extending constructive solid geometry to … csgdominant...

34
Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion Extending Constructive Solid Geometry to Projections and Parametric Objects George Tzoumas joint work with D. Michelucci and S. Foufou CNRS UMR 5158, LE2I, University of Burgundy, France TMCE 2014 May 19–23, 2014, Budapest, Hungary Extending CSG to Projections and Parametric Objects G. Tzoumas * 1/27

Upload: phungphuc

Post on 16-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Extending Constructive Solid Geometry toProjections and Parametric Objects

George Tzoumas

joint work with D. Michelucci and S. Foufou

CNRS UMR 5158, LE2I, University of Burgundy, France

TMCE 2014May 19–23, 2014, Budapest, Hungary

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 1/27

Page 2: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Constructive Solid Geometry

Boolean constructions via set operators:I quantifier-free boolean formula

I atoms P < 0, P = 0, P ∈ PI operators ¬,∨,∧ for complement Ac , ∪, ∩I difference A− B = A ∩ Bc , De Morgan. . .

circle parabola

CSG-tree representation

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 2/27

Page 3: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Motivation

Unified representation

I CSG primitives (boolean formulas)

I Projections (e.g. parametric solids)

I Minkowski Sums

I Extrusions or Sweeps

Basic functionality

I Test if set is empty. Force a set to be non-empty

I Compute topology (simplicial complex homotopy equiv.)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 3/27

Page 4: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Motivation

Unified representation

I CSG primitives (boolean formulas)

I Projections (e.g. parametric solids)

I Minkowski Sums

I Extrusions or Sweeps

Basic functionality

I Test if set is empty. Force a set to be non-empty

I Compute topology (simplicial complex homotopy equiv.)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 3/27

Page 5: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Previous work (list non-exhaustive)

Topological propertiesI semi-algebraic sets

I Cylindrical Algebraic Decomposition [Collins, 1975]

I semi-algebraic subsets homeomorphic to open boxes

I Interval Arithmetic [Delanoue et al, 2006]

I simplicial complex homotopy equivalent

I implicit surfacesI Interval Analysis & Morse Theory [Hart et al, 1997]

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 4/27

Page 6: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Previous work (list non-exhaustive)

Topological propertiesI semi-algebraic sets

I Cylindrical Algebraic Decomposition [Collins, 1975]

I semi-algebraic subsets homeomorphic to open boxes

I Interval Arithmetic [Delanoue et al, 2006]

I simplicial complex homotopy equivalent

I implicit surfacesI Interval Analysis & Morse Theory [Hart et al, 1997]

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 4/27

Page 7: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Previous work (list non-exhaustive)

Topological propertiesI semi-algebraic sets

I Cylindrical Algebraic Decomposition [Collins, 1975]

I semi-algebraic subsets homeomorphic to open boxes

I Interval Arithmetic [Delanoue et al, 2006]

I simplicial complex homotopy equivalent

I implicit surfacesI Interval Analysis & Morse Theory [Hart et al, 1997]

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 4/27

Page 8: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Primitives

Assume F (x , y) ≤ 0 (e.g. x2 + y2 − 1 ≤ 0)

I F (x , y) < 0 → points “inside”

I F (x , y) = 0 → points on the boundary

I F (x , y) > 0 → points “outside”

x : [. . .]y : [. . .]

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 5/27

Page 9: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Primitives“convert” inequality F (x , y) ≤ 0 to equality by adding a slack variable:

F (x , y)− s = 0, s ∈ (−∞, 0]

F (x , y) ≤ 0 −→ f (x , y ; s) = 0

I s < 0 → points “inside”

I s = 0 → points on the boundary

I s > 0 → points “outside”

I s : characteristic variable of set A

current newx : [. . .] s : [a, b]y : [. . .]...

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 6/27

Page 10: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Complement

GivenA : f (x; s) = 0

We obtain¬A : f (x;−s) = 0

Remark

complement still represented by points from the manifold

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 7/27

Page 11: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Disjunctive Normal Form

Given primitives A,B and expressions P,Qi

I A and ¬A are in DNF

I A ∪ B and A ∩ B are in DNF

I ¬(Q1 ∪ Q2) = ¬Q1 ∩ ¬Q2

I ¬(Q1 ∩ Q2) = ¬Q1 ∪ ¬Q2

I P ∩ (Q1∪Q2∪ . . .∪Qn) = (P ∩Q1)∪ (P ∩Q2)∪ . . .∪ (P ∩Qn)

projection distributes over union

π(Q1 ∪ Q2 ∪ . . . ∪ Qn) = π(Q1) ∪ π(Q2) ∪ . . . ∪ π(Qn)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 8/27

Page 12: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Disjunctive Normal Form

Given primitives A,B and expressions P,Qi

I A and ¬A are in DNF

I A ∪ B and A ∩ B are in DNF

I ¬(Q1 ∪ Q2) = ¬Q1 ∩ ¬Q2

I ¬(Q1 ∩ Q2) = ¬Q1 ∪ ¬Q2

I P ∩ (Q1∪Q2∪ . . .∪Qn) = (P ∩Q1)∪ (P ∩Q2)∪ . . .∪ (P ∩Qn)

projection distributes over union

π(Q1 ∪ Q2 ∪ . . . ∪ Qn) = π(Q1) ∪ π(Q2) ∪ . . . ∪ π(Qn)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 8/27

Page 13: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Union

P = A1 ∪ . . . ∪ An

Consider each primitive separately:

A1 : f1(x; s1)

A2 : f2(x; s2)...

An : fn(x; sn)

Remark

x may not be uniquely associated with a primitive

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 9/27

Page 14: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Intersection

P = A1 ∩ . . . ∩ An

Problem

x should be uniquely associated with a primitive

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 10/27

Page 15: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Intersection as union of disjoint sets (Dominant Set)A dominates B: A|B

I x ∈ A ∩ B

I value of A ≥ value of B

A ∩ B = A|B ∪ B|A (max)

A

B

A|B

B|A

A|B1, . . . ,Bn := x ∈ Rd : 0 ≥ sA ≥ sBi

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 11/27

Page 16: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Properties of dominant sets

A ∩ B = A|B ∪ B|A(A|B)|C = A|B,C

A|(B|C ) ∪ A|(C |B) = A|B,CA ∩ B ∩ C = (A|B,C ) ∪ (B|C ,A) ∪ (C |A,B)

¬(A|B) = ¬A ∪ ¬B ∪ B|A

sA

sB

0 ≥ sA ≥ sB

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 12/27

Page 17: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

ProjectionA : f (x , y , z ; s) = 0

πz(A) =

∃ z :f (x , y , z ; s) = 0s is minimal

Lagrangian: (f (x , y , z ; s) = x2 + y2 + z2 − 1− s)

L : s + λf (x , y , z ; s) (works, but ugly!)

(3×3) :

L′λ : f (x , y , z ; s) = 0L′s : 1− λ = 0 ⇒ λ = 1

L′z : λ∂f (x,y ,z;s)∂z = 0 ⇒ 2z = 0

s = x2 + y2 − 1λ = 1z = 0

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 13/27

Page 18: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

ProjectionA : f (x , y , z ; s) = 0

πz(A) =

∃ z :f (x , y , z ; s) = 0s is minimal

Lagrangian: (f (x , y , z ; s) = x2 + y2 + z2 − 1− s)

L : s + λf (x , y , z ; s) (works, but ugly!)

(3×3) :

L′λ : f (x , y , z ; s) = 0L′s : 1− λ = 0 ⇒ λ = 1

L′z : λ∂f (x,y ,z;s)∂z = 0 ⇒ 2z = 0

s = x2 + y2 − 1λ = 1z = 0

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 13/27

Page 19: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Projection

Theorem

Let A : f (x; s) be a geometric primitive. When projecting down k dimen-sions (eliminating x1 . . . xk), the projection can be specified by:

πk(A) −→ ∂f

∂x1=

∂f

∂x2= . . . =

∂f

∂xk= 0

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 14/27

Page 20: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Projection (revisited)

(2× 2) :

{f (x , y , z ; s) = 0∂f (x,y ,z;s)

∂z = 0⇒{

s = x2 + y2 − 1z = 0

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 15/27

Page 21: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Join Set

Primitives of more than one equation

A ./ B := x ∈ Rd : sA = sB ∧ sA ≤ 0

fA(x; sA) = 0fB(x; sB) = 0sA − sB = 0

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 16/27

Page 22: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Join Set ProjectionRecall that we minimize s wrt projected variables xi . . .

I ./ → constraint (reduces dim.)

I even more constraints → Jacobian

Lemma

Let A : f0(x; s) and Bi : fi (x; s), i = 1 . . . n geometric primitives. Then

πk(A ./ B1 ./ · · · ./ Bn)→{

∅, k ≤ nJi0i1...in(f0, f1, . . . , fn) = 0, k > n

,

where 1 ≤ i0 < i1 < . . . < in ≤ k

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 17/27

Page 23: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Dominant Set Projection

A

B

A|B

B|A

Theorem

πk(A|B) = πk(A)|B ∪ πk(A ./ B)

Constrained optimization problem. Critical value of s:

I inside primitive

I boundary conditions (joins)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 18/27

Page 24: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Dominant Set Projection (generalized)

Theorem

πk(A|[Bm]1:n) =

πk(A)|[Bm]1:n⋃ni=1 πk(A ./ Bi )|[Bm]1:nm 6=i⋃ni ,j=1i<j

πk(A ./ Bi ./ Bj)|[Bm]1:nm 6=i ,m 6=j⋃ · · ·⋃πk(A ./ B1 ./ · · · ./ Bn)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 19/27

Page 25: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Projection of Intersection

Basic transformation

π(A ∩ B) = π(A)|B ∪ π(B)|A ∪ π(A ./ B)

I contributing points from each primitive (critical points of s)

I contributing points from joint (boundary condition)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 20/27

Page 26: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Intersection of projection of intersections

π(E1 ∩ E2) ∩ π(E1 ∩ E3)

= [π(E1|E2) ∪ π(E2|E1)] ∩ [π(E1|E3) ∪ π(E3|E1)] A ∩ B = A|B ∪ B|A= [π(E1|E2) ∩ π(E1|E3)] ∪ [π(E1|E2) ∩ π(E3|E1)]∪ (A ∪ B) ∩ (C ∪ D)→

[π(E2|E1) ∩ π(E1|E3)] ∪ [π(E2|E1) ∩ π(E3|E1)] DNF= [π(E1)|E2 ∪ E1 ./ E2] ∩ [π(E1)|E3 ∪ E1 ./ E3] ∪ · · · π(A|B) == [π(E1)|E2 ∩ π(E1)|E3] ∪ · · · π(A)|B ∪ 6 π(A ./ B)= [π(E1)|E2, π(E1)|E3)] ∪ [π(E1)|E3, π(E1)|E2] ∪ · · ·=

⋃18i=1 Si

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 21/27

Page 27: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Intersection of projection of intersections

π(E1 ∩ E2) ∩ π(E1 ∩ E3)

set contributing set formula

S1 π(E1)|E2, π(E1)|E3

S2 π(E1)|E3, π(E1)|E2

S3 π(E1) π(E1)|E2,E1 ./ E3

S4 π(E1)|E3,E1 ./ E2

S5 π(E1)|E2, π(E3)|E1

S6 π(E1)|E3, π(E2)|E1

S7 π(E2)|E1, π(E1)|E3

S8 π(E2) π(E2)|E1,E1 ./ E3

S9 π(E2)|E1, π(E3)|E1

S10 π(E3)|E1, π(E1)|E2

S11 π(E3) π(E3)|E1,E1 ./ E2

S12 π(E3)|E1, π(E2)|E1

S13 E1 ./ E2|(π(E1)|E3)S14 E1 ./ E2 E1 ./ E2|E1 ./ E3

S15 E1 ./ E2|(π(E3)|E1)S16 E1 ./ E3|(π(E1)|E2)S17 E1 ./ E3 E1 ./ E3|E1 ./ E2

S18 E1 ./ E3|(π(E2)|E1)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 22/27

Page 28: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Parametric Disk

Via projections: project (eliminate) parameters

X : x − r cos θ = 0Y : y − r sin θ = 0R : r2 − 1 = s

,θ ∈ [−π, π)r ∈ [0, 1]

6 πr ,θ(R ./ X ./ Y )

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 23/27

Page 29: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Parametric Annulus

F : (x − cos t)2 + (y − sin t)2 − 1

4− s = 0 πt(F )→ ∂F

∂t= 0

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 24/27

Page 30: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Python/SAGE

x,y,z = SR.var(’x,y,z’)

A=PrimitiveSet((x− 34)2 +(y− 3

4)2 +(z− 3

4)2 < 2

3,

{x:RIF(-2,2), y:RIF(-2,2),z:RIF(-2,2)})B=PrimitiveSet((x− 1

4)2 +(y − 1

4)2 +(z− 1

4)2 < 1,

{x:RIF(-2,2), y:RIF(-2,2),z:RIF(-2,2)})G=ProjectionSet(IntersectionSet(A,B),set([z]))

Quimper [Chabert-Jaulin’09]

1.

116

(4z − 3)2 + 116

(4y − 3)2+

+ 116

(4x − 3)2 − s0 − 23

= 0

116

(4z − 1)2 + 116

(4y − 1)2+

+ 116

(4x − 1)2 − s1 − 1 = 0

2z − 32= 0, s0 − s1 ≥ 0

2.

116

(4z − 3)2 + 116

(4y − 3)2+

+ 116

(4x − 3)2 − s0 − 23

= 0

116

(4z − 1)2 + 116

(4y − 1)2+

+ 116

(4x − 1)2 − s1 − 1 = 0

s0 − s1 = 0

3.

116

(4z − 3)2 + 116

(4y − 3)2+

+ 116

(4x − 3)2 − s0 − 23

= 0

116

(4z − 1)2 + 116

(4y − 1)2+

+ 116

(4x − 1)2 − s1 − 1 = 0

2z − 12= 0, s1 − s0 ≥ 0

4. Identical to 2.

π(A ∩ B) = π(A)|B ∪ π(A ./ B) ∪ π(B)|A ∪ π(B ./ A)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 25/27

Page 31: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Simplicial complex homotopy equivalent[Delanoue et al, 2006] extension for more types of sets

I projections, Minkowski sums

I star test

interior point s is a star

I if any segment from s lies inside

I if tangent planes at the boundary leave s on the same side(do not pass through!)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 26/27

Page 32: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Simplicial complex homotopy equivalent[Delanoue et al, 2006] extension for more types of sets

I projections, Minkowski sums

I star test

interior point s is a star

I if any segment from s lies inside

I if tangent planes at the boundary leave s on the same side(do not pass through!)

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 26/27

Page 33: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Work in progress/Future work

I Star test(boundary, gradient?)

I other constructions(medial axis)

I Minkowski Sums(characteristic variable?)

Thank you!

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 27/27

Page 34: Extending Constructive Solid Geometry to … CSGDominant SetsProjectionsExamplesImplementationConclusion Extending Constructive Solid Geometry to Projections and Parametric Objects

Introduction Basic CSG Dominant Sets Projections Examples Implementation Conclusion

Work in progress/Future work

I Star test(boundary, gradient?)

I other constructions(medial axis)

I Minkowski Sums(characteristic variable?)

Thank you!

Extending CSG to Projections and Parametric Objects G. Tzoumas ∗ 27/27