extrasolar planets.i. 1.what do we know and how do we know it. 2.basic planetary atmospheres...

27
Extrasolar Planets.I. 1. What do we know and how do we know it. 2. Basic planetary atmospheres 3. Successful observations and future plans

Post on 20-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Extrasolar Planets.I.

1. What do we know and how do we know it.2. Basic planetary atmospheres

3. Successful observations and future plans

Planets Orbiting Other Stars

• Total: 209 discovered to-date.

• Statistics:• Gas giant planets, like Jupiter & Saturn,

exist around >12% of stars (Marcy et al. 2005);

• Lower-mass planets (Super-Earths, 3 known to-date)

are significantly more common

(Rivera et al. 2005; Beaulieu et al. 2006).

• No Earth-like planets yet…

Planets Orbiting Other Stars:

aft

er

Go

uld

et

al .

(20

06)

First ‘Super-Earth’ discovered GJ 876d:-- Mass ~ 7.5 Earths

Also HD 69830b:-- Mass ~ 10 Earths

NASA Kepler mission:

… Radii in this range

M = MercuryV = VenusE = Earth, etc.

Atmosphere:

• In general - outer boundary for planet’s thermal evolution - the extrasolar planets have introduced conditions never imagined

• Clouds & (photo)chemistry• Evaporation (very hot & hot Jupiters)

Transits allow spectroscopic studies of the planet’s atmosphere

The Close-in Extrasolar Giant Planets

• Type and size of condensate is important

• Possibly large reflected light in the optical

• Thermal emission in the infrared

Seag

er &

Sas

selo

v 20

00

Atmosphere:What is special about atomic Na and the alkali metals?

Seager & Sasselov (2000)

Atmosphere:

Theoretical Transmission Spectra of HD 209458 b

Wavelength (nm)

Occ

ulte

d A

rea

(%)

Seager & Sasselov (2000)

Transmission Spectra

)]/)(exp[exp(

)(

)exp(

0

00,

0

0,

−−−=

=

−=

L

L

dHRrII

dn

II

l

ll

λλλ

λλ

λλλ

σ

στ

τ

H = kT/gmH scale height extinction cross section L path length

How large is the planet atmospheresignal? It depends on theatmosphere annulus / star area

Atmosphere:The tricks of transmission spectroscopy:

Brown (2001)

The actual detection (with the HST):

• a 5signal• 2x weaker than

model expected, but within errors

• Might indicate high clouds above terminator

Charbonneau et al. (2002)

planet/star flux ratio is: a

d

Rp

StarPlanet

Earth

ε ≡fplanet

f*

= pRp

2

a2

Reflected Light

p is albedo

Atmospheric Probe

● Sudarsky Planet types I : Ammonia Clouds II : Water Clouds III : Clear IV : Alkali Metal V : Silicate Clouds

● Predicted Albedos: IV : 0.03 V : 0.50

Sudarsky et al. 2000 Picture of class IV planet generated using Celestia Software

Photometric Light Curves Micromagnitude variability from planet phase changes

• Space-based: MOST (~2005), COROT (~2007), Kepler (~2008)

• m=2.5 (Rp/D)22/3/(sin() + (-)cos())

Seager et al. 2000

Scattered Light

Need to consider:• phase function• multiple scattering

Scattered Light Changes with Phase

Seager, Whitney, & Sasselov 200051 Peg @ 550 nm

Mission Microvariability and

Oscillations of STars / Microvariabilité et Oscillations STellaire

First space satellite dedicated to stellar seismology Small optical telescope &

ultraprecise photometer goal: ~

few ppm = few micromag

MOST at a glance

Canadian Space Agency (CSA)

circular polar orbit altitude h = 820 km period P = 101 min inclination i = 98.6º

Sun-synchronous stays over terminator

CVZ ~ 54° wide -18º < Decl. < +36º stars visible for up to 8 wks

Ground station network Toronto, Vancouver, Vienna

MOST at a glance

MOST

orbit normal vector

to Sun

CVZ = Continuous Viewing Zone

Orbit

Lightcurve Model for HD 209458b

● Relative depths transit: 2% eclipse: 0.005%

● Duration 3 hours

● Phase changes of planet

Phase

Rela

tive F

lux

Eclipse Transit

The Lightcurve from MOST

45 days

0.03 mag

● 2004 data : 14 days, 4 orbital cycles● 2005 data : 45 days, 12 orbital cycles

● duty cycle : ~90%● 473 896 observations● 3 mmag point-to-point precision

2005 observations, 40 minute binned data

Albedo Results

● Best fit parameters: Albedo : 0.07 0.05 stellar radius : 1.346 0.005 RJup

● Other Parameters: stellar mass: 1.101 Msun inclination: 86.929 period : 3.52... days see Knutson et al. 2006

Geometric Albedo

Radiu

s (J

upit

er)

1,2,3 sigmaerror contours

Rowe et al. (in prep)

0.1 mag

0.02 mag

0.8 mmag

Atmospheres

MOST bandpass

Geom

etr

ic A

lbed

o● HD 209458b is darker than Jupiter● Rule out class V planet with bright reflection silicon clouds

Marley et al. 1999

HD 209458b AlbedosHD 209458b Albedos

New upperlimit on Ag

Rowe et al.(2006)(Rowe et al. 2007)

Models Constraints

2004 1 sigma limit – or - ~2005 3 sigma limit

Spitzer Limit

Different atmospheres

blackbody

model

Rowe et al. 2006Rowe et al. (in prep)

best fit

Equili

bri

um

Tem

pera

ture

Direct Spectrophotometry

Proposed NASA Mission

• Nulling coronograph

• Can image Jupiter-like

planets in Earth-like orbits

Direct Spectrophotometry

• Could observe changing

cloud cover and atmospheric

conditions on gas giant

planets with highly eccentric

orbits, like HD 168443.

• Very exciting unique

opportunity to study rates for

photochemistry & forcing.

Some of the Hot Jupiters do not match wellmodels based on Jupiter & Saturn:

More diversity than expected ?...

Ga

udi

(2

005

) &

C

ha

rbo

nn

eau

et a

l (20

06)

w

Bo

den

heim

er

et a

l.(2

003

),L

aug

hlin

et a

l. (2

005

) m

od

els;

and

Bur

row

s e

t al.

(200

3)