. Hauli, S. K. Mukhopadhyay, D. A. Safin, M. G. Babashkina, M.

Bolte, Y. Garcia and D. Das, Dalt. Trans., 2013, 42, 6708.

13 Y. Zhou, Z. X. Li, S. Q. Zang, Y. Y. Zhu, H. Y. Zhang, H. W. Hou and T. C. W. Mak, Org. Lett., 2012, 14, 1214–1217.

14 L. Wu, Q.-S. Guo, Y.-Q. Liu and Q.-J. Sun, Anal. Chem., 2015, 87, 5318–5323.

15 Y. Jia, Z. Li and W. Shi, Sensors Actuators B Chem., 2013, 188, 576–583.

16 X. Y. Liu, D. R. Bai and S. Wang, Angew. Chemie, 2006, 118, 5601–5604.

17 S. Rochat and K. Severin, Chem. Commun., 2011, 47, 4391.

18 Y. Kim and F. P. Gabbaï, J. Am. Chem. Soc., 2009, 131, 3363–3369.

19 Z. Lin, S. Ou, C. Duan, B. Zhang and Z. Bai, Chem. Commun., 2006, 624.

20 X. Yang, L. Zheng, L. Xie, Z. Liu, Y. Li, R. Ning, G. Zhang, X. Gong, B. Gao, C. Liu, Y. Cui, G. Sun and G. Zhang,

Sensors Actuators B Chem., 2015, 207, 9–24.

21 P. Bose, B. N. Ahamed and P. Ghosh, Org. Biomol. Chem., 2011, 9, 1972.

22 H. Niu, Q. Shu, S. Jin, B. Li, J. Zhu, L. Li and S. Chen, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2016, 153,

194–198.

23 Y. Fang, C. Li, L. Wu, B. Bai, X. Li, Y. Jia, W. Feng and L. Yuan, Dalt. Trans., 2015, 44, 14584–14588.

24 A. Kushwaha, S. K. Patil and D. Das, New J. Chem., 2018, 42, 9200–9208.

25 Z.-Y. Li, H.-K. Su, H.-X. Tong, Y. Yin, T. Xiao, X.-Q. Sun, J. Jiang and L. Wang, Spectrochim. Acta Part A Mol.

Biomol. Spectrosc., 2018, 200, 307–312.

26 H. J. Lee, S. J. Park, H. J. Sin, Y. J. Na and C. Kim, New J. Chem., 2015, 39, 3900–3907.

27 X. Zheng, W. Zhu, H. Ai, Y. Huang and Z. Lu, Tetrahedron Lett., 2016, 57, 5846–5849.

28 M. Bineci, M. Bağlan and S. Atılgan, Sensors Actuators B Chem., 2016, 222, 315–319.