extended finite strip method for prismatic plate and shell …

166
tA^<^ .-e^"^ EXTENDED FINITE STRIP METHOD FOR PRISMATIC « PLATE AND SHELL STRUCTURES by GHULAM HUSAIN SIDDIQI, B.E., M.S. in C.E. A DISSERTATION IN CIVIL ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved May, 1971

Upload: others

Post on 03-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

tA^<^ .-e^"^

EXTENDED FINITE STRIP METHOD FOR PRISMATIC «

PLATE AND SHELL STRUCTURES

by

GHULAM HUSAIN SIDDIQI, B.E., M.S. in C.E.

A DISSERTATION

IN

CIVIL ENGINEERING

Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

May, 1971

Page 2: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

7 3 \91I

ACKNOWLEDGMENTS

I am deeply indebted to Dr. C.V. Girija Vallabhan

for his guidance and counseling during this investi­

gation. I am grateful to Dr. Kishor C. Mehta, Dr. James

R. Mcdonald, Professor Albert J. Sanger and Dr. Donald

J. Helmers for their advice and helpful criticisms. I

am also grateful to Mr. Gary A. Lance and Mr. Sherrill

Alexander for -their assistance in drafting work.

11

Page 3: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ii

LIST OF TABLES

LIST OF FIGURES

GLOSSARY OF SYMBOLS

I. INTRODUCTION 1

Review of Literature 2

Finite Strip Method 4

The Extended Finite Strip Method . . . . 4

Comparison with Finite Eleiaent Method . . 7

Scope of this Study 7

II. EXTENDED FINITE STRIP METHOD 8

Introduction 8

Some Basic Theorems in Solid Mechanics . 9

Equilibrium Problem in a Continuous

Systems 14

Trial Solutions with Undetermined

Parameters 16

Ritz Method 19

Types of Structures 20

Geometry and Frames of Reference . . . . 22

Theory of Thin Plates 24

Rib Elements 2 8

Philosophy of the Extended Finite Strip

Method 30

iii

Page 4: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

IV

Page

Polynomials 31

Base Functions 37

III. STIFFNESS MATRIX EQUATION 45

Introduction 45

Stiffness Matrix Equation of Membrane Action 48

Stiffness Matrix Equation of Bending Action 54

Combined Stiffness Matrix Equation . . . 61

Rib Stiffness Matrix 62

Transformation to Global Coordinates . . 6 4

Overall Stiffness Matrix 66

Nodal Line Forces 66

Solution by Gaussian Elimination . . . . 68

IV. ANALYSIS OF PROBLEMS WITH KNOWN SOLUTIONS AND CONVERGENCE TEST 69

Introduction 69

The Displacement Contributions of the

Base Functions 70

Plate Structures under Bending Action . . 71

Convergence Test 74

Structures under Combined Membrane

and Bending Action 77

Rib Attachment 7 8

V. APPLICATION OF THE EXTENDED FINITE STRIP METHOD 84 Rectangular Plate with Overhang 8 4

Page 5: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

V

Page

A Folded Plate Structure 86

A Circular Cylindrical Shell with Canopy . 86

A Continuous Plate with Settling Support . 102

Nondimensional Coefficients 10 2

VI, CONCLUSIONS, OBSERVATIONS AND RECOMMENDATIONS 106

LIST OF REFERENCES 110

APPENDIX 113

A. Stiffness, Force and Transformation Matrices 114

B. Nondimensional Coefficients for Rectangular Plates 130

Page 6: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

LIST OF TABLES

Page

1. Base Functions ip and fi for Symmetric Membrane Action 41

2. Base Functions ip and n for Antisymmetric Membrane Action 41

3. Base Functions for Bending Action 44

4. Base Functions for Hinged-Clamped Condition , 4 4

5. Base Functions for Clamped-Clamped

Condition 44

6. Values of a in Plate 1 73

7. Values of a , 6 and B at Points 1 and 2 X y

m Plate 2 73 8. Values of a at Points 1 and 2 in Plate 3 . . 75 9. Values of a at Points 1 and 2 in Plate 4 . . 75

10. Corner Supported Plate Carr'ying Uniformly Distributed Load. Convergence Test Data at Center Point 76

11. Plate Hinged Along Opposite Edges (Free Along Other Two) Carrying Uniformly Distributed Load. Converqen-ce Test Data at Center Point 77

VI

Page 7: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

LIST OF FIGURES

Page

1. Pifismatic Plate and Shell Structures and

Their Geometry 21

2. Global and Elemental Frames of Reference . . 23

3. Ribs Along x-edges of Strips 2 3

4. (a) Symmetrically Displaced Shape of Membrane Action 39

(b) Antisymmetrically Displaced Shape of Membrane Action . . . . . . . . . . 39

5. (a) Symmetrically Displaced Shape of Bending Action 4 3

(b) Antisymmetrically Displaced Shape of Bending Action 4 3

6. Transformation of Coordinates 66

7. Plate Structures of Different Bomidary Conditions 72

8. Cylindrical Shell Structure 79

9. (a) Plots of Stress Functions of the Cylindrical Shell 80

(b) Plots of Stress Functions of the

Cylindrical Shell 81

10. Square Hinged Plate with Elastic Ribs . . . 82

11. Isotropic Rectangular Plate with Overhang . 85

12. Folded Plate Structure with Elastic End-Ribs and North Light Window Details 87

13. (a) Displaced Shapes of the Folded Plate Structure 8 8

(b) Transverse Stress Resultant T (lb/ft)

Along Mid Section of Plates 89

Vll

Page 8: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Vlll

Page

(c) Longitudinal Stress Resultant T Y

(lb/ft) Along Mid Section of Plates . . 90

(d) Membrane Shear T in Plates Along

End Section 91

(e) Transverse Moment M (Ib-ft/ft) Along

Mid Section of Plates 92

(f) Longitudinal Moment M (Ib-ft/ft)

Along Mid Section of Plates 9 3

(g) Twisting Moment M (Ib-ft/ft) in xy

Plates Along Support Section 9 4

14. (a) Axial Force P (lb) in Rib Members . . 9 5

(b) Shear Force V (lb) in Rib Members . . 96 z

(c) Moment M in Rib Members 9 7

15. Cylindrical Shell Structure with Canopy . . . 98

16. (a) Displaced Shape of Shell Along Mid

and End Sections 99 (b) Stress Resultants in Shell Along

Mid Section 100 (c) Moment Resultants in Shell Along

Mid Section 101 17. Continuous Plate Subjected to Support

Settlement 103

Page 9: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

GLOSSARY OF SYMBOLS

A = Area of rib; amplitude of displace­ment.

a = Length of a structure and a strip

in y-direction.

a. = Flexibility constant at point-i.

a. . , [A] = Flexibility influence coefficient; matrix of these coefficients.

B = Overall width of a structure in

x-direction.

b = Width of a strip element.

B. = A linear differential operator at point-i on the boundary.

L.BJ = Matrix of transformation from gener­alized displacements to strains and curvatures.

c. = Undetermined parameters.

LC I = Matrix for transformation from gen­eralized displacements to displace­ments .

D = Domain.

d. = Displacement of a point-i.

{d} = Column matrix of displacements.

°x' ^y' °xy' ^1' ' = Plate rigidities.

[D] = Matrix of plate rigidities.

E , E , E, = Young's Moduli of elasticity. X y X

E , E , E, = Elastic constants of an orthotropic "" y ^ body.

[EJ = Matrix of elastic constants.

ix

Page 10: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

x

f = Force function in a domain.

{f} = Column vector of generalized forces referred to elemental coordinates.

{f} = Column vector of generalized forces

referred to global coordinates.

G = Shear modulus.

g. = Prescribed boundary conditions.

[G] = Matrix of force amplitudes.

{H} = Column vector of base functions.

I = Moment of inertia of rib about y-centroidal axis.

^i-; I [K] = Stiffness influence coefficients; matrix of these coefficients,

L = Distributed line loads applied transversely on a strip-

L = Amplitudes of L-loads in the function space.

L^_ = Linear differential operator of 2"" order upto 2m.

M , M , M = Moment resultants in x- and y-X' y' xy

P. 1

{P}

Qx '

q /

«y

q^ m

directions and twisting moment.

{M} = Column vector of moment resultants.

N, N , N = Nodal line force and its components

(N,)^ , (N ) = Amplitudes of N-forces in the X m ' z m £ j_ •

function space.

= Point load at point-i.

= Column vector of P-loads. = Shear resultants in x- and y-

directions.

= Distributed loads; amplitudes of these loads in the function space.

Page 11: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

XI

R = Residual of the governing equation.

r = Centroidal distance between a strip and a rib.

T , T , T = Stress resultants in x- and y-X V XV

- ^ directions and in xy-plane,

t = Thickness of a strip element.

t' = Depth of a rib element,

U = Strain energy.

V = Potential energy of loads. u, V, w = Displacements of a point on the

middle surface in x- , y- and z-directions respectively.

u, V, w = Displacements of a point on the middle surface in x- , y- and z-directions respectively.

u', v", w' = Displacements of a point in the plate in x- , y- and z-directions.

X, Y; X^, Y^ = Body forces in x- and y-directions; amplitudes in the function space. m m

X, y, z = Coordinates of elemental frame of reference.

X, y, z" = Coordinates of global frame of reference.

a m Shape factors and nondimensional coefficients.

3 ; 3 , 3 , 3 = Shape factors; nondimensional y ^y coefficients.

e , e , Y = Strains in x- and y-directions and y ^y shear strain in xy-plane.

{e} = Column vector of strains.

a , a , T = Stresses in x- and y-directions ^ ^y and shear stress in xy-plane.

Page 12: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Xll

{a} = Column vector of stresses,

V # V = Poisson's ratios in x- and y-direc-X' y tions,

6 = Displacement function in a domain,

{6} = Colximn vector of generalized dis-

lacements.

6 = Rotation about y-axis.

^^, ^^ = Base functions of y, m m • -

(f) = Potential energy functional; angle between elemental and global frames of references.

(x) = Column vector of curvatures.

Page 13: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

CHAPTER I

INTRODUCTION

Prismatic plate and shell structures are widely used

in Civil Engineering practice. The plates when formed into

ribbed slabs, or assembled into box girders have a wide

application to roofs, floors, canopies and bridges. Because

of their economy, folded plate and shell structures are used

extensively in industrial and commercial buildings.

The extended finite strip method developed in this

study presents an integrated approach for analysis of pris­

matic plate and shell structures. This method has the capa­

bility of analyzing the structures which: a) displace along

any or all the edges, b) are carried on integrally built-in

columns or supported on corners or along the edges, c) employ

elastic rib or stiffeners along the edges, d) carry any

type of loads-distributed, live or concentrated—at any

location, e) employ orthotropic material, f) employ details

such as changes of width and thickness from one strip to the

other, g) use special features such as north light windows

over the span lengths, and h) are subjected to differential

settlement at their support. There are several methods and

some graphical and tabular aids of analysis available, but

they have limitations in analyzing structures defined above.

1

Page 14: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Review of Literature

A review of the literature available on the subject,

in the form of methods and techniques, tables and charts

that can be directly applied to the analysis of a prismatic

plate or shell structure, is presented here. The scope and

limitations of these methods are also assessed.

On the subject of thin plates in bending Timoshenko

[1], Nadai [2], Margurre et al. [3] and ACI-Standard [4]

have tables and charts for nondimensional coefficients

which can be used directly for the analysis of a plate. The

information presented is for isotropic material properties

except in Ref. [1] where orthotropic properties are con­

sidered. However, plates with complicated boundary condi­

tions are not considered and the information provided is

limited.

Folded Plate Structure

Many methods for analysis of folded plates have been

developed; a review of this information is found in the ASCE

Task Committee report [5] where a modified version of

Gaafar's method is recommended for design purposes. This

method is difficult to program and is not applicable to

small span-width ratios [6]. The elasticity method origi­

nated by Goldberg and Leve [7] was applied by DeFries-Skene

et al. [8] as a stiffness approach, and was presented in

Page 15: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Refs, [9], [10] and [11] as a finite difference technique.

The rectangular finite element technique used by Zienkiewicz

and Cheung [12] was applied to the study of the folded plate

behavior by Rockey and Evan [13]. Cheung introduced the

finite strip method [15] and later applied this method to

analysis of folded plates [6], All these methods assume the

end-diaphragms to be rigid in their plane and free to rotate

normal to their plane; Williamson [14] has modified the

Goldberg et al. method [11J to analyze the folded plates

supported by flexible end-diaphragms. The finite element

and finite strip methods, are the only ones capable of ana­

lyzing folded plates with orthotropic properties.

Prismatic Shell Structure

In references [16], [17], [18] and [19] tables are

furnished that permit analysis of uniformly loaded, simply

supported, i.e., with rigid end stiffeners, single barrel

shells of uniform circular cross-section and made from iso­

tropic, homogeneous materials. All these methods of analy­

sis require a large amount of computational effort. In

Ref. [20] a computer method is presented for analyzing

cylindrical shells of various cross-sections by approximat­

ing the section by a series of circular segments. In the

field of finite elements Clough et al. [21] and several

others have developed computer methods for analysis of these

Page 16: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

structures while Mircea Scare [22] has expounded finite dif­

ference techniques toward this end.

Finite Strip Method

The finite strip method was developed by Cheung [15].

This method divides the domain of a plate structure into a

number of rectangular strips. The displacements of these

strips are modeled by the product of two exclusive functions

of the coordinates. One of these functions is a polynomial

expressed in terms of undetermined parameters while the

other is a series of base functions which a priori satisfy

the boundary conditions in that direction. The stiffness

matrix equation of a strip is developed by the Ritz method

in which the potential energy functional of the strip is

minimized with respect to the undetermined parameters.

Because of the base functions used the finite strip

method [15] has limited application to the plate and shell

structures. Any plate or shell structure which is subject

to translational displacement along the transverse edges of

the strips cannot be analyzed by this method.

Extended Finite Strip Method

The method proposed in this study is an extension of

the finite strip method introduced by Cheung [15] and will

be referred to as the Extended Finite Strip (EFS) Method.

Page 17: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

The above mentioned restrictions on the finite strip method

are removed. In addition rib elements are introduced along

the strip edges to generalize the method's application to

prismatic plate and shell structures.

The method, briefly speaking, divides the structure

into a finite number of strips along the length of the struc­

ture; each strip element, therefore, is bounded by two nodal

lines. The membrane and bending actions of a strip are

plane stress actions. For thin plates of linear elastic and

orthotropic materials, subjected to small deflections, these

actions are independent and superposition is valid. A nodal

line has four degrees of freedom: the displacements along

longitudinal and transverse directions (y- and x-directions)

of a strip pertaining to membrane action, displacement

perpendicular to the plane (along z-direction) and rotation

about the longitudinal axis of the strip pertaining to

bending action. The governing differential equations of

membrane and bending action are written in terms of these

displacements which are functions of the x- and y-coordinates

The displacement functions in the governing equations are

replaced by the product of two exclusive functions of x and

y to obtain a "trial solution." The functions of y are a

set of linearly independent base functions spaning the

domain in y-direction and satisfying the essential boundary

conditions (including displacement along the edges parallel

to x-direction). The functions of x are polynomials

Page 18: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

developed in terms of amplitudes of the base functions for

each degree of freedom permitted at the nodal line. These

amplitudes form the undetermined parameters of the trial

solution. The "best" solution is obtained by the Ritz

method in which the potential energy functional of the strip

is minimized with respect to the undetermined parameters.

The process of minimizing the functional yields a discrete

analogue of the governing equations of the equilibrium,

i.e., a set of simultaneous equations of equilibrium in

terms of undetermined parameters. This set of equations is

the stiffness matrix equation of the strip.

By the usual procedure of transformation, the stiff­

ness matrix equations of the individual strips are trans­

formed to global coordinates and assembled to obtain the

overall stiffness matrix equation. The solution of this

matrix equation is obtained using Gauss elimination, which

yields values of the undetermined parameters.

The displacements, stress resultants and the moment

resultants at a point in the strip are functions of the

undetermined parameters of its bounding nodal lines. The

displacements, stress and moment resultants are, therefore,

evaluated using these functions.

Page 19: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Comparison with Finite Element Method

The finite element method, which is one of the most

powerful tools of stress analysis available, may be used to

analyze the prismatic plate and shell structures considered

in this study, even when they have cut-outs and local varia­

tions in thickness. The extended finite strip method is not

applicable to structures of this type. However, the method

has certain advantages over the finite element method:

smaller number of unknowns [15] , and the displacements in

X- and z-directions are the only ones to undergo transforma­

tion so that their compatibility is not affected by this

transformation.

Scope of This Study

Only the prismatic plate and shell structures which

have complete freedom of rotation about the transverse edges

of a strip are considered in this study. However, the means

to develop stiffness matrix equations of structures, which

are clamped against these rotations at one or both edges,

is indicated.

Nondimensional coefficients for deflection, stress

and moment resultants of certain rectangular plate structures

are furnished in the form of charts and tables.

Page 20: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

CHAPTER II

EXTENDED FINITE STRIP METHOD

Introduction

An explanation of the philosophy of the extended

finite strip method and the development of its basic prin­

ciples is presented in this chapter. To insure completeness

of this discussion some basic principles and definitions and

some consequent deductions in solid mechanics [23, 24] are

repeated here. The solution of equilibrium problems by

trial solutions using undetermined parameters is discussed

briefly. One of these, the Ritz method, which is based on

the stationary functional approach, is adopted for this

study. The types of structures that can be analyzed by this

method, their geometry and the frames of reference adopted

are defined. A brief review of the theory of thin plates,

with rib elements attached along the transverse edges, is

made.

Finally the basic principles of the extended finite

strip method are expounded and the development of function

space to represent the displacement and stress and moment

resultants in the domain of a finite strip is considered.

8

Page 21: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Some Basic Theorems in Solid Mechanics

The whole edifice of linear elasticity is built on

the concept of a linear elastic solid. The definition of

such a solid is based on the following three hypotheses

[23]:

Hypothesis I. The body is continuous and remains continuous

under the action of external forces. This means that within

a solid the neighboring points remain as neighbors under any

loading conditions. In other words no holes or cracks open

up in the interior of the body under the action of external

loads. Mathematically the hypothesis implies that displace­

ment at a point, expressed as a function of the coordinates

and the first derivative of the function at a point, remain,

continuous before and after the application of the external

loads.

Hypothesis II. If a body in static equilibrium is acted

upon by a set of forces—P , P , . . . , P^^—the displace­

ment, d, of an arbitrary point within the body in an arbi­

trary direction is given by

n d = E a. P. i = 1, . . . , n (2.1)

1 1 1

where a , a , . , , , a are constants independent of magni-1 2 n

tudes of P , P , . , , , P (Hooke's Law). The constants, 1 2 n

however, depend upon the location of the point at which the

Page 22: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

10

displacement is measured, and upon the location and direc­

tion of application of an individual force.

Hypothesis III, There exists a unique unstressed state of

the body to which the body returns whenever all the external

loads are removed. A body that satifies the above three

hypotheses is said to be a linear elastic solid.

A number of principles can be deduced, from these

three hypotheses. Some important deductions are mentioned

here without establishing proof for them. Proofs are given

by Fung [23] ,

Principle of superposition. By a combination of Hypotheses

II and III it can be shown that Equation (2.1) is valid

irrespective of the order in which P.(i=l,n) are applied.

A constant a. depends upon load P. only and is independent

of the rest of the loads in the set. This is the principle

of superposition of load-deflection relationship.

Uniqueness of total work done by the forces. -The displace­

ment at the point of application of a force measured along

its direction is defined as the corresponding displacement.

The total work done by a set of loads in going through

their corresponding displacements is unique irrespective of

the order of application of these loads.

Page 23: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

11

Maxwell's reciprocal relation. The corresponding displace­

ment at point i due to a unit load at point j, in a body, is

denoted as a^. and is called the flexibility influence co­

efficient. The total displacement at point i, due to a set

of loads is

d^ = Za^j P. j = 1, . . . , n (2.2)

Maxwell's reciprocal relation states that the flexibility

influence coefficients for corresponding forces and dis­

placements are symmetric. In symbolic form

a^. = aji (2.3)

Betti-Rayleigh reciprocal relation. This theorem which is a

corollary of Maxwell's reciprocal theorem, states that the

work done by a set of forces in going through corresponding

displacements produced by a second set of forces is equal to

the work done by the second set of forces in going through

the corresponding displacements produced by the first set of

forces.

Strain energy. For a body going through an isothermal and

adiabatic deformation process, the work done by the external

forces is equal to the change in internal energy. If the

internal energy is reckoned as zero in the unstressed state

then the change in internal energy is called the strain

Page 24: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

12

energy stored. The strain energy U is given by the equation

U = 1/2 ZEa^j P^ Pj i,j = 1, . , , , n (2,4)

or in matrix notation

U = 1/2 {P}^ [a] {P} (2,4a)

where {P} denotes a column matrix of the P forces and [a]

denotes the square symmetric matrix formed by the influence

coefficients a.. , The superscript t to a matrix symbol

denotes its transpose. The strain energy in a linear elas­

tic solid is independent of the order of application of the

loads.

Positive definiteness of strain energy and uniqueness of

solution. For a linear elastic solid defined above there

exists a strain energy function U which is expressible in

terms of displacements d. For a solid body to have a

stable, natural state, such as the unstressed state of a

linear elastic solid, the strain energy function must be

positive definite; i.e., it must be non-negative, and zero

only in the natural state. The positive definiteness of U

implies that the determinant of matrix [a] is always posi­

tive. The inverse of the matrix [aj therefore exists, which

leads to the theorem of uniqueness of solution. This theo­

rem states that for a linear elastic solid there exists a

one-to-one correspondence between the elastic deformations

Page 25: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

13

and the forces acting on the body. A relation analgous to

Equation (2.2) may be written as

^i " ^ ij ^j j = 1, . . . , n (2.5)

where k.. are stiffness influence coefficients. Both [aJ

and [K] for the system are symmetric.

The strain energy U in terms of stiffness influence

coefficients is given by

U = 1/2 EE k..d.d. , i, j = 1, . . . , n (2.6)

or in matrix notation

U = I {d}^ [K] {d}, (2.6a)

where {d} is column matrix of displacements d. , and [K] is

a square symmetric matrix of the stiffness coefficients k..

Potential energy functional.--A potential energy functional,

^ , can be assigned to any geometrically compatible state of

the elastic system according to the formula:

$ = U-V (2.7)

where U is the strain energy of the system as already

defined and V is the potential energy of the prescribed

loads.

Page 26: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

14

Minimum Potential Energy Theorem.—This theorem is stated

here without proof. Of all admissable sets of displacements

satisfying ;the boundary conditions, the one which also

satisfies the equations of equilibrium is distinguished by

the minimum value of the potential energy functional. The

equations for determining the minimum.

^^ = E kijdj-P^ = 0 i,j = 1, . . . , n (2.8) 9di j

or E k^.d. = P^ i,j = 1, . . . , n , (2.8a)

are identical with the equilibrium conditions. The Minimum

Potential Energy Theorem leads to several approximate methods

of solution of complicated problems in elasticity and struc­

tural mechanics. The stiffness coefficients are the vehicles

through which this principle is established and Equation

(2.8a) automatically yields these coefficients.

Equilibrium Problem in a Continuous System

In the case of equilibrium problems in a continuous

system, the relations of Equation (2.8a), which are for a

discrete system, become a set of differential equations of

the type

L (6) = f in domain D . (2.9) 2m

Page 27: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

15

In physical problems in solid mechanics 6 is the dis­

placement function and f is the force function. A solution

to the equilibrium problem lies in determining a function

6 which satisfies Equation (2.9) and also meets the boundary

conditions,

B^ (6) = g^ i = 1, . . . , m (2.9a)

on the boundary of the domain D. The symbol L (6) operates

on function 6 and its ordinary and partial derivatives

up to order 2m. The symbol B. (6) operates on function

6 and its derivatives up to order 2m-l, which when evalu­

ated at each point i on the boundary, satisfy the prescribed

values g. . ^1

The boundary conditions of an equilibrium problem

are divided into two categories: the conditions which

satisfy geometric compatibility at the boundary, and the

conditions which satisfy the force balance conditions at

the boundary. The conditions of the first category are

called essential boundary conditions while the others are

called natural boundary conditions.

An equilibrium problem is said to be linear when its

governing equations and the boundary conditions are linear.

Page 28: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

16

Trial Solutions with Undetermined Parameters

There are several approximate procedures for the

solution of equilibrium problems in continuous systems. One

category of these methods utilizes trial solutions with

undetermined parameters [24]. In these methods trial solu­

tion in terms of undetermined parameters is selected. The

trial solution represents a whole family of admissible

approximations which simulate 6 within the domain and

satisfy the boundary conditions. Each of the various pro­

cedures has different criteria for picking out the "best"

approximation of the selected family of admissible functions.

For a linear equilibrium problem a trial solution

for 6 has the form

6 = Ec. y. i = 1, . . . , n (2.10)

where the ^. are known linearly independent functions in the

domain D satisfying the boundary conditions and the c^ are

the undetermined parameters. There are two basic criteria

for fixing c. . In one of these c are so chosen to make ^ 1 1

weighted averages of the equation residual vanish, and in

the other c. are so chosen as to give a stationary value to

the potential energy functional of the system. Application

of either criteria results in a set of n simultaneous

equations in c. . These methods, therefore, reduce an

Page 29: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

17

equilibrium problem in a continuous system to an approxi­

mately equivalent equilibrium problem in a discrete system

with n degrees of freedom.

Weighted Residual Methods

The trial solution of Equation (2.10) is selected to

satisfy both the essential and the natural boundary condi­

tions. The equation residual R in terms of the trial solu­

tions is

R = f-L (Ec.^.) i = 1, . . . , n (2.11) 2m 1 1

For the exact solution the residual is identically

zero. Within a trial family, however, a "good" approxima­

tion is one which renders R small. Any one of the following

four methods may be used to make the weighted averages of

R vanish.

Collocation.- -The residual is set equal to zero at n arbi­

trary points in the domain D . This technique results in n

simultaneous equations for determining c. .

Subdomain. The domain D is subdivided into n subdomains,

according to an assumed pattern. The integral of R over

each subdomain is then set equal to zero thus obtaining n

simultaneous equations for determining the c^ .

Page 30: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

18

Galerkin.—This method is based on the mathematical concept

that m^ and R are orthogonal over the domain D . Expressly

this condition is written as

•'D ""i RdD = 0 i = l , . . . , n (2.12)

whereby n simultaneous equations are obtained for determin­

ing the c. .

Least Squares.—According to this method the integral of the

square of R is minimized with respect to the undetermined

parameters c. to provide n simultaneous equations.

Be 1

: / . .2 R^dD = 0 i = 1, . . . , n . (2.13)

For a particular trial family which satisfies all

the boundary conditions these methods produce slightly dif­

ferent approximations. The Galerkin method yields results

that are superior to those obtained from the other methods

of this category. These methods may yield meaningless

results if the trial family satisfies only the essential

boundary conditions. In this regard these methods are

restrictive in their application to the equilibrium prob­

lems.

Page 31: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

19

Ritz Method

In this method a trial family is so chosen as to

satisfy the essential boundary conditions only. This trial

solution need'*not satisfy the natural boundary conditions.

The method consists of expressing the potential energy, $ ,

of the system in terms of the assumed trial solution of

Equation (10) and extremizing ^ with respect to the undeter­

mined parameters c. . Even if the assumed trial solution

violates the natural boundary conditions, the extremization

of the functional ^ ensures the "best" result out of the

assumed trial solution. This procedure provides n simul­

taneous equations for determining the c. . In matrix nota­

tion these equations are written as

[K] {C} - {f} = 0 (2.14)

or [K] {c} = {f} (2,14a)

where [K] is the stiffness matrix of the system, {c} is the

column matrix of undetermined parameters, and (f} is the

column matrix of "distributed forces," The undetermined

parameters determine the amplitude of displacements and the

degree of freedom of the system and, therefore, are recog­

nized as the generalized displacements. The force vector

{f} is to be expressed in the same function space. Equation

Page 32: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

20

(2,14a) is referred to as the stiffness matrix equation of

the system.

The Ritz method has the advantage over the weighted

residual methods in requiring satisfaction of only the essen­

tial boundary conditions by the trial solution. This helps

to simplify the selection of trial solution.

The value of $ for a true solution is the minimum so

that the value of $ obtained from a trial solution always

yields an upper bound to $ , The relative "goodness" of one

trial solution over another can, therefore, be judged by

smallness of the $ value. The superiority of the Ritz

method in this regard over the other methods is demonstrated

in literature [24].

Types of Structures

All the prismatic plate and shell structures, in

which the boundary conditions along two parallel edges can

a priori be satisfied by suitable base functions, are

amenable to solution by the extended finite strip method.

Such prismatic plate and shell structures are represented

by an assembly of flat strip elements as shown in Figure 1.

Figure 1(a) shows the variation in strip widths and thick­

nesses, and the types of loads that can be applied. The

structure of Figure 1(b) has stiffening ribs along edges

Page 33: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

21

Modal Lliie

t ^

o o x strip Element

(a) Plate Structure with Varying Plate Thickness and Different Loads.

North Light

Elastic

Strips of zero thickness with ribs

(b) Folded Plate Structure Columns and North Light

with Elastic End Ribs, Built-in

(c) Cylindrical Shell Structure

A QhplL Structures and their Geometry. Figure 1. Prismatic Plate and Shell Structur

Page 34: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

22

parallel to the x-axis and is supported by monolithically

built in columns.

Geometry and Reference Frames

Figure 2 shows a prismatic structure with two frames

of reference: the global and the elemental. The global

frame of reference is denoted by a bar over the letter.

The x-f y- and z- axes are oriented as shown in Figure 2.

Directions indicated are the positive directions of these

axes. The same triad is chosen for elemental frame of

reference also. The x- and y-axes in this frame are con­

tained in the plane of the strip element while the z-axis

is normal to this plane. The x-axis is oriented along the

edge where boundary conditions are a priori satisfied by the

base functions. The directions parallel to the x-axis and

y-axis are referred to as transverse direction and the

longitudinal direction respectively for both the structure

and a strip element. The y-axis in global and elemental

frames of reference always remain parallel to each other.

The dimensions denoted by a, b, and t in Figure 1(a)

are length, width an^ thickness of a strip element (along

X-, y- and z-axes) respectively. Translational displacements

parallel to x-, y- and z-axes of a point on the middle plane

of a strip are denoted by u, v and w respectively. The

Page 35: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

23

Figure 2 . Global and Elemental Frames of Reference

Nodal L ine- i

? (c) (d)

Figure 3 . Ribs along x-edges of StripJ

Page 36: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

24

rotational displacement about the y-axis of a point is

denoted by 0 .

Theory of Thin Plates

Because a strip element is considered to be a thin

orthotropic plate an outline of the theory of such a plate

is presented here. The equations for membrane and bending

displacements, the resulting strain and stress relations

and the consequent equations of stress and moment resultants

are also given here without derivation [1, 23]. For small

deflection theory and linear elastic material analyses

considering both membrane and bending actions are based on

Kirchhoff's hypothesis. This hypothesis states that every

straight line in the plate that was originally perpendicular

to the middle surface remains straight and perpendicular to

the deflected middle surface after the strain.

Application of Kirchhoff's hypothesis leads to the

following expressions for the displacements u', v' and w'

of a point (x,y,z) in a plate in terms of the displacements

u, V and w of the corresponding point (x,y,o) in the middle

surface

w' = w

u' = u - 1 ^ Z (2.15) 9x

V • = V - ^ Z

9y

Page 37: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

25

The strain components at a point are

3u' 8u a^w' „ X 8x

8v' ""y 3y

8x

8v 8y

8X-2

a ^ w ' 8y^ (2.16)

^ 8u' 8V' 3u 8V _ 3 w' 'xy 3y 3x ^ 3y 3x' 3x3y

To make this development general, the plate material

is considered to be orthotropic. Orthotropy is a paticular

case of anisotropy in which elastic properties of a material

in two mutually perpendicular directions are defined. | 1, 2 8]

The elastic properties of such a material in two dimensions

are completely defined by five constants out of which four

are independent. The elastic constants are E , E (Young's

moduli), V , V (Poisson's ratios), and G (shear modulus). X y

The constant v is dependent one and is given by

V E = V E = El X y y X ' (2.17)

The stress-strain relation of such a material is shown

to be

T.

xy

E. X 1 - v V

X y E

.1 1 - v V"

X y

0

1-v X

^ 1 - v

X

0

V y

V'

y

0

0

X

< e M2.18)

Y xy

Page 38: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

26

or

E E X

1 0

El E 0 ^ y

f ^

< e^ ;> . (2.18a)

xy

It may be noted that in isotropic condition E = E = E ,

V = V = V and G = E/2(l+v). X y

The stress resultants (force per unit length),

denoted by T , T , and T are - X y xy

X

t/:

-t/:

^n ^x ,3u , 3v, "x ^^ = T^TT^ <33r + "y 3?'

X y -^ -^

.t/:

-t/:

a dZ y

E t y (^ + V — )

l-v._v.. 3y X 3x'

3v 3u,

X y

(2.19)

t/:

xy T dZ xy

/3u , avv <5t (37 + 33?)

-t/;

Page 39: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

27

The moment r e s u l t a n t s (moments p e r u n i t l e n g t h ) ,

d e n o t e d by M , M a n d M a r e X y '^y

M, X

. t / 2 -E t a^ Z dZ = j , ^ ^ ^ v

X 1 2 ( l - v ^ v . ) . 2 - t / :

2 2 / 3 ^ . . 3 j v .

x ' y ^ 3x2 y 3y2

= - ( D „ 1 J 1 - + D i ^ ^ ) ^ 3y^ 3y '

M . t /

- t /

2 -E t a Z dZ = TTT^ y 1 2 ( l - v ^ v ^ ; 3 ^

2 2 . 3 w , 3 w . ( -r^ + V^. 7-) 1 2 ( l - v „ v , J \ , ^ X 3^2

X

= _(D i ! i i + D , i ^ ) y 3y2 S x ^

( 2 . 2 0 )

t/: M xy -

-t/;

3 2 2 n J3n o G t , 3 W . I T - . / 9 ^ \

^xy 2 <i2 = 2 3 ^ ( 3 ^ ) = 2 D^y ( 3 3 ^ ) •

From t h e moment e q u i l i b r i u m e q u a t i o n s

3M Q, J&

3M X

3y 3x ^ (D i ! w + (D^ + 2D ) ^ } 3x X , . . 2 ^ x y ' ^

3x^ 3y

^ (D ^ ^ + D ^^ ^ 3x^

2 I 3 W

2 9y

} , ( 2 . 2 1 )

3M 3M yx _ X 3y " 3x

3 _ (D l_w + D' i - ^ } 3y ^ . . .2 . . .2 9y 3x

Page 40: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

28

Equations (2.19) represent the membrane forces.

Equations (2.20) the bending forces and Equations (2.21)

the transverse forces in terms of middle surface displace­

ments .

Rib Element

Conventional folded plate and cylindrical shell

structures are designed and constructed with rigid end

diaphragms along the x-edges. To permit analysis of

structures which have flexible stiffeners along the edges

beam elements which are subjected to axial and bending

deformations in xz-plane are considered in the study. The

rib elements are attached to the soffit of the strip along

both x-edges. They serve two purposes: elastic end ribs

in lieu of rigid end diaphragm and integrally built-in

columns. To simulate the conditions of integrally built-in

columns the thickness of strip elements with elastic end

ribs in particular location is equated to zero. This is

shown in Figure 1 (b). Figure 3 (a) shows such a rib of

cross sectional area A, moment of inertia I about its

centroidal axis parallel to y-axis, and depth t'. The

distance from the middle surface of the strip to the cen­

troidal axis of the rib is denoted by r and is

r = I (f+t) . (2.22)

Figure 3 (b) shows the displaced state of the rib in

terms of strip-displacements along x-edge. The displace­

ments of middle surface of the rib in xz-plane at a nodal

Page 41: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

29

line i are denoted by uf, w5, and ef, The displacement at

nodal line i and j in terms of plate displacements along

x-edges are

{6^} = <

r u. 1

r w. 1

1

U

r w .

3

> =

9" ^J

0 -r 0 0 0

0 1 0 0 0 0

0 1 0 0 0

0 0 1 0 -r

0 0 0 0 1 0

0 0 0 0 0 1

u • ^

-li

^-ii

-11

^-ij

U2.23)

w -ij

-Ij

It may be pointed out here that for r=o, the

centroidal axis of the rib coincides with the middle

surface of the strip as shown in Figure 3 (c) or the rib

becomes a separate body which is not integrally built

with the strip as shown in Figure 3 (d). In. the litera­

ture on this subject the ribs are attached to the plate

structures in this fashion even though the structures are

not constructed this way. A rib attached to the soffit

has a relative stiffness of an effective L-Section which

is much higher than that of a rectangular section. The

deformation pattern of a rib established in Equation (2.2 3)

excludes its rotation about x-axis.

Page 42: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

30

Philosophy of the Extended Finite Strip Method

The philosophy of the Extended Finite Strip method

is similar to that of the Kantrovich Method (25) for

approximate solutions of partial differential equations

of a function. In this study the governing partial diff­

erential equation is in terms of the deflection function.

This equation is reduced to an ordinary differential

equation by expressing the displacement function as the

product: of two exclusive functions f(x) and ij; (yj so that

these functions satisfy the essential boundary conditions.

According to linear elastic theory of plates and

for shiall deflections, the membrane and bending action

in a plate or a strip element are independent actions.

The governing differential equation in membrane action

is expressed in terms of displacements u and v which are

functions of x and y, while in bending the action is

expressed in terms of the deflection w, which is also a

function of x and y. Each of the displacements u, v and w

are, therefore, expressed as products of a polynomial

and a set of linearly independendent base functions.

The polynomials [s] model the displaced shape of

a strip in the x-direction and satisfy boundary conditions

along the bounding nodal lines of the strip. The base

functions simulate the displaced shape in the y-direction

Page 43: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

31

and satisfy the essential boundary conditions along edges

parallel to x-axis. The polynomials for membrane and

bending actions are developed sep4rately.

Polynomials,'

Membrane action: The u- and v-displacement of a point

in the middle surface of a strip element are expressed

as the sums of u_- and v -displacements respectively m m ^ jr J

c o n t r i b u t e d by i n d i v i d u a l b a s e f u n c t i o n s .

u = E u^ m ^

m = - 1 , 0 , 1 , . . . , 6 (2 .24)

V = Z V m ^

The displacements u and v are modeled as the product ' m m

of a first ordered polynomial and the appropriate base

function for the displaced shape.

U = (ai+ ap x) ij; (y)

v^ = (3i+ 32 X) ^^(y) m= -1,0,1,...,6 (2.25)

where a. and 3. are shape factors and 4 j (y) and ^ (y) are

the base function which are discussed in the next section

The first expression of the Equation (2.25) at a point

along the nodal lines i and j, where the base function is

Page 44: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

unity, yields the amplitudes

32

mi ^

u . = ai + b ao m] ^ ^

(2 .26)

E q u a t i o n s (2 .26) e x p r e s s e d i n m a t r i x n o t a t i o n a r e

u . mi

u .

0

b <

a i

>

a2 ^

t .

(2.26a)

The vector [u . u .] is the vector of undetermined * mi mj

parameters and [ai 02] the vector of shape factors.

The shape factors are expressed in terms of undetermined

parameters by inverting the matrix in Equation (2.26a) as

' a i

<

a2

> =

0

-1/b 1/b

U . mi

> .

u . mj

(2.27)

By similar logic the 3-shape factors are expressed in

terms of the undetermined parameters v^. and v .. ^ mi mj

3 i

<

32

> =

0

-1/b 1/b

V . mi

V . mj

(2.28)

Page 45: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

33

The displacements u . and v . for m=-l are the amplitudes

of the displacements along the x-edges. The displacements

u and V of Equation (2.25) expressed in terms of undeter-m in

mined parameters are

% = ^ (l-¥^ % i ^ E-^mj> m ^

V = { (1- ) v^. + -^ v^.} ^iy) m b mi b mj m -

(2.29)

L i m i t a t i o n s of L i n e a r P o l y n o m i a l : The s h e a r s t r a i n , Y„. ,^ i n xy

the s t r i p e l e m e n t i s

^ 3u ^ 3v ^xy 3y 3x

( 2 . 3 0 )

This expression for the assumed displaced shape is

+ -^{(31 + 32: ) ^^W ^

= (ai+a2x) (ip ) + 32^1^ y

(2.31)

where {ib ) is the first derivative of the function ^ m y

with respect to y. The shear strain in this modeling of

the displaced state is a linear function of x when in

actuality it is a second ordered function of x. This

in essence renders the strip more rigid in its rotation

about z-axis. Use of higher order polynomial will obviate

Page 46: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

34

this situation, but requires introduction of one more

undetermined parameter and causes consequent increase of

the band width.

If the plate subject to membrane action is divided

into two or more strip elements the overall distribution

of shear strain, although linear over an individual strip,

approximates to a parabolic distribution over the entire

plate. The idea of a higher degree polynomial, therefore,

is not pursued further in this study.

Bending action: The displacement w at any point in the

middle surface of a strip element normal to plane of

the strip expressed as sum of w displacements contributed

by individual base function as

w = 2 w m= -1,0,1,...6 . (2.32a) m m

Similarly the slope in x-direction, 6,is expressed as

e = Z e m= -1,0,1,...6 . (2.32b) m m

The displacement w is modeled by the product of a third

degree polynomial in x and the appropriate base function

for the displaced shape as

2 3 w = (ai+aoX- +aciX +a^x ) ijj(y) • (2.33) m m

Page 47: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

35

A third degree polynomial is uniquely defined in the

domain by four constants at the boundary. Since there are

four constants (the undetermined parameters) involved at

the two nodal lines of a strip the polynomial of Equation

(2.33) is chosen. The slope, e , in x-direction at any point,

the first derivative of w with respect to x, is m "^

3w m 9

m " ~J^ " (a2+2a3X+3a4X ) i|;(y) (2.34)

Two undetermined pa ramete r s w . and e . , t h e r e f o r e , ^ mi mi

are introduced at each nodal line i defining the amplitude

of nodal displacements and rotations. The amplitudes, at

a point on the nodal lines i and j where the value of base

function is unity, expressed in matrix notation are

w . mi

e . mi

w . mj

^mj

> ^=

1

0

1

0

0

1

b

1

0

0

2 b

2b

0

0

b^

3b2

"2

^ 3

a^ . ^

(2.35)

To express the shape factors in terms of undeter­

mined parameters, the matrix in Equation (2.35) is inverted.

The shape factors, therefore, are

Page 48: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

36

a i

a2

^3

a^

0

0

0

0

0

0

- V b 2 - V b V b 2 - V b

^ / b s V b 2 - 2 / b 3 V b 2

w . mi

m i , (2 .36)

w .

e . mj

S u b s t i t u t i n g i n t o E q u a t i o n ( 2 . 3 3 ) , t h e v a l u e s of a from

Equat ion (2 .36) and c o l l e c t i n g t h e t e r m s , t h e d i sp lacemen. t

w becomes m

r /n 3 2 ^ 2 3 . W = { ( 1 - — r - X + X ) W . +

m , 2 , 3 m i b b

2 2 1 3 ( x - — X + V x"*) e . +

1 , 2 m i

, 3 2 2 3, ( X - X ) w . + b^ b= ""

( - ^ - ' " ^ " ' ^ '"3' V W

( 2 . 3 7 )

The w and e f o r m= - 1 r e p r e s e n t t h e a m p l i t u d e m m

of t h e s e d i s p l a c e m e n t s a l o n g t h e x - e d g e s and c o n s t i t u t e

the r i g i d body d i s p l a c e m e n t s of a s t r i p .

Page 49: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

37

Base Functions

The base functions, as was stated earlier, must

simulate the displacement in y-direction and satisfy the

boundary conditions along the edges parallel to x-axis.

The boundary conditions along x-edges may be such as to

permit: a) the displacement without bending deformation

of a nodal line or in other words the displacement of

nodal line itself, b) complete freedom of rotation about

x-edges and c) complete clamping of rotation about one or

both x-edges.

The first of these conditions is satisfied by the

first two base functions, Th (y) and ^ (y) , m=-l and 0. m m '

Physically speaking the later two conditions result in

hinged-hinged, hinged-clamped (against rotation) or

clamped-clamped nodal lines. Each one of these specific

cases is properly represented by a set of base functions

The upper limit on the value of m is fixed at 6

with the understanding that contributions from the higher

base functions are insignificant. The results confirm thin

assumption.

The base functions for the hinged-hinged condition

only are discussed here. Function space for the other

two conditions can be developed by replacing the functions

Page 50: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

38

ip , (m=l, 6) by Vlasov functions [5J . These functions,

for the sake of completeness of this study, are listed in

Tables 4 and 5.

Base functions for membrane and bending action are

selected separately. Any asymmetric displaced shape, in

membrane or bending action, can be split into a combination

of symmetric and antisymmetric displaced shape. The

function shape for symmetric and antisymmetric cases are,

therefore, developed separately.

The displaced shape of a strip element is defined

by the deformation of its nodal lines. In Figure 4 the

nodal line-i can be thought of as displaced without bend­

ing by u_^. in x-direction and v_,. in y-direction. In

general instead of talking about the displaced shape of a

strip element a reference is made to the displaced shape

of a nodal line.

Membrane Action

A displaced shape in membrane action is split into

two parts: the symmetric and antisymmetric displaced shapes

The function space for each part is developed seperately.

Symmetrically Displaced Shape: Figure 4 (a) depicts the

symmetrically displaced shape of a strip element subject

to membrane action. Each nodal line has two degrees of

Page 51: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

39

Axis of Symmetry

NodalLine-i

Figure 4(a). Symmetrically Displaced Shape of Membrane Action.

oi X K i ' °»=2,4,6 H-H Y

1 • / 1 / 1 / • / 1 / 1 / 1 / 1 /

\J

/ •

/ /

/ •

/ /

/

Line-i

..J

u-— Axis of Antisymmetry

Figure 4(b). Antisymmetrically Displaced Shape of Membrane Action

Page 52: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

40

freedom, u and v. This figure shows- the displacement

shape is comprised of two parts: 1) displacement without

bending, and 2) bending deformation.

The base functions for u- and v-displacements which

a priori satisfy boundary conditions along x-edges and

span the domain in only y-direction are respectively

denoted by ^_(y) and ^_(y) / and given in Table 1. ij; (y),

or in short, ]h define the u- displacement along a m '

nodal line while fi (y) , or fi , define the v-dia^lacement

along the same nodal line.

Antisymmetric Displaced Shape: Figure 4 (b) depicts

antisymmetric displaced state of a strip element. The

base functions which a priori satisfy boundary conditions

along x-edges and span the domain only in y-direction are

respectively denoted by \l) and n . These functions are •* "* m m

given in Table 2.

It may be pointed out here that these functions

have been developed to make this discussion complete.

The development of stiffness matrix equation for this

displaced shape in membrane action, however, is left out

of this study.

Page 53: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

41 T a b l e 1 , Base F u n c t i o n s \l) and fi f o r Symmetric Membrane

A c t i o n .

m

- 1

i> m

Shape m

- 1

fi m

-2Z

Shape

§ i n I Z a

sin isX a

c o s l ^ a

cos 37TX

s i n l u x a cos

STT

Table 2 , Base F u n c t i o n s i| and Q f o r A n t i s y m m e t r i c Membrane A c t i o n ,

m ^

m Shape m Q

m Shape

- 2 Z a

s i n 2Try a •

cos 2 Try a

s i n ITTX a

s i n 6TTy a

cos 27Ty a

cos ^Try a

Page 54: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

42

The displacements u and v are individually

approximated by a set of four base functions. This,

therefore, leads to eight degrees of freedom at a nodal

line in membrane action.

Bending Action

A displaced shape in membrane action is split

into two parts: the symmetric and antisymmetric displaced

shapes. The function space for each part is developed

separately. Figure 5 (a) depicts symmetrically displaced

shape of a strip element under bending action. Each nodal

line has two degrees of freedom viz. w and e. Figure 5 (b)

depicts the antisymmetrically displaced shape of a strip

element under bending action.

The displaced shapes of Figure 5 are comprised of

two parts: displacement without bending, and bending

displacement. The base functions which a priori satisfy

boundary conditions along x-edge and span the domain'in

y-direction are denoted by iJ; . These base functions for

- m

symmetric d isp laced shape and those for antisymmetric

displaced shape are given in Table 3.

Page 55: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

43

Nodal Line-i

Axis of Symmetry

mi

ni=l,3,5

«-HJ

Figure 5(a). Symmetrically Displaced Shape of Bending Actioni

Axis of Antisymmetry

Figure 5(b). Antisymmetrically Displaced Shape of Bending Action

Page 56: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

44

Table 3, Base Functions for Bending Action,

Syr

m

- 1

1

3

5

MTietric c a s e

m

1

Try s m —^

a

s i n i ^ a .

5 Try s m —*-

a

A n t i s y m m e t r i c c a s e

m

0

2

4

6

m

1 - 2 x -a

2TTV s m — ^

a

4Try s m j ^

a

s i n ^ ^ a

Table 4, Base Functions for Hinged-Clamped Condition,

m

- 1

0

1 t o 6

^m

1

1 -

s i n

4m+l V = J—

a

m a

u y . , m- • n s i n h

•" a s i n u^

^m s i n h \xj^

Table 5. Base Functions for Clamped-Clamped Condition.

m ^ m

-1

0 - 2X a

Ito 6 s m - ^ - smh - ^ - n^(cos - ^ cosh -^) ^m^

2m+l ^m - "2" TT

s m p^ - sinh y^

" n cbs vi - cosh y im m

Page 57: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

CHAPTER III

STIFFNESS MATRIX EQUATION

Introduction

The formation of the stiffness matrix equation

of a strip is done in several steps. The stiffness matrix

equation referred to an elemental frame of reference for

membrane action of a symmetrically displaced strip,

is developed in the first step. The superscript 'ms'

refers to membrane action of a symmetrically displaced

shape. The symbol [K^^] is the stiffness matrix; {6 }

contains the generalized displacements of the strip and

ms

{f } generalized forces expressed in generalized co­

ordinates. The stiffness matrix equation for membrane

action of an antisymmetrically displaced strip is

[K"^] {6™^} - {f"^} = 0 . (3.2)

The superscript 'ma' refers to membrane action of an

antisymmetrically displaced shape. Since no particular

need of antisymmetrical membrane action was foreseen

in the scope of this study. Equation (3.2) is not

developed in detail. However, it may be developed in

a manner similar to Equation (3.1) by using the base

45

Page 58: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

46

f u n c t i o n s of T a b l e (2) i n s t e a d of t h o s e of T a b l e ( 1 ) .

The s t i f f n e s s m a t r i x e q u a t i o n r e f e r r e d t o an

e l e m e n t a l f rame of r e f e r e n c e f o r b e n d i n g a c t i o n of

s y m m e t r i c a l l y and a n t i s y m m e t r i c a l l y d i s p l a c e d s t r i p s .

,bs- .bs b s [ K " ^ J {6"^} - {f^^} = 0 ,

and ,ba .ba ba [ K " " ] {6""} - {f^^} = 0 ,

( 3 . 3 )

( 3 . 4 )

respectively are developed in the second step. The

superscripts 'bs' and 'ba' refer to symmetrical and

antisymmetrical bending action respectively.

The membrane and bending stiffness matrix equations

of symmetric displaced shape are superposed in the third

step tp obtain the combined stiffness matrix equation of

the strip as

ms

K

0

bs <

f ^

^ms

\ - <

,^^ \

r ->

^ms

^bs J

V = 0 • (3.5)

Equat ion (3 .5 ) i s r e a r r a n g e d t o g roup t h e e l e m e n t s of

{6 } and {6 } p e r t a i n i n g t o n o d a l l i n e s i and 3

t o g e t h e r as

[ K ^ ] {6^} - {f^} = 0 (3 .6)

or [ K ^ ] {6^} = {f^} (3 .6a )

Page 59: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

47

The superscript 's' refers to symmetrically displaced

shape. The Equation (3.6) is referred to an elemental

frame of reference and is called the combined elemental

stiffness matrix equation of the strip.

The ribs or stiffners employed along the x-edges

of a structure are considered in fourth step. The ribs

are considered to displace in xz-plane alone. The

stiffness matrix elements of such a member in terms of

its planar displacements are established in the litera­

ture [26] . These stiffness elements are evaluated in

terms of the corresponding plate displacements according

to Equation (2.23) in this step.

The transformation of the elemental stiffness

matrix equation to a global frame of reference is

effected in fifth step. The transformed equation,

[ic J {6^} - {f^} = 0 (3.7)

or [ic ] {6^} = {f^} , (3.7a)

is referred to as the generalized stiffness matrix

equation.

In the sixth step the generalized stiffness

matrix equations of individual strips are assembled to

form an overall generalized stiffness matrix equation of

the entire structure. This matrix is a banded matrix of

Page 60: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

48

half-band width equal to thirty two.

The nod al line forces N are considered in the

seventh step- The generalized forces referred to a global

frame of reference due to these applied nodal forces are

developed and added to {f^} in Equation (3.7)

The solution of Equation (3.4) and (3.7) is

obtained on the computer by employing a Gaussian elimina­

tion process using only the half-band width of the stiff­

ness matrix.

Stiffness Matrix Equations of Membrane Action

Symmetrically Displaced Shape

Base Functions: The function space of the u and v

displacements is spanned in y direction by \l) - and

fi - base functions respectively. These base functions

for a symmetrically displaced shape are given in Table 1

Displacements: The displacements u and v of Equation

(2.29) when expressed in matrix notation are

r "1 u m

> =

V

m

(1-x/b)^

0

m .0

(1-x/b)^

{x/h)P m

m

0

(x/b)^ m

u . mi

V . mi

u mj V .

L "^3 J (3.8)

Page 61: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

49

or ,m .ms = [c-j (C • (3.8a)

The vector of total displacement, therefore, is

U

V > ,m

'-1 ,m .m

ms [C"^] {d"" }

.m ,ms -1

.ms 'i

,ms 3

.ms

V

(3.9)

Stra in : The s t r a i n vec tor {e } corresponding to the m IT 3

displacement vector Tu v 1 obtained from ^ m m-i

Equation (2.16) by substituting therein a value of z

equal to zero is

"b V

0

(1 - ^ ) ^ b ^my

{e } = m

xm

'ym

3u m

3x

3v m

Y xym J

3y

3u

3y

0

X, (1 - Bfi b my

D m

b ^m

0

^b - ^

, 3V m I m 3x

my

0

b my

b m

u mi

mi

u mj

V . m:^

(3.10)

Page 62: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

50

or ,ms (3 .10a)

The s t r a i n v e c t o r {e} c o r r e s p o n d i n g t o [u v j ^ ,

t h e r e f o r e , i s

{ £ } = B [• ' - 1 B m B m B m ] ,ms

.ms

' i .ms ^3

.ms

= [B"^J {6"^^}

(3 .11)

Stress: The stress vector {a } corresponding to {e } m m

is given by Equation (2.18a)

m

xm

< a > = E ' ym '

xym

m (3.12)

where [EJ is the square matrix of elastic constants in

Equation (2.18a). After substituting for {e^} from

Equation (3.10) the Equation (3.12) becomes

,ms (oj = [E] LB"] {6""-} (3.13)

Page 63: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

51

The stress vector {a} corresponding to {e} is, therefore,

written as

io) = [ E ] [B:::^ B m B m B™]

, 6

.ms ' -1

ms 1

.ms >3

.ms

.ms = [EJ [B^] {6" } (3.14)

Forces: The membrane forces, i.e. forces acting in the

xy-plane of a strip, are the body forces distributed over

the entire plane. The components of these forces in

X- and y-directions are denoted by X and Y respectively.

These components expressed in the chosen function space

are

X = X_^ i|;_ + X^ ij; + X3 rp^ + X^ i^

and Y = Y , f2 T + Y. Q. + Y. J2-, + Y^ fit--1 -1 1 1 3 3 D O

(3.15)

where X and Y are amplitudes of these forces in the m m

function space. It may be pointed out here that for

uniformly distributed forces X and Y^ , m=l,3 and 5 • m m

are zero and X_, and Y , are respectively equal to the

Page 64: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

52

magnitudes of X and Y. The body forces in matrix

notation are

X

Y

X_^ 0 Xj o X3 0 X^ 0

0 Y^^ ° ^1 ° ^3 ° ^5

^

^

-1

-1

^

n.

ip.

^,

^,

$7,

=- [G] {H} ' (3.15a)

Strain Energy: The strain energy U of a strip of

thickness t for the plane stress condition is

U" = i^tf^ f^ {e}^ {0} dx dy. •'o -/o

(3.16)

Substituting for {e} and {0} from Equations (3.11) and

(3,14), the stxain energy becomes

U-" = )5tpp{6"'^}^ [B^J^ [E] [B™] {6™=} dx dy V/Q •'O

(3.16a)

Page 65: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

53

Potential Energy: The potential energy v" of the body

forces going through displacements [u vj is

V = / f C} ih dx dy. (3.17)

Substituting for \u v] and [x Y J from Equation

(3.9) and (3.15a), the potential energy becomes

:r 'o •'o

-a ID

V^ = J J {6"" } (c"" } {G} {H} dx dy. (3.17a)

Extremum of Potential Energy Functional: The potential

energy functional of the strip for the membrane action

is

$ = u^ - V^ . (3.18)

Differentiating $ with respect to the undetermined

parameters {6^^} and equating the derivatives to

zero, yields the equation

3(6^^}

,ms n r .ms , r i s or [K^^^J {6" } = {f '"} - (3.19a)

The Equation (3.19) is the same as Equation (3.1).

The stiffness matrix [K^^] and the generalized force

vector {f" }; evaluated from Equation (3.19a) are given

in Appendix A.

Page 66: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

54

Antisymmetric Displaced Shape;

The function space of the u and v displacements

is spanned in y-direction by base functions ij; and n ^m m

(m=0,2,4 and 6) respectively. These functions for an

antisymmetric displaced shape, are given in Table 2.

The Equation (3.2) can be developed by using above

base functions in the derivation of Equation (3.19a).

As explained earlier this derivation is, however, left out of this study.

Stiffness Matrix Equations of Bending Action

Symmetrically Displaced Shape

Base Functions: The function space of the w displacement

is spanned in the y-direction by base functions \p ,

These functions for a symmetrically displaced shape are

given in Table 3.

Displacements: The displacement w of Equation (2.37)

when expressed in matrix notation is

m ^ i < ^ > % f^Cx)*^ f3(x)*^ f4(x)*^ w .

mi

mi > •

w m3

e L mj

(3.20)

Page 67: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

55

where f (x) = (l-3_ x^ + 2. 3) ,f (x) = (x- x^ + . x ^ , K2 u3 b b '

f (X) = (^ x^ - ^. x ^ , and f^(x) = (- ^ x^ + i^ x^) .

b-

Equation (3.20) written in compact form is

w = [C^l {6^^} m ^ m -• m (3.20a)

The t o t a l displacement w, t h e r e f o r e , i s

w = [c' ,b ^b 5

.bs 0

.bs <5i

.bs •53

>bs

bsi r.bs = [C^^J { 6 ^ ^ } (3 .21)

Curvatures: The curvatures of a strip element in terms

of w are

(x} = < -

-(c^ ) _1 XX

-(c^i)

2(c''j)

yy

xy

2 3 W

2 3X

2

^ 2

3y 2

3 W 3x3y

1 XX 3 XX

-(c^) yy -(cb

yy

2(C^)xy 2(C^)xy

s'xx

-(c^) yy

2(C^) 5' xy

^^bs^ <5_i

.bs <5 1

6 .

jcbs ^5

(3.22)

Page 68: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

56

or = [B^] (6^^ , (3.22)

where the subscripts x and y denote partial derivatives

Moments: The moment curvature relation is obtained from

Equation (2.20) as

M X

{M} = < M > = y

M xy

X

°y °

0 D x^

V

2 3 W

2 3x 2

3 W 2

3y

3 w 3x3y

bs = [Dj {x} = [DJ [B^] {6 } (3.23)

Loads: The transverse loads (parallel to z-axis)

carried on the surface of a strip may be either distri­

buted, line and/or point loads. These loads are denoted

by symbols q,L, and P respectively. The load L is

/ located at distance x* from the origin of the elemental

frame of reference while the load P is located at

distances x and y . All loads considered are symmetrical o - o

The distributed loads are expressed in the chosen function

space as

Page 69: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

57

<J = ^-i*_i+ ^i *i + q, "(-J + q *

= [q_i qi - s]

5 " 5

1| -1 1= [G^] (H) ,

^

^

4> (3.24)

where q_ ,q ,q and q are the amplitudes of q in 1 1 3 5

the function space. The line loads in the function

spaca are

L = [L L "1 1 S ^.

^

i>

L 5

= [G^J {H}

(3.25)

where L , L , L , and L are the ampli tildes of L " 1 1 3 5

in the function space. The concentrated load is

P = P ^ = p ~i ~i ~i

(3.26)

where P_ is the amplitude of the load in the function

space. For uniformly distributed and uniform line

loads, the amplitudes q and L , m=l,3 and 5 are equal ^ ^m m ^

to zero, and q_ and L_ are equal to magnitudes of q ai d

L respectively.

Page 70: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

58

Strain Energy: The strain energy due to bending U^^, of

a strip is

bs r^ r^ t U = h j J {M}^ (x) dx dy. (3.27)

o •'o

Substituting for (x) and {M} from Equation (3.22) and

(3.23), the strain energy becomes

U^^ = hf^ [^ {6^^}^ [B^]^' D B^ {6^% dx dy. (3.27a) •'o *o

Potentential Energy: The potential energy v of the

transverse loads going through w displacements is

a ^b

o -o V^^ =f f wq dx dy + r w. L dy + P (W ) (3.28)

where w is the value of w at y= a/2 and x = x and

w is the value of w at x=x and y=y . Equation (3.2 8) 0 0 0 ^

in terms of expressed values of w, q, and L from Equations

(3,24), (3.25) and (3,26) yields

o o V = =/7'^. {6'==} [C^^J^ [GS]{H) dx dy

f / U"^^)^ rcf]^[G^]{H] dy +{6'=^^[cfjt P. o

(3 .28a)

Page 71: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

59

Extremum of Potential Energy Functional: The potential

energy functional of the strip for symmetrically dis­

placed bending action is

. ,bs -±)s $ = U - \r . (3,29)

Differentiating the functional$ with respect to the

bs undetermined parameters {6 } and setting the derivatives

equal to zero yields the equation

or [K^S] 16^^)= {f^=} . (3.30a)

Equation (3.30) is the same as Equation (3.3). The

Stiffness matrix [K J and the generalized force vector

{f } evaluated from Equation (3.30i) are given in

Appendix A. The force vector is listed there in three

parts for uniformly distributed q and L loads and point

load P respectively. It may be pointed out that for a

partial distributed load applied ov^r an area defined by

X and X and y and y , the double integral in Equation

(3,28a) is evaluated over these limits. Similarly for

a partial-line load applied over length y to y the

single integral of Equation (3.28a) is evaluated over

these limits. The generalized force for a partial-

Page 72: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

60

distributed load is, therefore, obtained by substituting

for variable 'a' and 'b' the values of (y - y ) and (x2- x^)

respectively. In the same way for the partial-line

load the variable 'a' is replaced by the value (y - y )

to obtain the corresponding generalized force vector.

Antisymmetric Displaced Shape

The function space of the w displacement is

spanned in the y-direction by base functions ip . These

functions for the antisymmetric displaced shape are

given in Table 3,

The Equation (3.20) through (3.2 8) are developed

using these base functions instead of the base functions

of the symmetrically displaced shape. Since the prinr

ciples and the reasoning involved in the derivation are

the same, these steps are not repeated here. The counter­

part of Equation (3.3 0) in this case is

i l _ _ = [K^^] (6^^} " {f^^} = 0 (3.31) 3{6^^}

or [K^^] {6^^} = {f^^} (3.31a)

where {6^^} = [6^^ 6 ^ 6 ^ 6^^f. The stiffness matrix 0 2 k 6

[K^^] and the generalized force vector f ^ are also

listed in Appendix A. The generalized force vector in

this case also is given in three parts for the uniformly

Page 73: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

61

varying distributed and line loads, and the point loads.

The same comments for partial loads hold for this force *

vector as for the one of the previous case. It may be

noted that q and L are the amplitues of uniformly vary­

ing loads in the base function ip , and that the anti-0

symmetrical point loads occur in pairs.

Combined Stiffness Matrix Equation

The membrane and bending stiffness matrix equations

of the symmetrically displaced shape are superposed,

according to Equation (3.5), to obtain the combined stiff­

ness matrix equation of the strip. The generalized

r ms bs 1 displacement vector of Equation (3.5) , L<S <S J is

rearranged in the form

{6S} = [u_^^ v_^^ w_^^ e_^^ u^^ v^^ ^5i %i-

"-ij ^-Ij ^-IJ '-Ij ^^3 "5j -5j ^j]

(3.32)

The Equation (3.5) is rewritten in the function space

defined by {6^} to obtain the Equation (3.6).

The antisymmetric stiffness matrix equation for

bending action does not have its counterpart for the

membrane action and, therefore, this operation of

combining is not dotie in this case. However, the {6 }

t

Page 74: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

62

is rearranged to group together the generalized displace­

ments pertaining to i and j nodal lines. The rearranged

vector in this case, is

{6 ^} = [w_ . e_ . ... w . 0 . w - . e ,....- w . e .i^ -11 -il 51 51 -Ij -Ij sj SD-"'

(3.33)

The Equation (3.31) is written in function space defined

by {6^^} as

[K^^J{6^^} - {f^^} = 0 (3.34)

or [K^^]{6^^} = {f^^} . (3.34a)

This equation is referred to both global and elemental

frames of reference since both happen to coincide in this

case.

Rib Stiffness Matrix

The rib members are assumed to displace in the

xz-plane alone. The displacements outside of this plane

are neglected in this analysis.

Displacements

The transformation matrix of Equation (2.23) is

r s modified to express {6 7 in generalized coordinates {6 } This modified transformation matrix is denoted by [T^J .

Page 75: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

63

The vector {6 } is written as

{6^} = [T ] {6^} 1

(3.35)

The transformation matrix [T ] is given in Appendix A.

Stiffness Matrix

The stiffness matrix [K] of the rib-element [26]

in {6 } coordinates is

[K] =

E A X 0

12E I 6E I X y X Y

4E I X y

Symmetric

-E A X 0

0 -12E I 6E I X y X y

. -6E I 2E^I 0 X y X y

E A X

0 0

12E I -6E I X y X y

4E I

J (3.36)

Page 76: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

64

The stiffness matrix [K ] in generalized coordinates is

[K^J = [ T ^ ] ^ [K] [T^] (3.37)

and is given in the Appendix A. The stiffness matrix

[K ] is now superposed on the [K ] matrix to yield a new

matrix

[ K " ] = [K=] + [K^] (3.38)

which models the membrane, bending and rib stiffness for

a symmetrically displaced shape of the strip element.

Equation (3.6a) is now written as

[K^^] : {6^} = {f^} (3.39)

Transformation to Global Coordinates

The y- and y-axes in the global and elemental

Coordinates remain parallel to each other so that no

transformation of v- and 6- displacements from elemental

to global coordinates or vice versa is required. The

transformation of coordinates takes place in the xz-

plane alone. Figure 6 shows the elemental frame of refer­

ence rotated in a positive direction through an angle 4)

with respect to the global frame. The u and w components

of a displacement in the xz-plane are transformed to u and

w in xz-plane. The relationship between u and w, and

Page 77: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

65

u and w is

H _ < Iwj

COS<J)

-sincf)

sin(|)

COS(j)

/- _ ^ h <_ }

w —

( 3 . 4 0 )

The Equation (3.40) i s expanded to e f fec t t h i s t r ans fo r ­

mation between the genera l ized displacements {6^}

referred to elemental frame and the corresponding general­

ized displacements r e fe r r ed to global coordinates {6 } .

(6^) = [T^] a^} (3.41)

where [ T ] is the transformation matrix. This matrix is 2

also given in Appendix A. The combined s t i f f n e s s matrix

equation of a s t r i p element re fe r red to global coord ina tes ,

there fore , i s

[T ] [K^'^l [T J^ {6^} - [T ]{ f^}= [ K ^ ] {6^} - {f^} = 0 2 -• 2 2

( 3 . 4 2 )

or [ K ^ J {6^} = {f^} (3 .42a)

It may be pointed out that this transformation is effected

in the computer. The Equation (3.42a) is the same as

Equation (3.7a).

Page 78: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

66

Over all Stiffness Matrix

The overall stiffness matrix of a structure is

assembled from Equation (3.42a) of each strip by super­

posing them at their common nodal lines. Such a matrix

is a banded matrix

Figure 6. Transformation of Coordinates.

of one-half band width of thirty-two elements. This

matrix is, therefore, stored in a rectangular array

thirty-two locations wide.

Nodal Line Forces

The line forces N along nodal lines of uniform

intensity are applied in the xz-plane along the nodal

lines. These forces have two components N^ and N^

referred to the global coordinates. These components

Page 79: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

expressed in the corresponding function space are

^X = N^ _/-! ^ \ l n +N^3 n^<^X5 ^5

^Z = ^Z _^^-l + N^i n + N^^ ^3+N^^ ^3

(3.43)

where N , and N ^ are amplitudes of N and N in the xm zm ^ X z

function space. N ^ and N , m=l,3,5 are equal to zero xm zm ^

when N and N have a uniform intensity; and since \IJ_=1 X 1

67

(N ) = N and (N ) = N . These forces, applied at the

i-th nodal line, are written in the global generalized

displacements coordinates of this nodal lines as

N X

N

/^ ~\

(N ) 0 X -1

0

^NJ.i 0

(N^)^ 0 (N )3 0 (N ) .

0

0

.N

0 0

0 0

= LG^'J{H} »

0

0 0

(N^)^ 0 (N )3 0 (N^)^

0

0

0

4

0

Q

0

0

-1

>

-1

0

0

0

5 >

3

(3.44)

Page 80: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

68

The potential energy V^ , of these loads is

V^ = / {6^}^ {H} [G^J {H} dy (3.45)

—s where {6^} denotes the global generalized displacements

of the i-th nodal line. Differentiating V^ with respect —s

to {6^} , the vector of the nodal generalized line force

is obtained as

3{6?} ^n = (f"} (3.46)

The force {f } for uniformly distributed line loads

along the nodal lines is also,given in the Appendix A,

{f } is superposed on the overall force vector at proper

location before running a solution of the overall

stiffness matrix equation.

Solution by Gaussian Elimination

The overall stiffness matrix equation is solved

for the global generalized displacement by Gaussian

ep-imination procedure using half band width storage.

Page 81: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

69

CHAPTER IV

ANALYSIS OF PROBLEMS WITH KNOWN SOLUTIONS AND CONVERGENCE

T^ST

Introduction

The extended finite strip method is applied to

several problems whose solutions are reported in liter­

ature. The purpose of this application is to obtain a

check on the validity of the stiffness matrix equation,

compare the results with those obtained from other

methods (which are also approximate) and to study the

convergence characteristics of the displacements and the

stress and moment resultants. A study of contributions

to the displacements from the individual base functions

is also made.

In the case of homogeneous isotropic rectangular

plates of overall dimensions a and B, the displacement

w normal to the plane of plate and the moment resultants

M , M and M at a point n on the middle surface of the X ' y xy ^

plate are expressed as [l]

w_. = a q a^/D n n

f ^ M xn

' \n

L xy>nj

* = ,

xn

^yn

. xyn -

> q a

(4.1)

Page 82: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

70

where q is the uniformly distributed load carried by the

plate, D is the flexural rigidity of the plate and

°n' ^xn' ^yn' ^^ xyn ^ ® ^^® nondimensional coefficients

When the plate carries a concentrated load P the displace­

ment and the moment resultants at a point n are given by

w = a P a^ n n

M xn

< M

& xn

yn > = V3

M xyn

yn

B. xyn

(4.2)

The nondimensional coefficient for deflection

and moment resultants at critical points on the plate

structures are evaluated and compared with the available

information.

The Displacement Contributions of the Base Functions

The a-coefficient for mid point displacement of

a square corner supported plate carrying uniformly is

tributed load is 0.02537. This value is the sum of

individual contributions from the four base functions.

These contributions are: 0.017575, 0.007642, .000201

and -.00004 8 respectively. It may be noted that the

contribution from the fourth base function is

Page 83: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

71

significantly small. The omission of higher base

functions, therefore, is justified.

Plate Structures Under Bending Action

Figure 7 shows four square plates of uniform

thickness. Each has different boundary and loading

conditions. The graphical convention used is also

explained on this figure. The description of an individual

plate and results of its analysis follows.

Platd 1

This plate is a homogeneous, isotropic square

corner supported plate carrying a uniformly, distributed

load. The results of the present analysis along with

other results reported in the literature are compared

in Table 6. The results of Marcus [27] and Lee and

Balletros [27] are experimental. A value of o.3 is used

for Poisson's ratio v-.

Plate 2' — — «

This plate is a homogeneous, isotropic square

plate with opposite edges hinged, carrying uniformly

distributed load. The results of present analysis along

with available information are tabulated in Table 7.

A value of v equal to 0.3 is used.

Page 84: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

'>>]/ ^\ys\y\Lf\ly\i^slys\yQ

^

^

sC ^ V V "W^ q

I r

72

Plate 1 Plate 2

\^j^.^LJL:^ L^L^

^

Plate 3 Plate k

Graphical Notation:

Support at corners only-

Point

Nodal line, edge or part length of edge

Fixed

L ©

N N N N N

Hinged

Free

Figure 7. Plate Structures of Different Boundary Conditions

Page 85: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Table 6. Values of a in Plate 1.

73

Extended Finite Strip Method

Nodal^ Lines

2

3

4

11

a at Point 1

0.01757

0.01757

0.01757

0.01758

a at Point 2

0.02533

0.02537

0.02537

0.02537

Description

Finite

Element [27]

2 x 2

4 x 4

6 x 6

Marcus [27]

Lee and

Balleteros [27]

Other Methods

a at Point 1

0.0126

0.0165

0.0173

0.0180

0.0170

a at Point 2

0.0176

0.0232

0.0244

0.0281

0.0265

Table 7. Values of a, 6 and 6 at Points 1 and 2 in Plate 2. ^ ^

Extended Finite Strip Method

Nodal^ Lines

2

3

4

11

a at Point 1

0.01487

0.01487

0.01487

0.01487

6^ at

Point 1

0.1440

a at Point 2

0.01299

0.01300

0.01300

0.01300

6 at X

Point 2

0.1218

Point 2

0.0233

Other Methods

Description

Timoshenko

[1]

Description

Timoshenko

[1]

a at Point 1

0.01509

6 at X

Point 1

0.1318

a at Point 2

0.01309

1

b at X

Point 2

0.1225

1 B at

y Point 2

0.0271

Nodal line in half plate

Page 86: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

74

Plate 3

This plate is a homogeneous, isotropic square

cantilever plate carrying uniformly distributed load.

The results of analysisl along with other results reported

in literature are tabulated in Table 8. A value of v

equal to 0.3 is used.

Plate 4, w

This plate is a homogeneous, istropic square

cantilever plate carrying a set of antisymmetric point

loads at the outer corners. The results are presented

in Table 9 and the comparison is made with results from

another solution. A value of 0.3 is used for v .

Convergence Test

The convergence characteristics of displacement

and moment resultant values from analysis of rectangular

corner supported plates and plates hinged along opposite

edges were studied. Three overall width to length ratios

of these plates were chosen viz. 0.3, 0.6, and 1.0. The

results from analysis of these plates with increasingly

finer division of the strips, are given in Tables 10 and

11 respectively. Some generalized conclusions regarding

convergence may be drawn from these tables.

Page 87: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

75

Table 8. Values of a at Points 1 and 2 in Plate 3

Extended Finite Strip Method

Nodal Lines

2

3

4

5

11

a at Point 1

0.12550

0.12594

0.12619

0.12629

0.12640

a at Point 2

0.12677

0.12771

0.12803

0.12815

0.12828

Other Methods

Description

Finite Element [27] 3 x 3

Finite Difference [27]

Livesley and Birchall 5 x 5

Experimental [27]

Leissa and Niendenfuhr

a at Point 2

0.1250

0.1250

0.1250

Table 9. Values of a at Points 1 and 2 in Plate 4

Extended Finite Strip Method Other Methods

Nodal Lines

2

3

4

11

a at Point 1

0.26441

0.26947

0.27008

0.27030

Assumed Displaced Shape;

w = A (1-cos 1 ) (1- ^)

Solution: A = 192 Pa' TT'* + 96T:2(I _^) Q

and a = 0.25242

Page 88: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

76

Table 10. Corner Supported Plate Carrying Uniformly Distributed Load. Convergence Test Data at Center Point.

B / a

0 . 3

0 . 6

1.0

Mult

D i v i s i o n N . L . i

3

4

5

6

2

3

4

5

6

7

8

9

10

3

4

5

6

7

8

9

10

11

l i p l i e

b / a

0 . 0 7 5 0

0 . 0 5 0 0

0 ^ 0 3 7 5

0 . 0 3 0 0

0 . 3 0 0 0

0 . 1 5 0 0

0 . 1 0 0 0

0 . 0 7 5 0

0 . 0 6 0 0

0^0500

0 . 0 4 2 9

0 . 0 3 7 5

0 . 0 3 3 3

0 . 2 5 0 0

0 . 1 6 6 7

0 . 1 2 5 0

0 . 1 0 0 0

0 . 0 8 3 3

0 . 0 7 1 4

0 . 0 6 2 5

0 . 0 5 5 6

0 . 0 5 0 0

r

w max

0 . 0 1 4 1 6

0 . 0 1 4 1 2

0_.01408

0 . 0 1 3 8 4

0 . 0 1 5 0 3

0 . 0 1 5 0 3

0 . 0 1 5 0 3

0 . 0 1 5 0 4

0 . 0 1 5 0 4

0 ^ 0 1 5 0 1

0 . 0 1 5 0 1

0 . 0 1 4 9 9

0 . 0 1 4 9 8

0 . 0 2 5 3 7

0 . 0 2 5 3 7

0 . 0 2 5 3 7

0 . 0 2 5 3 7

0 . 0 2 5 3 6

0 . 0 2 5 3 6

0 . 0 2 5 3 6

0 . 0 2 5 3 5

0 . 0 2 5 3 5

q a V D

(M ) X max

0 . 0 0 5 6 9 9

0 . 0 0 5 5 3 5

q_.og5509

0 . 0 0 5 5 8 8

0 . 0 3 5 7 6

0 . 0 3 4 4 4

0 . 0 3 4 4 5

0 . 0 3 3 0 9

0 . 0 3 2 9 4

0^03287

0 . 0 3 2 8 8

0 . 0 3 2 8 5

0 . 0 3 2 5 5

0 . 1 1 5 3

0 . 1 1 2 0

0 . 1 1 0 8

0 . 1 1 0 3

0 . 1 1 0 0

0 . 1 0 9 8

0 . 1 0 9 7

0 . 1 0 9 6

0 . 1 0 9 6

(M ) y max

0 . 1 2 3 6

0 . 1 2 3 1

0^1228

0 . 1 2 0 6

0 . 1 1 9 5

0 . 1 1 9 1

0 . 1 1 8 8

0 . 1 1 8 7

0 . 1 1 8 7

0^1184

0 . 1 1 8 4

0 . 1 1 8 3

0 . 1 1 8 2

0 . 1 0 8 6

0 . 1 0 7 6

0 . 1 0 7 3

0 . 1 0 7 1

0 . 1 0 7 0

0 . 1 0 6 9

0 . 1 0 6 9

0 . 1 0 6 9

0 . 1 0 6 8

(M ) xy max

0 . 0 2 8 1 6

0 . 0 2 8 0 9

0^02806

0 . 0 2 7 9 0

0 . 0 6 1 9 8

0 . 0 6 2 0 3

0 . 0 6 1 9 1

0 . 0 6 1 9 1

0 . 0 6 1 9 2

0_^g6183

0 . 0 6 1 8 3

0 . 0 6 1 8 4

0 . 0 6 1 8 1

0 . 1 0 7 3

0 . 1 0 7 3

0 . 1 0 7 2

0 . 1 0 7 1

0 . 1 0 7 0

0 . 1 0 7 0

0 . 1 0 7 0

0 . 1 0 6 9

0 . 1 0 6 9

qa^

Node lines on half plate.

Page 89: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

77

Table 11. Plate Hinged Along Opposite Edges (Free Along Other Two) Carrying Uniformly Distributed Load Convergence Test Data at Center Point.

B/a

0.3

0.6

1-0

Mult

Division N.L\

3

4

5

6

2

3

4

5

6

7

8

9

10

11

2

3

4

5

6

7

8

9

10

11

iplie.

b/a

0.0750

0.0500

0.0375

0.0300

0.3000

0.1500

0.1000

0.0750

0.0600

0.0500

0.0429

0.0375

0.0333

0.0300

0.5000

0.2500

0.1667

0.1780

0.1000

0.0833

0.0714

0.0625

0.0556

0.0500

r

w

0.0001043

0.0001043

0.0001043

0.0001043

0.001658

0.001658

0.001658

0.001658

0.001658

0.001658

0.001658

0.001658

0.001658

0.001658

0.01299

0.01299

0.01299

0.01299

0.01299

0.01299

0.01299

0.01299

0.01299

0.01299

qaVD

(M ) X

0.01151

0.01126

0.01117

0.01125

0.02512

0.04542

0.04440

0.04404

0.04388

0.04379

0.04374

0.04369

0.04367

0.04367

0.06833

0.1256

0.1228

0.1228

0.1213

0.1210

0.1209

0.1208

0.1207

0.1206

(My)

0.003227

0.003149

0.003122

0.003110

0.005623

0.01173

0.01142

0.01132

0.01127

0.01124

0.01123

0.01122

0.01121

0-01122

0-007253

0.02452

0.02365

0.02335

0.02321

0.02314

0.02309

0.02307

0.02307

0.02307

qa2

(M ) xy max

.001091

.001091

.001091

-001092

0.006245

0.006337

0.006344

0.006344

0.006344

0.006339

0.006333

0.006328

0.006326

0.006303

0.01917

0.01961

0.01967

0.01968

0.01968

0.01968

0.01967

0.01966

0.01964

0.01962

Node lines on half plane

Page 90: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

78

1) The values of displacements stablize with the

division of (half plate) into 3 or 4 strips only.

2) The values of moment resultants stablize with

division (of half plate) into 6 or 7 strips.

3) For the ratio of strip width to length (b/a)

less than 0.05, the end results from 15 digit arithmatic

become inaccurate due to round off errors on the machine.

Structures Under Combined Membrane and Bending Action

A single span, single barrel, cylindrical shell

[l6,20] shown in Figure 8 was analyzed with three different

meshes viz. division into 4,8, and 12 strips. The results

of u and w displacements, referred to global coordinates

and the stress resultant T from three mesh sizes are

plotted on Figure 8. The results from the 12-mesh size •

analysis are plotted in Figures 9 (a) and (b) and compared

with the References [l6] and [20] .

The Rib Attachment

Figure 10 shows a square plate hinged along two

opposite edges and supported by elastic beams along the

other two. Figure 10 (b) shows the rib attached to the

plate with its centroidal axis conincident with the

middle surface of the plate. The value of parameter r

is zero in this case. Figure 10 (c) shows the rib attached

Page 91: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

79

I J. i 1 A 1 J. ^

R=31.0'

L * * X A A A X

I i I 1 - ^ - -25 psf UT psf

a=62.0'

jLRigid End-St i f fener

o H

iDlH

6.0

U.O

2 .0

0 .0

12.0 1 o n - ^ jLa • ' - ' i

ft n. O . Lr "

o H

X U.O '

n n . U. U'

zq

8.0

J-o

X

k.O-

0-

-2 .0J

1

1 I I I

LwraXLL

Legand:

12 mesh-size

• 8 mesh-size

O k mesh-size

u and w are r e f e r r e to glor-dl fraTie of reference

Figure 8. C y l i n d r i c a l She l l S t ruc tu re ,

Page 92: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

80

8.0

J-o

X

6.0

k.o

2.0

0.0

-2.0 ^ • 1 . •

0 Ref. [16] X Ref. [20]

CO

O H

0.0

-1.0

X -2.0

-3.0

1 * 1 "^^L, 1 1 1 • I 1 j 1 1

Figure 9(a). Plots of Stress Functions of the "ylindri-al Thell.

Page 93: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

81

00 O

X

X

0.0(

- 2 . 0 .

• ) | . 0

^ n -- D . O

-8 0-

-

1 • /

^ ' 1

. EFS

© Ref. [16] X Ref. [20]

1

0 . 0

CO

o

X

X - 2 . 0

- l i . O

• v j

I I ^ ^ : ; ; ^ ~ • - • » I • I

I I I I I I \ * \ \ *

Figure 9 ( b ) . P l o t s of S t r e s s Func t ions of t h e C y l i n d r i c a : 5:h"l l .

Page 94: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

82

Middle Plane

K . Centroidal Axis

1.0'

(c) Section at A

f ^ sSJ \ . t=0.5' A J -^ 4^r=0.0

1.0'

(b) Section at A

P r o p e r t i e s

r

A

E

V

D

I y

A=EI /aD y

Rib of F i g . 10(b)

0 .0

1.76

87 .36

0 . 3

1.00

0.U57

l+.OO

Rib of F ig . 10 (c )

0 .88

1.76

87-36

0 . 3

1.00

0.i457

U.OO

r

0 . 0

0.88

Method

EFS Method Ref. [ l ]

EFS Method

«1

.001+712

.OOU72O

.OOI151I+

^xl

.05350

.05280

.05193

^ 1

.OU63O

.OUU7O

.OU69O

Figure 10. Square Hinged Plate with Elastic Ribs

Page 95: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

83

to the soffit of the slab when r = 0.88'. The compari­

son of the displacements and moment resultants obtained

from analysis by EFS method with the available informa­

tion [1] is done on Figure 10. No published data are

available to compare results obtained from analysis by

this method of a plate supported by elastic ribs attached

to the soffit.

Page 96: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

84

CHAPTER V

APPLICATION OF THE EXTENDED FINITE STRIP METHOD

The Extended Finite Strip Method is applied to

several structures of different types to demonstrate the

verstality and potential of the method. The method is

also applied to several rectangular plate structures

having various boundary conditions to develop non-

dimensional coefficients for displacement, stress and

moment resultants at critical points on these plates.

The structures analyzed for the demonstration are

a) a rectangular plate with overhang, b) a series of folded

plates, c) a circular cylindrical shell with a canopy,

and d) a continuous plate subjected to support settlement.

Detailed discussion of these structures follows.

Rectangular Plate with Overhang

An isotropic rectangular plate of constant thick­

ness, hinged part length along two parallel edges and

over hanging the remaining length, and fixed along the

fourth edge, is shown in Figure 11. The deflected shape

of this plate obtained from analysis by EFS, along

various lines shown is plotted on the same figure. A

value of V equal to 0.3 is used.

Page 97: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

85

\ L > N U N l / \ l / N b \ l / N b \ U \ b s b N l ^ x I X x l / N l x s l x v l / N l / s b x l / q

w = a - f for

- - < T >

= 1.5

Deflection Along Line 1

0

.01

.02

.03 -j-

a

•^—^ 1—t-1.0a 1.5a

Deflection 'i 1 ong Line 2

Deflection

Along

Line 3

Figure 11. Isotropic Rectangular Plate with Overhang.

Page 98: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

86

A oljded Plate Structure

A single span folded plate structure supported on

integrally built-in columns and employing i) the conven­

tional rigid end diaphragm, ii) the unconventional

elastic end ribs of various sizes, and iii) a north

light window feature, is shown in the Figure 12. The

deflected shapes of these structure in the xz-plane, along

the middle and end sections are plotted in Figure 13 (a).

The maximum values of the stress and moments resultants

along the midline of these structures are plotted in

Figures 13 (b) , (c) , (d) , (e) , (f) and (g) . Values of

these resultants in the rib members are produced in

Figures 14 (a) , (b) and (c) .

A Circular Cylindrical Shell with Canopy

A circular cylindrical shell conventionally

supported by rigid stiffeners in the transverse direction

and employing a circular cylindrical canopy on both ends

is shown in Figure 15. The deflected shape of the

structure in xz-plane is shown on the Figure 16 (a).

The maximum values of stress resultants are plotted on

Figure 16 (b) and those of moment resultants in Figure

16 (c).

Page 99: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

87

3.0' 1.0' 2.0' 1.0

0- psf

50.0'

Elevation

2'-3'

I n" 5'-0

3'-0'

9'-0'

Description

Diaphragm Rib No. 1 Rib No. 2 Rib No. 3

Figure 12. Folded Plate Structure vith Elastic End- ibs a-North Light Window Details. '

Page 100: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

88

EJ Rigid End Diaphragm

A Rib No. 1

V Rib No. 2

O Rib No. 3

X North Light Window with Rib No. 3

(i) Displaced Shape Along Mid-Section.

(ii)

Figure 13(a).

Displaced Shape Along End-Section.

Displaced Shapes of the Folded Plate Ttrujlur-

Page 101: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

-2.0

cn O

X

X

-k.o

-6.0

-10.0

Figure 13(b). Transverse Stress Resultant T (H^/ft) Alcr.c "'i Section of Plates.

Page 102: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

90 12.0

10.0

-2.0

Figure 13(c). Longitudinal Stress Resultant T (lb/ft) Alon? Section of Plates.

Page 103: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

k.o 91

2.0

0.0

-2.0

CO C H X

° -U.O

-6.0

-8.0

-10.0

-12. d

\ M ^

^Vee Kdge

Q R i g i d End Diaphragm A Rib No. 1

V Rib No. 2

O Rib No. ']

• Nor th L igh t Window w i t h Rib No. 3

3 Nor th L igh t Edges

>o^c

1 1 / \ 1 / 14-. \ ^ / \L/\\ * / jw \ \ \ / / fv \ \ \ ' / i III G \ \ ' / Mil

1 CK T

Fold 1 Line I

drff ^*^ 's<r^ \

/ / _ /

7/ i* /

Fold / Line /

Center Fold

Figure 13(d). Membrane Shear T (lb/ft) in Plates A.rr.c ti.o ?.rKi Section.

Page 104: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

9 2

-8.0

CNI

o H -12 .0 X

X

- ] 6 . 0

-20.0

-2U.0

-28.0

Figure 13 (e ) . Transverse Moments M ( i b - f t / f ' t ) Alor.f, " i i of the P la te s .

i-Tect icn:

Page 105: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

93

-2.0

Figure 13(f) Longitudinal Moment M (Ib-ft/ft) Along Mid-f-ecti, n of Plates.

Page 106: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

9 4

10.0

CO

O H

2 .0

0 .0

- 2 . 0

m Rigid End Diaphragm

A R i b No. 1

V Rib No. 2

Q Rib No. 3

O North Light Window with Rib No. 3

J North Light Window Edge

Fold Line

Center Fold

Figure 13(g). Twisting Moment M (ib-ft/ft) in Plates Alcrp L urrc: Section.

Page 107: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

95

^ ^ ^

1.0

0.0

in O

X

(^ X

-1.0

-2.0

Columns Fold Line

Fold Line

Center Fold

A Rib No. 1

V Rib No. 2

Rib No. 3

O North Light Window with Rib No. 3

Figure lU(a). Axial Force P (lb) in the Rib l':er^.\ ers.

Page 108: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

96

J-o

X

t^

-3.0

Figure lU(b). Shear Force V (lb) in the Rib Elements

Page 109: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

97

0 North Light Window with Rib No. 3

Fold Line

Center Fold

Figure ll+(c). The Moment M (lb-ft) in the Rib Members.

Page 110: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

98

I 1 1 11 M i i 1 1 i M 1 m X'° ^''

2 1 /2" ^

Rigid — End

Stiffeners 31.2 ps^

R=8.0'

12.0'

V Uo.o'

figure 15. cylindrical Shell Structure with Canopy, Fig

Page 111: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

99

(i) Along Mid Section

\

(ii) Along End Section

Figure 16(a). Displaced Shape of Shell Along Mid and End fectlcr

Page 112: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

100 1 0 . 0

CO

-p

§ H :3 CO <u K

<0 CO

-p CO

- 1 2 . 0

- 2 . 0

- 1 0 . 0

F igure l 6 ( b ) . S t r e s s R e s u l t a n t s in S h e l l Alont^ " i d - r e c t i c r

Page 113: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

101

CO 4J

0 CO (U

K

+J C <u e o

6.0

U.O-

2.0!

0.0

§ - . 2 . 0

-k.o

-6 .0

- 8 . 0

-10.0

-12.0

Crown Springing

M -

^-O""^^

M iO xy /

0 M X 102 ^ X

Q M X 10^ y

A M X 102 xy

Free Edge

Figure l 6 ( c ) . Moment Resultants in Shell Along Mii-fection

Page 114: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

102

A Continuous Plate with Settling Support

A rectangular plate continuous over two spans is

analyzed to study the distribution of displacements and

the moments due to settlement of the central support.

The plate structures and plots of w-displacements and

the moments M are shown in Figure 17.

Nondimensional Coefficients

A series of isotropic rectangular plates of

uniform thickness supported in different manners at the

boundaries, carrying different types of loads and bearing

overall width to length ratios of 0.2 to 2 are analyzed^

to obtain the nondimensional coefficients for the

deflections and moment resultants at critical points on

the plates. The results obtained are produced in

Appendix B in the form of tables 4 d in some cases in

plots. The description of these plates and the loads

carried by them is:

Case I: Corner Supported Plates:

a) Carrying uniformly distributed load .

b) Carrying a central point load.

c) Carrying uniformly varying load.

Page 115: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

103

10.0'

H—nr lOTO'

0.1

Hinge

(b) Vertical Displacement w Along Mid-Section.'

Hinge

(c) M Along Mid-Section.

Figure IT. Continuous Plate Subjected tc ?upp;

Settler.ent.

Page 116: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

104

Case II: Plates hinged along two parallel edges?

a) Carrying uniformly distributed load.

b) Carrying a central point load.

c) Carrying uniformly varying load.

Case III: Plates fixed along two parallel edges:

a) Carrying uniformly distributed load.

b) Carrying a central point load.

c) Carrying uniformly varying load.

Case IV: Plates fixed along one edge and corner

supported at the opposite edge:

a) Carrying uniformly distributed load.

b) Carrying uniformly varying load.

Case V: Plates fixed along one edge and hinged along

the opposite edge?

a) Carrying uniformly distributed load.

b) Carrying uniformly varying load.

Case VI: Plates hinged along one edge and corner

supported at the opposite edge:

a) Carrying uniformly distributed load.

b) Carrying uniformly varying load.

Case VII: Cantilever plates:

a) Carrying uniformly distributed load.

b) Carrying concentrated load at mid point

of free edge.

c) Carrying symmetrically applied

concentrated loads at outer corners.

Page 117: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

105

d) Carrying uniformly varying load,

c) Carrying antisymmetrically applied

concentrated loads at outer corners.

Page 118: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

CHAPTER VI

CONCLUSIONS, OBSERVATIONS AND RECOMMENDATIONS

The following conclusions may be drawn from this

study of the extended finite strip method.

1) Prismatic plate and shell structures which

are free to rotate about their transverse edges can be

analyzed by the method.

2) The inclusion of rib elements along the trans­

verse edges makes the method versatile for analyzing

structures; a) supported on integrally built-in columns;

b) carried on elastic ribs instead of conventional rigid

end diaphragms and employing features such as north light

windows.

3) The number of unknowns involved in the method

is small for equally accurate results when compared to

the finite element method. The fine mesh analysis of the

folded plate structure, 50 ft x 41 ft overall projected

area, required only 240 unknowns.

4) The contribution from the fifth and sixth base

function are significantly small and therefore exclusion

of higher base functions is justified.

5) The convergence tests show that the values of

displacements stablize with the division of half structure

into 3 or 4 strips while the values of stress and moment

106

Page 119: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

107

resultants stablize with this division into 6 or 8 strips.

6) In the case of plate structures in bending,

for a ratio of strip width to length (b/a) of 0.05, the

end results from 15 digit arithmetic may become inaccurate

due to round off errors on computer. However, the number

of strips required also depends upon the boundary con­

ditions along the transverse edges.

7) The method also permits the study of redis­

tribution of stresses due to support settlement.

8) Representation of loads, especially the

uniformly distributed, constant and varying loads is

simple because of the first and the second base functions

used.

Some observations about the method developed

indicating its capabilities and limitations are:

1) The method is set up for analyzing these

structures made from orthotropic material although an

analysis of such structure is not included in the report.

2) The function space used is nonorthogonal.

The first two base functions are nonorthogonal with the

remaining six while these six are orthogonal between

themselves. The terms in stiffness matrix equation

pertaining to the first two base functions, therefore,

get coupled with those pertaining to the remaining six

base functions. This results in increased band width of

Page 120: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

108

32 elements of the stiffness matrix equation for each

case of symmetric and antisymmetric displaced shapes.

The Gram Schmidt process was employed to orthogonalize

the function space but due to nonorthogonality of the

first and second derivatives of these functions, the

matter was not pursued.

3) The method has specific application to the

folded plate roof structures of cold-formed steel which

are made from orthotropic plate members and supported by

elastic end stiffeners.

4) The method as developed here considers column-

members to be integrally built- in the xz-plane alone.

The following recommendations for future research

are made:

1) The stiffness matrix equation for anti­

symmetrically displaced shape under membrane action may

be developed.

2) Function space of Tables 4 and 5 may be

employed to develop stiffness matrix equation of bending

action for hinged-clamped and clamped-clamped conditions

along the transverse edges.

3) The soil-structure interaction may be

developed to analyze pipe culverts and any other

pipe structures with end stiffeners that are buried under

the ground.

Page 121: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

109

4) The method may be adopted to an advantage for

the study of stability and vibrational analysis of

prismatic plate and shell structures that have end

stiffeners.

Page 122: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

LIST OF REFERENCES

1. Timoshenko,S.,and Woinowsky-Krieger,S., Theory of Plates and Shells, Second Edition, McGraw-Hill, New York,1959.

2. Nadai,A., Elastische Platten, Springer, Berlin,1925.

3. Margurre,K.,Woernle,H., Elastic Plates, Blaisdell Publishing Co. ,Massachusettes ,1969'.

4. American Concrete Institute,"Building Code Require­ments for Reinforced Concrete," ACI Standard 318-6 3, Detroit,Michigan,196 3.

5. Report of the Task Committee on Folded Plate Con­struction," Journal of the StrUctural^Division, ASCE,December,196 3. '

6. Cheung,Y.K.,"Folded Plate Structures by Finite Strip Method," Journal of the Structural Division,ASCE,Vol. 95, No. ST12. Proc. Paper 6985',December, 1969.

7. Goldberg,J.E.,and Leve,H.L.,"Theory of Folded Plate Structures," International Association of Bridge and Structural Engineering,Publications,Vol.17,1957.

8. DeFries-Skene,A.,and Scordelis,A.C.,"Direct Stiffness Solution for Folded Plates," Journal of the Stri ictural Division,ASCE ,August,1964 .

9. Goldberg,J.,Glauz,W.,and Setlur,A.,"Computer Analysis of Folded Plate Structures," International Associ­ation of Bridge and Structural Engineering,Publi­cations ,Seventh Congress,196 4.

10. Mast.P.,"New Method of Exact Analysis of Folded Plates," Journal of the Structural Division,ASCE, Vol.93,ST2,April,1967.

11. Goldberg,J.,Gutzwiller,M.,and Lee,R.,"Analytical and Model Studies of Continuous Folded Plates," Journal of the Engineering Mechanics Division,ASCE,Vol.9 4, EMS,October,1968.

12. Zienkiewicz,O.C.,and Cheung,Y.K.,"Finite Element Method of Analysis for Arch Dam Shells and Compari­son with Finite Difference Procedures," Proceedings, Symposium of Theory of Arch Dams,Southampton University,1964,Pergamon Press,1965.

110

Page 123: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

Ill

13. Rockey,K.C.,and Evans,H.R.,"A Finite Element So­lution for Folded Plate Structures," Proceedings, International Conference on Space Structures, University of Surrey,1966.

14. Williamson,F.A.,"Stress Analysis of Folded Plate Structures with Flexible End-Diaphragms," Doctoral Dissertation, Department of Civil Engineering,Texas Tech University,May197o.

15. Cheung,Y.K.,"Finite Strip Method Analysis of Elastic Slabs," Journal of the Engineering Mechanics Division,ASCE,Vol. 94.No. EM6 .Df^nf^mh^r , l fi

16. American Society of Civil Engineers,"Design of Cylindrical Concrete Shell Roofs," Manual No.31, ASCE,New York,1952. " ~

17. Rudiger,D.,and Urban,D., Circular Cylindrical Shells, Teubner,Liepzig,19 55. ~

18. Holland,!., Design of Circular Cylindrical Shells, Oslo University Press,Oslo,1957.

19. Portland Cement Association,"Design Constants for Interior Cylindrical Concrete Shells," Advanced Engineering Bulletin No.1,PCI,Chicago,1960.

20. Scordelis,A.C.,and LO,K.S.,"Computer Analysis of Cylindrical Shells," Journal of the American Con­crete Institute, Proc. V.61,May,1964.

21. Clough,R.W.,and Johnson,C.P.,"A Finite Element Ap­proximation for Analysis of Thin Shells," Inter­national Journal of Solids and Structures,Vol.4,196 8.

22. Mercea Scare, Application of Finite Difference Equations to Shell Analysis, First English Edition, Pergamon Press,New York,1967.

23. Fung,Y.C., Foundations of Solid Mechanics, Prentice-Hall,Inc.,Englewood Cliffs,New Jersey,1965.

24. Crandall,S.H. , Engineering Analysis, McGraw-Hill, New York,1956.

25. Kantrovich,L.V.,and Krylov,V.I., Approximate Methods of Higher Analysis, Interscience Publishers, New York,19 56.

Page 124: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

112

26. Willems,N.,Lucas,W.M., Matrix Analysis for Structur­al Engineers,Prentice-Hall,Inc.,Enqlewood Cliffs, New Jersey,1968.

27. Zienkiewicz,O.C.,and Cheung,Y.K.,"The Finite Element Method for Analysis of Elastic Isotropic and Ortho­tropic Slabs," Proc. Inst. Civ. Eng.,28,1964.

28. Troitsky,M.S.,Orthotropic Bridges Theory and Design, The James F. Lincln Arc Welding Foundation,Cleveland, Ohio,1967.

Page 125: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

APPENDIX

A. S t i f f n e s s , Force and Transformation Matrices

B. Nondimensional Coeff ic ients for Rectangular P la t e s

113

Page 126: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

114

APPENDIX A: STIFFNESS, FORCE AND TRANSFORMATION MATRICES

The stiffness matrix K"^^ and force vector {f" }

are subdivided into matrices of size eight as

,ms [K"^^] =

K ms 11

(K-)t

K ms 12

K ms 22

and .ms {f--} = <

(f

f

ms 1 ms

,bs The stifness matrix [K ] is subdivided into matrices of

size eight as

,bs [K^"J =

K bs 11 K

(K^^)^ K

bs" 12

bs 22_

,ba The stiffness matrix [K" ] is subdivided in the same way

,bs as [K^^] also. The superscript 'bs' is replaced by 'ba'

in this case.

The lower quadrant of [K^^] and [K-^^] are de­

noted by [K^^] and [K^^] respectively. The elements

^m ^m

in these quadrants are functions of a parameter y^ and

they repeat themselves in the upper left and lower right

quadrants of [K^^ ] and [K^^] with a changed value of y^.

All these submatrices and the force vectors (f } and

{f^^} are produced on the following pages. The transfor­

mation matrices [TJ and [T2] , the stiffness matrix [K ] ,

and the nodal force vector {f^} are given thereafter.

Page 127: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

115

m-< 1.- ^

t—1

IH

IH 3 \ fd

CNJ

1

IH

IH Xi

\ fd

CN

r-i

IH

IH Xi \

fd

1

r - l •

IH

IH 3 fd

o IH Xi . — » CM

fd t= ro \ \ fd Xi "^ C>J ^-^ • ^ 1

+ IH

\

CN

1 O

IH Xi ^ ^ CM

fd t= ro \ \ fd Xi -^

^ +

o 1

- • IH

CN

IH O 'fd 3 ro ro \ \ Xi fd CN - - -•^ 1

r - l

IH 1

IH O 'fd 3 ro ro \ \ Xi fd

^ +

IH 1

IH 3 \ fd

CM

»—1

IH 1

IH 3 \ fd

r>j

1

IH 1

IH

3 fd

IH xn - - ^ CM

fd t= ro \ \ fd Xi ^ y ^ - ^

^ +

1 1—i

IH

\ CN

1

o Iw XI *—X CM

fd t= ro \ \ fd Xi "^ CM v - -

^ 1

+ IH

\ CN

IH O 'fd 3 ro ro

Xi fd 1 ^ - ^ + \

IH ^ O " ^ ^ ^

^ +

+ O . X^ I H fd —^ CN Xi .H CN \ \ Xi ( d CM

1 -—

IH ^ ^ ^ \ ^

;> t=

^ 1

o . x ' fd IH ^ ^ \ JQ Xi CNJ CM

fd —

^ +

IH 'fd o CN ^-^ H XI \ CM Xi \

CM ( d t= ^ ^ 1

IH

\ - -

1 1

IH — O fd ^

VD Xi \ CN

CM ( d

^ +

,

IH

:> \

1 +

+ o I H fd — KD Xi \ CN Xi \ CM fd t=

1

I

u - H

IH fd ^

\ CN Xi \

CM f d

^ +

1

1

1

Page 128: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

116

r*-. (0 g -

» - ^ ^

^•—. 'j*

X **-* !

•SU ! L

I

i 1 1

} j .-4

1 lu

X, lu

3 t : i n \

\ n) 1 Ci

1

1 1

I 1

^ IW

X IW

3 t= i n \ (4

CM -

^ IW

X

(= ro \ n)

tN

! 1

i

1

^ IW

X lu

s ,—, t= [/) <>i * ^

Srs" 10 (N

^ "7

X "•.

I t j jvO

O ^—tH

> i j a IW « ^ t= (0 i n

ro 1 CN| 1 \ \ 1 Si n) \ CM ' T !

1

a 1 + 1

Iw ^ t=

i n \ CN ^ 1

O .. > i j a

|w « ^ t: (d i n

ro + CM

\ \ A «J «* "»•

^ O 1

^ IW

^ 1=

i n \ CM

*"

o > 1 ' ^

IW Si ^•^ OI (0 1=

ro 1 cn \ \ Si <o CM "a*

- *—

o + r .4

. t=

ro \

1 CM

! T 1

1

1 " 1 >i - -! IW X!

*~^ c^ Id t=

i CO + c n

i \ \ 1 Si <tJ

^ I -^^ —•

o

IW"

>-* f:

ro

CM *—

1

*—«» - 1

X ! ^• • r

j

rolcg

1 1 1 1 1

^ i

IW

1 1

. X IW .. ^ Si t :

i n \ (0

CM

r^

IW 1

, X IW <^ Si

t= i n

\ 10

CM • * ^

1

^ IW 1

IW^

3 t= CO \

1 (0 CM

1 1 1 1 I j

' ^ '• IW

X IW

"a p

ro

\ (0 CN

*—* 1

I ' 1 ' ^ ' ^ -^ ^ ^ - 4 . - ^ ^

" • ' • > < " >« X X — X ^ «H>r I O H ^ ^ H '

j a x>| : ja l <o l O K o 1 ( O l ^ CM

j a ~ j a l fl

t= I O I P CN

o*

i :

c ! ' 1 ' ^-x '

>, Si : j Iw ( ! ^ t= ; (0 i n 1

ro + (N 1 \ \ Si <a •V "a*

1 j ; i 1

i

^ ^ 1 ' i - ^ i '

-

O 1 ' i ' , ! •

- 1 Iw ' ! ' • - ' \ ^^ 1 1 1 ^ ' i i n ! 1 '

\ , 1 CM j ""^ i

1 •

" j . >l 3

1

1

IW « 1 , ^ 1 = (0 in 1 i 1

ro 1 CN 1 1 1 \ \ 1 ! ! j a 10 ! ! CM ^

^

_ 1 o + .-< Iw - -* ^

i n \ CM

O > i - «

|W Si .-^ c

i !

1

1 1

1 i 1 1

(0 1 +J 0 1 ' C H 1 (u (u 1 : 6 N 0)

•H 0

1

1 U +J : i 1

1 C nJ •H 3

1 C CP : -H W ! 1 « 1

fO t= B 0) 1 CO + cn 1 (U >-i 1 1 • \ • > 1 « <o : ^ "0 ' ^ I" ! 1 1 w - ^

^ 1 " i '

•t 1

— _ — \ .— - -

1 i ^ 1

1 I W 1

' ^ 1 j i t= ! 1

C? 1 1 I \ ' ' \ ^ j '

J . i ..

i o 1 ! .>< i:;- '

IW ^ 1

— t . i (0 t=

ro 1 <n i ' > > Si "O

CM ^

^ _ ^ 1

O +

Iw" '

^^ ^ ro

CM • ^ 1

Page 129: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

117

an

X

(Ojfo

j a N (0 t :

CN cn flJiro

•0\ 10

CM I (Ojin in CN

ja h= lOJin

10 hn CMJCN

. > 1

Iw •* \ X ? t= ro

O *- I *

\ t: ro ^—^

+ --. X . <o Iw t l

Si \ CN Si

en

^ O

\ -a-

P^ > t: ro

ro >— '-^ I

0) M lO

Ul 4J a

- » -g (U

rH

w

c •rH C

• f ^ 10

e (U

o u N

o

(0 3 cr w

. > • Iw <•*•*«

lO (N r-t

\ X)

M t :

a>

O . XI

CN

\ lO

^-^

Iw

X 7> t= ro ro

'5 '(0

cn

CN \ (0

Iw

in

O

i n

Iw "(0 CN

l ^ '

Iw IW

Io vo

-« : \ + O

i n CN

X) CN

10" j in

— XI

o <0

CN i IW

I 3 CN

i >

+ ja CM

m CN

Iw'

7>

i n in

- ' I I

Iw

i > I >'

m

X I

Iw

ro CO

l > ' Iw ^rm^

10 vo \ X) M

1=

<n -

O J ' - . .

X) CN V 10

• ^ - '

+

> i n

O

. X Iw ** A CN

\ 10

+

10 vo \ Si

r4

t: in CN

Iw Ifl VO

in CM

CN

(0

+

in

- I 10 !

vo

in <N

O

ja CN

<0

+

IW \ ^ XJ XI CN

i n

"io . X vc Iw \ ^ XI

CN t= \ <n (0 - ^ — +

^ +

u

•p

w

;^ I iw 0) M

a Io vo

^ XI

CN • :

V, cn

— +

Page 130: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

[ K^^] : *• 1 1 •*

118

( 1 2 a / b M D ^ ( 6 a / b 2 ) D ^

( 4 a / b ) D ^

- ( 1 2 a / b M D ^

- ( G a / b 2 ) D ^

( 1 2 a / b M D ^

y = IT 1

Symmet r ic

( 6 a / b 2 ) D ^ X

( 2 a / b ) D ' X

- ( 6 a / b 2 ) D

( 4 a / b ) D X

(24a/7rbMD + X

(12TT/5ab)D 1

(12a/7Tb2)D + X

( l l T T / 5 a ) D 1

-(24a/TTbMD X

- ( 1 2 T i / 5 a b ) D 1

(12a/TTb^)D X

+ ( T T / 5 a ) D 1

(6a /b^ )D^+(6y V 5 a b ) D X I 1

+ (13y "^b/TOaMD +

(12y V 5 a b ) D 1 xy

(12a/7rb2)D + X

( iT/5a)D 1

(8a/Trb)D + X

(4bTT/15a)D 1

- ( 1 2 a / T r b 2 ) D X

- (Tr/5a)D 1

(4a /Trb)D -

(b7T/15a)D 1

(3a /b^)D^+(3y V 5 a ) D

+ ( l l y '*bV420a^)D 1 y

+ (y V 5 a ) D 1 xy

(2a /b )D +(2y 2b/15a)D X 1 1

+ (y '*bV210aMD 1 y

+ (4p 2 b / 1 5 a ) D 1 x y

/^bsY

- ( 2 4 a / T T b ^ ) D X

- (127r /5ab)D 1

- ( 1 2 a / 7 r b 2 ) D X

-{TT/5a)D 1

(24a/TTbMD X

+ (12Tr/5ab)D 1

-(12a/Trb^)D X

- ( l l T T / 5 a ) D 1

- ( 6 a / b ^ ) D - ( 6 y V 5 a b ) D X 1 1

+ (9y '*b/140a^)D 1 y

- ( 1 2 y ^ V 5 a b ) D j j y

- ( 3 a / b 2 ) D - ( y 2 / 1 0 a ) D X 1 1

+ (13y '*bV840a^)D 1 y

- ( y V 5 a ) D 1 x y

( 6 a / b ' ) D ^ + ( 6 y V 5 a b ) D X 1 1

+ (13y ' *b /70a ' )D 1 y

+{12y ^ / 5 a b ) D I xy

I

(12a / i rb2 )D

+ (iT/5a)D 1

(4a/TTb)D

-(bTT/15a)D 1

- (12a /Trb2)D X

-(TT/5a)D 1

(8a/TTb)D^

+ (4Trb/15a)D 1

(3a/b^)D +(y V l O a ) D X 1 1

- ( 1 3 y '*bV840a^)D 1 y

- ( y V5a)D 1 ' xy

+ (a /b)D - (y ^b /30a)D

- ( y '*bV280aMD

- (y^2b/15a)D^y

- ( 3 a / b 2 ) D - - ( 3 y V 5 a ) D X 1 1

- d l y '•b%420aMD 1 y

- ( y / / 5 a ) D ^ y

( 2a /b)D +(2y 2b/15a)D X I 1

+ (y '*bV210aMD,,

+ (4y 2b /15a)D 1 xy

Page 131: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

119

X5 ^ Q

i n . -« \ <o <o \

CN t : nH ~-'

~- +

XI

i n

Id

10 ro \

1= X)

Si

i n \ 10

CN

Q

Io

X Q

Si i n \ lO

00 —

^ +

10 ro \ X)

Si ->6

XI t=

i n \ (0

r>4

XJ Id

CM

XI i n \ Id

CM

— a

Id

XI i n \ Id

CN '-^

•^ +

XI Id

(= CM

XI

i n

Id

Q

Io

XI t=

i n \ 10

CN

Q

Io \ +

^ Q

X) 1= i n \ Id

CN — '

^ +

XI Id

CM

X o Q ^ ^ Id X3 ro (= \

i n t= \ Si Id ^

00 - ^ ^ +

X) t :

i n \ Id

CM

Q

"id \

^ +

Id i n X)

10

— + ro

^ j a 10

i n Si t= \ 10

00 vo ro

+ X

Q ^ Q

XJ

10

10 i n

1= ro

XI

i n

lO CM

Id

i

m Q

j a ' -t= Si

i n Id \ \ Id t :

^ CN CM iH

I ^ —' I

X

XI lO t : i n

ro \ \ t= Id X) ^ —'

^ I

^ a Si

Id

Id m

ro

X} Id i n

ro

X -^

Si

i n

Id ro

s I

XJ 1= Q

i n ^ \ <0 10 \

CN f :

•^ +

X Q Q — ^ 10

t : i n XJ \ ro ja \ «= Id ^

00 —' ^ +

+ X a

X Q Q ' -^ Id XI m t= \

ro (= \ Si Id 1 "

00 »- '

X Q

Si t= \ Id

00

XI Id

i n \ t=

vo ro

^ Q

X ^ Q Q

CI Id XJ m t= \ \ (=

Id ro *!• ro

I I

X Q - » ' Q —

XI

Id

Id i n

ro

I ro

Id

Id i n

t= Si

n •u o c u 0) (U

(U rH O W -tJ

tyi rH C lO

•rl 3 c cr •H w Id g 0) 0) M OS Id

X Q X Q

Q — X -^ Q ^ —

^.^ tn

Si (= \ 10

00

XI 10

i n

\ vo ro

,^ OJ

XI p

\ (0 ^

lO i n

\ t= ro CO

--' +

,^ «n

ia (=

\ 10

00 ^

1 ' 1

X) 10

i n \ (:

VO ro «^

1

1 Q * - v

< N

' XI sr

\ (0

"S-

i

Q

-^ 10 i n

\ t=

ro '- +

Page 132: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

120

• • > t ' ~1

0 ) CM

X i CM «

^

S

CO •P o

0) <u g tq 0)

•H O H 4J

— & V T -

C f - 1 -d

•H :3

•H H fd g <u « fd

0) CO

Xi p.

fc<

t ' ro

II

CO

p-

, CO >o Xi :x

« J

1

1

in

II

in p.

u -H u -p 0)

w 1

t 1

1

I

1 1

1

1

Page 133: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

121

{ f ' ^=} :

q - L o a d

( a b / 2 ) q - 1

( a b V l 2 ) q - 1

( a b / 2 ) q - 1

- ( a b V l 2 ) q — 1

L-Load

[ f

[ f

[ f

[ f

x

X

aL - 1

a L - 1

aL - 1

aL —1

P-Load

[f

[f

[f

[f

(ab/iT) q - 1

[f ^ ) L TT

[f (Sin^^J^)P a

(abV67T) q - 1

[ f X TT

[f X ( S i n l l ^ ) P a

(ab / i r ) q - 1

[ f X TT

[f ( S i n ^ ^ ^ ) P a

- (abV6TT) q - 1

[ f X 2a TT

) L [f ( S i n ^ ^ ^ ) P a

(ab/3TT) q - 1

[ f X 3TT

[f 3^yo (Sin^i-^lJ^)P a

(abVlSTT) q — 1

[ f X JTT

[f ,2iZo. (Sin:^^:i^)P a

(ab/3TT) q - 1

- ( a b V l S T T ) q - 1

(ab/5TT) q — 1

(abV30TT) q - 1

(ab/5TT) q - 1

- ( abV30TT) q - 1

[f X 2 a

I ) L

3TT ' _

[ f X 3TT

[f X 5TT ' .

[ f DTT

[ f X DTT

[f X 2 a .

[ f 3TTyo

(Sin^^^^J-ii-)P a

[f (S i n l l I ^ ) P a

[f (SinllIXo.)p

[f 5 T T ^

(Sin^^-^^J^)? a

[f ( S i n ^ ^ I ^ ) P

[f U 0

( S i n 5 ^ I ^ ) P a

Page 134: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

122

11

( 4 a / b 3 ) D ^ +

( 9 6 / 5 a b ) D ^ y

( 2 a / b 2 ) D ^ +

( 8 / 5 a ) D ^ y

( 4 a / 3 b ) D ^ +

( 3 2 b / 1 5 a ) D ^ y

Symmet

- ( 4 a / b 3 ) D ^ -

( 9 6 / 5 a b ) D ^ y

- ( 2 a / b 2 ) D ^ -

( 8 / 5 a ) D ^ y

( 4 a / b 3 ) D ^ +

( 9 6 / 5 a b ) D ' xy

y2" = 2-n

r i c

( 2 a / b 2 ) D ^ +

( 8 / 5 a ) D ^ y

( 2 a / 3 b ) D -X

( 8 b / 1 5 a ) D ^ y

- ( 2 a / b 2 ) D ^

- ( 8 / 5 a ) D xy

( 4 a / 3 b ) D ^ +

( 3 2 b / 1 5 a ) D xy

(12a/Trb3)D + ' X

(24Tr/5ab)Dj

(6a/Trb2)D + X

(22Tr/5a)Di

- ( 1 2 a / T r b 3 ) D ^

- ( 2 4 T r / 5 a b ) D i

(6a/Tvb2)D^+

(2TT/5a)Di

( 6 a / b 3 ) D ^ + C 6 u 2 / 5 a b ) D i

+ (13 i i5b /70a3 )Dy

+ a 2 y 2 / 5 a b ) D ^ y

C6a/Trb2)D + ' X

(2Tr/5a)Di

(4a/TTb)D + ' X

t8Trb/15a)Di

-C6a/Trb2)D ' X

-(2TT/5a)Di

C2a/Trb)D X

- t 2 T r b / 1 5 a ) D i

( 3 a / b 2 ) D ^ + ( 3 u 2 / 5 a ) D i

+ ( l l u 2 b ^ / 2 4 0 a 3 ) D

2' xy

( 2 a / b ) D + C 2 p 2 b / 1 5 a ) D i

+ Cy5b3/210a3)D

+ (4M2b /15a )D xy ^ .

€/

- (12a /T rb3 )D ' x

-C24Tr/5ab)Di

- (6a/Trb2)Dj^

- ( 2 T r / 5 a ) D i

(12a / i rb3 )D +

(24Tr/5ab)Di

- ( 6 a / T r b 2 ) D X

-C22Tr/5a)Di

- ( 6 a / b 3 ) D ^ - ( 6 p ^ / 5 a b ) D i

+ ( 9 p J b / 1 4 0 a 3 ) D

- ( 1 2 y 2 / 5 a b ) D ^ y

- ( 3 a / b 2 ) D ^ - ( u 2 / 1 0 a ) D i

+ ( 1 3 y 2 b ^ / 8 4 0 a ^ ) D

- ( y 2 / 5 a ) D ^ y

( 6 a / b 3 ) D ^ + ( 6 y 2 / 5 a b ) D

+ C13v2b /70a^)D

+ a 2 p ^ / 5 a b ) D ^ y

(6a/Trb2)D + X

(2Tr/5a)Di

(2a/ , rb)D^

- (2Trb/15a)Di

- ( 6 a / ^ b 2 ) D

-(2Tr/5a)Di

(4a/Trb)D + x

(8Trb/15a)Di

( 3 a / b 2 ) D ^ + ( p 2 / 1 0 a ) D i

- ( 1 3 p 5 b V 8 4 0 a )D

+ (P2 /5a )D^^

+ ( a / b ) D ^ - ( y 2 b / 3 0 a ) D i "+2 3

- ( U 2 b / 2 8 0 a )D y

- ( p 5 b / 1 5 a ) D ^ y

- ( 3 a / b 2 ) D ^ - ( 3 p 2 / 5 a ) D i

- d l u j b / 4 2 0 a ^ ) D

- ( y 2 / 5 a ) D ^ y

( 2 a / b ) D ^ + ( 2 u 2 b / 1 5 a ) D i

+ (P2bV210a^ )D

+ (4w2b/15a)D^y 1

Page 135: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

123

II I CM

! X I Q

XJ

10

XI

10 CN

I -^ X

Q ^ X Q " I

•0 in

VO

^ +

XJ ro \ 10

CM

10 i n \ Si r>i

XJ

i 10 I CM

10 i n

VO CM OJ I

Si

ro

lO

10 i n "V Si 0 0

XJ Id in \ CN

^ Q

XJ

\ Id

r<i

Id i n

vo

Q X '-.

Q XJ — Id <" i n XJ \ t= t=

\ CN Id r»

^ +

+ X

Q ^ Q

Id i n

vo

X Q Q — ^ Id XJ in t= \ ro JQ Id 0 0

^ ^ I w +

^x Q" Q ^ - ^ ja

tn Id XJ in 1= \ \ t= Id rM

XI

Id

CN

Id i n \ t=

vo vo

X Q ' - . Q

XI

\ Id

CN

Id i n

1= vo

- - X I

XJ m t= \ \ ^ Id CN

9 r»

I I

XJ

Id CN

Id i n \ VO VO

XJ

ro

Id

04

Id i n \ XJ

CM

X a Q

C4 Id

Si in

Id vo CM ^^

^ + m •tJ o c u 9) (U

+ I X

Q ^ Q

XJ

Id ro

XJ t= \ Id

vo

XJ 1= \ Id ro

Id i n

«X "O Q i n ^ f-H ja \ •: XJ Id ' 1 '

- ^ Q

XJ

\ Id ro

Id i n

1=

Q

+ X « Q i n

XJ

Id r j

XJ VO

X Q Q ^

XJ Id

i n \ 0 0

^ Q X Q

XJ

Id ro

Id i n XI

1=

Id vo

Si Id

i n \ 0 0

d Id XJ m

\ «= Id ^ ro ^

I

^ a Q i n ^ Q

Id i n

XJ

Id rM

X>

vo

XJ t= \ Id

ro

Id i n

XJ

I

Id in

Si

r H 0)

I

I c I - H

i.S \%

IS I

Id OI ja -

tc

X Q

j a

Id vo

^ Q XJ — Id

i n

0 0

XJ 10

i n

X Q Q —

a — XJ

Id vo

Si Id

i n \ 00

XI Id

i n

p ^

Page 136: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

124

• • 1 — 1

fd CN

Xi <N « '""'

fd ^ jQ p.

Ui

(0 +J 0 c u Q) 0) e N 0)

rH O H -P

tnrH c: fd

•H ^ c \j*

•rH W fd S 0) 0) ^ Pi fd

t= • ^

II

J -

^

fd «fi Xi p.

«

!

^ vo

II

(O

P-

:

1 U

•H V-l -P

c r^

' 1 i \ ! I

; 1 1 i 1 '.

1 i i

1 1 ; i

Page 137: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

1 2 5

{ f ' ' ^ } :

q - L o a d

( a b / 6 ) q

( a b V 3 6 ) q

( a b / 6 ) q

- ( a b V 3 6 ) q

(ab/2TT) q

[f

[f

[ f

[f

[f

X I

X

X

L - L o a d

(f)L 3 0

^4)L 3 0

f)L J 0

f)L 3 0

TT 0

P - L o a d

2 [ f

2 i f

2 [ f

2 [ f

2 [ f

X

X

X

( 1 - 2 X 1 ) p a

( 1 - ^ P

1 - 2 X 1 ( l - r i ! L ) p a

( i - ^ ) p a

(Sin^m

( a b V l 2 T T ) q

(ab /2TT)q

[ f X ^ ) L 7 T ' 0

[ f X TT 0

2 [ f X ,„ . 2TTyo ( S i n J

2 [ f X (S . 2TTy 0 m—*—

- ( a b ^ / 1 2 T T ) q [f X T T ' 0

2 [ f X (S i . 2TTyo i n •*—

( ab /4TT)q [f X TT 0

2 [ f X ( S i . 4TTyo i n — * - ^

( a b V 2 4 T T ) q [f X ^ ) L -^ 0

2 [ f X (S • 4TTyo m—^

( ab /4TT)q [f X

t TT 0 2 [ f

4TT' ( S i n H L o

- ( a b V 2 4 T T ) q

(ab /6TT)q

( a b V 3 6 T T ) q

(ab/6TT) q

- ( a b V 3 6 T T ) q

[f TT 0

[f 1 ^ ) L

[f X ^ ) L TT' 0

[f X

I ^ ) L

TT' 0

[ f ^ ) L TT 0

2 [ f X . 4TT' ( S i n H Z o

2 [ f X S i n i ^ ^

2 [ f (S 6TTy

i n — * -

2 [ f (S 6TTyo i n — * - ^

2 [ f X h 0

, _ . 6TTyo ( S m — i - i i

Page 138: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

126

CD C7> O <X) r~^

W. *o

O -P

t o

O U

m

o -H -P fd o

M-I Ul

fd }^

EH

•H

-P fd

CM

CO

CM

irj eg

CM

(U ^ -p

M-I 0

+J CO 0 CcJ

0 M (U N

(!) V4 fd

(Q +J c (U g (1)

(U U3

I

cn

CO

J- in u) cvj .eg icM

H

ej ro

Page 139: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

12

I

U) 0)

+J

c: •H TJ U o o u

O iH

o

<0

c: 0) 6 <u w

6 o u

c: o

-rH

•0

e o m (0

c U hi

(N

X •H U

S

-e-

sin

II

(0

-©•

cos

II

u

I

I u

U)

u 1/1

l / )

u Irt

l/> I

I / )

I

I

u

u

to

m

«/>

0) M to

U] • 1

d 0) 6 0)

i H

0)

tr> C

-H c

•H itJ e 0) p^

• o VH 0) N

0 -p

.H fO D rr 0)

«/>

Page 140: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

128

«

CN

CO

IX)

CN

t n

CN

J -

CM

r—1

t o i-H

l—t

cn

CD

-

< X

w u

Si \ <

X

Si \ <

X

u

Si

< X u

O l

M

cn

\

H X

CM .H 1

CM

Si \

> 1

H X

w

<n

> i M

X w

o

X H W X

CM [ r ]

>-l OJ

1 + CM

Si \

> 1 M

X w VD

1

i3 \ <

X w

X X CM ^

u +

_—

XI \ <

X

1

Si \ <

w

J -

CN

w -P o C VH 0) (U B N (U

• - - I o <U -P

•H ::$

t n

CN

CM

Si \

>. M

X w 1

m

X) \ M

X

<N

. )

^ ^ _ J

vo CM

X X (M ^

t

CM

t

1

1 1

1

Page 141: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

129

••5-n {f"}^:

aN

aN

(2a/TT)N

(2a/TT)N,

0

(2a/3TT)N X

(2a/3TT)N,

(2a/5TT)N X

0

(2a/5TT)N,

0

Page 142: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

APPENDIX B: NONDIMENSIONAL COEFFICIENTS FOR RECTANGULAR

PLATES

Nondimensional coefficients for displacements

and moment resultants at critical points on rectangular

plates of homogeneous isotropic material and uniform

thi ckness are given, in tabular and graphical form on the

following pages. The information given is for plates of

overall width to length ratios of 0.2 to 2.0 supported in

different ways at their boundaries and carrying different

types of loads. These plates are listed in Chapter V.

130

Page 143: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

131

>1 ,—1

0 M-I •H

D tn a •H >1 ,

u u fd

u (0

0 • fd rH 04

TJ O -P )-l

o D* CU :3 cn 1 ' 0 c u 0 1 U J

u fd iH 3 D> •

fd fd -P o O tS\ 0 « TJ

0 O 4J •H 13

Iso

tro

D

istr

i (a

)

M

1

w

CA

S

CM

>l

X oa

•-H

>1

oa

-1

X ca

(-1

3

PQ fd

in (X)

vo iH

o o

o ro r>-r-i rH

O

ro cr» rH O O

O

VO ^ fO iH O

O

(N

O

—»

-•

VO

o 00 (N O

O

O 00 CN CM rH

O

iH in in o o

o

00 o ^ fH o o

ro

o

I, r

^f

^

vo CM <y» ro o o

o o rsj rva rH

O

(T>

vo iH iH O

O

VO rH • ^

iH O

O

^

O

to

o

^ in o in o o

o in o rM rH

o

vo CO

o CM O

O

r-\ ^ ^ rH O

O

in

o

"^

1 1

'

r-i CT\ rH VO O

o

o r 00 r-i iH

O

00 O ro ro o

o

"^ o in rH o o

vo

o

1

o

iH CM

ro r o o

o ro vo iH H

o

r-{ ro 00 •^

o

o

00 f-i vo r-t

o o

r-

o

^

ro in tr 00 o

o

in DO in o o o

o o vo in ro o rH <-\ r-i r-t

O O

iH 00 tr CM vo r» vo 00

o o o o

CN 00 iH O 00 t-i n-i CM O O

O O

00 <y>

o o

o iH t O rH

O

o ro r-o r-l

o

o 00

o r-i

H

O

r ro in CN

o o

o

rH

ro •

o II

:>

o o tr r 00 a>k f-i CM r-i r-i

O O

o o 00 ro ro o o o r-l rH

o o

o o rH 00 r- in ro vo rH rH

o o

rH VO ro CM r-i <T\ ro ro o O

o o

r-i rsj

rH t-i

a J-

fd cr

II

5

o <J\ o tr r-i

O

00 in vo cr> o

o

o CM

r« CTi r-i

O

rH VO cri tr

o o

ro

r-i

/^

o CM OJ in rH

o

ro 00 CM cri o

o

o r-i r^ ro CM

o

(S\

r-CM vo o o

tr

r-i

C X

v^

r

^

c X 4

o tr ro vo r-i

o

ro o <Ti 00 o

o

o in r vo CN

o

vo CM <S\

r o o

in

r-i

CN

(d cr

c: >i

oa v/"

I I .

C

• > • —

o o ro O vo 0> O CM tr IT r^ oc rH r-

o c

CM r-i CN tr in r-i 00 00

o o o o

o o tr 00 vo r O t ro ro

o o

rsi in iH cr» tr (T> CM O r^

o o

vo r

r-i r-i

>1

X oa

d" >i

X

» r^ 00 1 <s\ o 1 rH CM

» o o

r-\ tr vo 00 r ro r- r* o o

o o

o o r- r-i r^ 00

a\ ro ro tr

o o

vo in ro 00 in 00 r-i r-i

o o

00 CTs

r-i r^

1 •ri

c 3 •

CO MH W 0 0

c 0 ^ M U (d -ri

sz W +J

0

o ro OS rH CM

o

r-i r-i O r o

o

o CJ vo 00 tr

o

in cri CM CM

o

o

rsi

n U 0 C M-l 0 0 u C C © •

4-> 0 a-M -M •H c (d >-l H rH u 0 a cn Oi

•• fd >-i XI 0 to rH 0 :3 0 x: 0 0 M-l 4J

§ -

CO 4J 4J

CM

Page 144: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

132

O X

CO

c

O O

c o

0.0 0.5 1.0 1.5 2.0

Ratio B/a

CASE - 1 ( a )

Page 145: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

133

fd u -P c: 0 u

C •ri > 1 U u fd u cn 0 +J fd

r-i

(U

TJ 0 -p U o cu a, :3 in u 0 c: u o

u fd

rH :3 . CPTJ c »d fd o -P iJ o 0 TJ

cn, 0 o fd

• H >H 0 4 - P

o c

CM I

rg > i X

oa

o o v o r - o o ^ o r o v o o o o r H r H o o N v o c M o o r o r -r ^ r H ^ ^ f * ^ v o o o o ^ o ^ H r o t r l n v o v o ^ ~ » o o o o o ^ o ^ r ^ < y > C y » O O O O r H r H H r H r H r H r H r H r H r H r H r H

r H r H r H C M r M C N r g r s i c M r s j c N C M r M C N r N j r M r s i c M r M

o o o o o o o o o o o o o o o o o o o

<N I

o r-i X

r

f

oa

00 CM r-CM

ro rH ro vo

ro vo r CM

in 00 vo o

00 tr ro <T\

00 o tr 00

CM rsj r> r

00 <j\ r-i

r

vo 00 r vo

tr in tr vo

r-i 00 r-i VO

ro in <Tt in

00 in r* in

o c in in

ro • "^ in

ro r-i

ro in

r-(Ti r-i in

r-i <T\ O in

in <y> cn tr

CM r-i O

-P

o cn

0 u C O

M

I

U U) <

CM I

o r^ X

cn

ro

o vo c in <T> 00 O tr O CM rH (T> o vo CM r ^ CM vo t r ^r in in vo vo

in vo r-i

in rsj vo r»

cri c o 00

<T> CM in 00

in r CJ> 00

00 r^ tr <T>

o vo 00 <r>

o o ro o

CM • ^

r o

ro 00 r-i r-i

ro CM vo rrl

tr vo o CM

o o

o rH X

o o r H '«*• t r 00

o ro

•CM <T> ro vo

CM t-i

o o

o o ON o

vo ro r » r-i

o o

in

vo o

in r-rH

o

vo rH VO CM

o 00

o

t r o o

i n 00 ro

in ro vo

o ro

o (Ti CM

00 in vo

r^ CT> (T\ 00

CN CM O ro

in ro

m fd CM ro

o o in vo 0 0 <y> CNj r o in vo 00 <r>

rM

ro o

II

CM

fd c

C C >i X >i X

cn ca ca

c X s

m

C >i

c' >1

X £

T •H C :3

tn 0 O 2

—or u 0

• M-l cn 0

«^ tn M O 0

c 0 j ^

•H x:

cn 4.) 0 •P 6 (d P

O

c o

C 0

u (d

0 4-) fd ri C

^1 -H rH U O CL

a o

o x: Pn yu {/) 4J -O

m X) 3

CM

Page 146: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

134

(M I

o X

w

9 O

«*-* ^ a> o O oa. "O

o

3 5

3.0

?5

? 0

1 5

1 0

0 5

0.0 1

1 \

^

^

r \

• — -

1

^ 1

_ > /

1 1 I I 1 1

r k

^ 9

u 1 a

B

\

X

V = 0.3 W = aPa^/D

iWy 1= / / y i p

S y at Point 2

xy

^xh s , , _

\ ^

Qp

.5 1.0 1.5

Ratio B/a

2.0

CASE - K b )

Page 147: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

135

CM I

o MH •H j::

D cn C •H >i u u fd u (fi 0 4-) fd

r-i

TJ 0 -p u o

02

>H 0 C >H O u U fd rH

cn c fd +J u . 0 TJ (Xi fd o

-H a, Cn o c JH -H

p >1 O 5H cn fd H >

CJ

w CO

o r-i

X

X CO.

CN I

O rH

X (

oa'

CN

> 1

CN I

o rH X

CN

X CQ

CN I

o r-i X X

I

o rH

X 3

CQ fd

o o "<r

o 00 ro in

o LO VD in

o OJ (TS

tr

o CM ro ro

o o o

o in CO

o I

in

o I

o in vo 00

o I

o o

CN

o o ro vo

c rvj o •

CM I

O

o tr •

(N I

O O

00 •

CN I

o o in CM •

ro I

o o

o o 00

o o

o o

vo •

ro 1

o •

^ 1

"^ •

t r 1

<r> •

t r 1

o a\ vo in

rM vo (N in ro 00 LO tr

vo CM

LO 00 o tr

cr> tr 00

ro

CN r-\

ro

LO VD

ro

vo vo ro

CM

ro

ro O 00 ro

ro O

ro

00 o O

LO r-{

00 rH OJ tr

ro tr

CM O O O 00 LO tr 'T LO ^ ^ tr

o CTi vo

tr (T» as vo ro CO

^ r-

o ro vo

00 OJ

ro LO

cr» tr

00

o OJ tr tr

tr in vo vo

vo CM in 00

rH 00 o o

tr vo ro tr

OJ

cr»

CM ro

ro 00

ro

vo bO LO tr

ro rH CO CM O O o tr r» LO LO lO

C M C M C M C M r o r o r o r o r o r o r o r o p o

O rH

o o as OJ

o o ro 00

o o

ro

o o CJ CO

o o vo ro

o o 00 1 ^

o o t r r-{

o o i n t r

o o rA r-~

o o ro cri

o o OJ rH

O o r OJ

o o cr> ro

o o cn tr

o o CX3 lO

o o LO vo

o o

o o

r-i LO

CN CM ro ro L O l O L O l O L O L O l O L O

00 vo CN ro o

o tr ro CM r-i

o o ro rH

ro

o in ro vo

o in

o in •^

o vo tr r-i

vo

o oi o tr vo

o 00 as tr 00

o in o CM

o ro CO O 00

o CN as »r LO

o LO as LO tr

o o vo ro lO

o lO

o r-i

vo

o ro LO ro

o ro rH in tr

o 00 CM CM ro

CN ro "^ vo Ci ro LO CO o ro OJ rM vo

OJ

CM ro tr LO vo r^

o o o o o o

(X> CTi o rH OJ ro tr

O O rH ,H rH rH rH

LO VD CO as

CN

ro »

c

II

Q \

J-

fd cr

c C5

II

? ^

I •H C O '

••i-i tn

O Q C

'J M U U fC H

cn XJ a ^ 6 (d u -H O a, -i^

'J) u G

O u

O

O -P •ri C U -ri

u o cr, a, XI a CO

tn 0 4J fd

o o x: 4-) 4J

CM

Page 148: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

136

CP c

• H

> i

arr

u ^

cn 0 tT'

TJ

0 +J -H cn 0 Ou 04 O

cn

o rH <

'O 0 Cn

• H ffi

0 • +J TJ fd fd r-i O

M n3 fd 0

r-i AJ 3 3 CnX> C-H

ic Recta

ly Distr

trop

form

o -H cn c M D

,„ ^

fd

M M

1

u C/3 < CJ

CN

1

o r-i

X CO

> 1

X oa

<N

1

o r-i X

CN

> 1

oa

p - 4

1

O r-i X

CM

X oa

CN

' o r-i X

X oa

eg 1

O r-i X

CN

3

J -1

O r-i X

«

L PQ fd

00 o o 00 rH i n CM <y> t r ro o ro O rH CM

o o o

o ^ o H CM 00 CN CM r o ^ rH t r rH ro in

o o o

t r o o r- r* vo (7^ rH r-t r rH <T> O r-i r-i

o o o

rH O O o o o KD <T\ r-i i n CM ro

O rH CN

vo ro vo o t r 00 CM O OJ o rH ro o o o

o o o

o o o OJ o o ro O rH OJ CN 00

o rH ro

CM ro t r

o o o

g ^

->

->

11

r > |

J

I

L ...'" I

"0

'~rr\

i ^

o r^ as o t r

o

o (N ro CN 00

o

r-i

r^ o ro o

o

o o ro vo

ro

o o o 00 o

o

o o t r ro

as

i n

o

J

o o t r 00

t r vo ro o vo as

o o

o o r» r r-i o ro in r-i t r

r-i r-i

o o t * ' 00 o r^ t j ' as t r in

o o

o o o o ro r-i CM r-i

in r^

o o 00 r^ i n r^ vo o r-i ro

o o

o o o o o o t r as

as i n r-i ro

vo r^

o o

,

L

r

0

'-^^ >

o o ro CN OI

r-i

o as t r vo t^

r-i

O VO cri r^ t^

o

o o 00 CM

<y\

o <y\ vo CN i n

o

o o o OJ

r-i VO

00

o

t

o o t r r^ 00 r^ r^ vo i n <y>

r-i r-i

o o t r <T\ OJ t r vo ro o ro

CM OI

o o CM vo vo r^ CO r-i as OJ

O r-i

o o o o o o r^ t r

rH "^ r-i r-i

o o rH VO 00 cr» t r as 00 OJ

O rH

o o o o o o 00 o

r* as <js t r

rH

as o

O rH

ro •

o

II

• >

o l ^ LO 00 ro

CM

o vo r* r» i n

CM

O r^

t r 1 ^ t r

r-i

o o o t r

t^ r^

o t^ ro r^ <T\

r^

O O O O

r^ rH CM

rH

r-i

Q

J-fd

cr s

II

5

o r-i r^ CM 00

OJ

o l ^ r^ 00 r^

OI

o 00 i n in r^

r-i

O o o r^

o CN

o 00 in CM

r

Ol

o o o o

i ^ o ro

OI

r-i

r—

o r^

00 00 CM

ro

o a\ ro vo <S\

OJ

o r CM vo o

Ol

o o o OJ

t f CM

o ro in r r

ro

o o o o

r-i OJ t r

ro

r^

o in t r t r r*

ro

o f^ vo o r^

ro

o 00 t r a\ ro

OJ

o o o o

CO CM

o r t r o r-i

i n

o o o o

in vo in

t r

r^

C M .

(d

C X

QQ

*

r—

c X

, 2

XT

f-

C

^

lU

^^ > 1

V

o ro ro i n CM

t r

00 CM r r-i OJ

ro

O rA CM in r

OJ

o o o o

CM ro

o OJ o VD

r-

vo

o o o o

ro t r r

i n

rH

o o as o r-i 00 in in r^ CM

t r i n

o o as vo vo r* cri t r CM ro

ro ro

o o vo CM t r OJ ro t r r-i i n

ro ro

o o o o o o ro <Ti

vo o ro t r

o o ro r-i r-i r^ a\ i n r*> OI

CO r-i r^

o o o o o o o o

o o vo CM as Ol

rH

vo r

r-i r-i

C ' > v

ty

^ > i

1

1 • H

c 3

VM O

o o t r t r o r»-r«- 00 r^ Ol

in vo

o o i n i n O 00 r^ vo ro ro

ro ro

o o CM CM i n ro r^ ro cr> t r

ro t r

o o o o o o 00 CSS

i n o t r LO

\

o o t r OJ vo vo crt 00 r-i vo

t r r^ rH f-i

o o o o o o o o o o ro o lo cr> rH r-i

CXi <3s

rH rH

cn M 0

• M-I C cn 0 0 tn u 0 c c c

(U . ^ Mi u fd

tn 0 4J

•• (C tn r-i 0 Ol 4J 0 ^ 2 rH

U 4-1 •H CL4J s:,-ri c 4-1 V4 H

U 0 g tn a U Xi

O r-i 00 o 00

vo

o in CM t r ro

ro

O t r vo r-i as

t r

o o o t r

vo i n

o o in 00

r-r-i OJ

o o o o o ro ro CN

o

CN

• cn 0 4J fd

r-i

a, 0

0 p 0 x: 4-1 C/5 4-)

— > CM

4J

Page 149: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

137

0 ^ 0 4 0J6 o l LO 12. r 4 16 18 2 0

Ratio B/a

CASE - 1 1 ( a )

Page 150: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

138

I

o r-i X CN

X oa

in o CM ro

ro Ol vo 00 OJ ro vo CM Ol r^

in in

ro cri vo o CM o

in ,-i vo OI tr r>-

OI in ro

c o i n c o o i n c o c M r ^ o i v o (Ss t r 'ro TT O CTi

00

00

ro vo tr tr o o vo tr rH

ro vo vo O rH ro CO

o Ol

CM CM OI rH OJ ro LO in vo vo

oa

1

o r-i

X ^ H

i n 0 0

vo CJN

CSS CSS CM

r^

ro O LO

00 OJ

CO vo

CM ro cr> Ol cri OJ

CSS OJ ro LO

r - i X^ CM CO vo VO

CM r^ CS\ Ol CM LO

OJ r-i VO

vo o^ o> in 00 LO

lO tr

lO OJ

o> <Ti vo CTi vo ro vo vo vo

CN ro ro ro tr

X

PQ

o (S\ o tr

o CSs tr

vo vo tr in

CSS in

vo r-i OJ OJ ro r-vo vo

in OJ OJ vo

in CSS r o r^ 00

i n o o t r r o v o r H O O c o r H r M r o L O r ^ o > r M t r r ~ ~ r H r ^ n H L O c r > r o o o c M v o i r H 0 0 < T > C r » C r i O O r H r H C M

LO CO ro CT« O O o in ro ^ r^ m t r CM rH 00 CM t r r^ ro in rH CN in 00 OI 00 in O O O O rH rH CM

o r^ VO t r ro

o r H CSs in t r

o in r^ CSs in

o OJ t r

vo i ^

o "«r O l

vo cn

o CSS t r CSs t-i

o CO t r

vo t r

o CTi t r

r--r

o CM CO CM r-i

O LO

r CM LO

o t r \SS

r> CSs

o r-i l O

r t r

CM CM CM r o

CN ro ** in vo r^ CO

o o o o o o o

as CM ro i n vo 00 C7

Ol

CN t o

V

o*

ro

Q

CM

fd 0.

c X ca

C C >i >i X

ca oa

I •H

c

tn u 0

M-l

II II

\_

r

V

C X

r.

— v / —

II _ _ _ / s _ _

c > l

— V —

'

c ' > 1

X s .

in 0 o m tn j-( 0 0 C

C C 0 .i«J © tn >-l U 4J 0 ftJ H D J 4-1 4->

x: -H c fd to 4J V_i H .H Q) U 0 cu 4J e cn Ol

•• m C ia 0 tn .-I o P O X OJ a< M-i c/] 4-> .u 4J

o - « — Z -H Ol

Page 151: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

rying

u fd

cn 0

Edg

0

sit

0 a O

cn c 0

r-i <

TJ 0

ing

E

cn 0 4-> fd

r-i P4

u fd

r H

P Cn C fd +J U 0 tf

u • H Cb 0 M 4J

o cn M

'o M M

1

u CO <

TJ fd o •^

Cn C

• H > i

VJ fd >

r H P H 0

I M • H J^ D

CN 1

O r-i X

CO

> 1 X oa

CO 1

o r-i

X (N

oa

CN 1

o r-i

X CM

X ca

CN

1

o r H

X (-H

X oa

CO

1

o r-i

X »

3

pa fd

i Z r U

.0436

1

vo r H CT> CO

O

t r CO CO CM

o

o r [ ^ t r

o

o r CSs r-i

o

o

CN

o

.1441

1

ro ro r-i

as r-i

0 0

ro o vo

o

o o 0 0 CSS

o

r ro r-i CSS

o

o

ro

o

X

cr '

tj TJ V 1 " il 1 J 1 J

1

L

.3150

t

i n

o r rH

ro

ro t r r» CSS

o

o o vo i n

r-i

o OJ

o vo OJ

o

t r

o

CD

.5520

.8420

1 1

r vo CM ro t r OI i n cs\

t r i n

t r t r r^ CN i n CM ro i*^

r-i r-i

o o o o r^ i n rH r^

CM CN

o o vo o i n i n vo ro in o

O r-i

i n vo

o o

J • \

) 0

CN

O < N _ 1

G-k

I - ^

T ^

1

r

o

A

.1170

r-i 1 1

as ro ro CM

r

ro O I i n o CM

o o r OJ

ro

O

r r» 0 0

vo

r-i

r*

o

B K

.5300

t-i 1 1

r-i VO OJ t r

0 0

0 0 CJ ro ro

O l

o o ro r ro

O 0 0

r CM i n

CM

0 0

o

.9100.

.3000

r-i OJ 1 1

O ro CT\ as r^ 00 t r ro

CSs o r H

i n t r t r CSs 0 0 0 0 i n r^

CM O I

o o o o ro vo r H t r

t j

o o r-i n i n

r^

cxs

o

t r

o vo O l

r-r-t r

o r-i

ro •

o

II

:>

7000

OJ

1

t r i n vo r-i

r H r-i

O

'^ uS <Ss

CM

o o ro r t r

o ro O

r r H

vo

r-i

r-i

a \

J -

fd cr c 3

II

c ^

1000

ro 1

o o OJ 0 0

r H r-i

VO 0 0 CS\

o

ro

o o vo CSs

t r

o vo i n t r r

r

CM

r-i

5100

ro 1

ro 0 0 vo ro

CN r-i

VO CM r-i OJ

ro

o o i n r-i

i n

o t r

c t r

<T»

ro

r-i

f~-

1

9200

3400

ro t r 1 1

CM t r i n t r OJ o 00 CM

OJ ro r-i r-i

vo CM in r-i O 00 ro ro

ro ro

o o o o O O I ro t r

i n LO

o o LO l O r-i t r r-i CJS t r t r

rH ro r H r-i

t r I O

r^i r-i

CN

fd

cr

a, c X > i

ca

f

C X

.s

7500

t r 1

O l 0 0 r H LO

ro r-i

LO O l t r t r

ro

o o O l l O

l O

o CTi CSs ro t~^

i n r-i

VO

r-i

\

> 1

X ca ca

V II ^

C > i

c' > 1

X s s

v/

1700

LO

1

ro r-r-« r

ro r-i

O l CM CSs t r

ro

o o r-i vo

l O

o vo l O t r r-i

0 0 r-i

[^

r-i

• • tn 0 4-) 0 2

5800

l O

1

0 0 o CSS as

ro r-i

t r CM ro l O

ro

O O t ^ vo

l O

o CM CSS

o r

o OJ

0 0

r-i

1 • H

C P

VM

0

0 u fd

cn 0 4J fd

•-i Cu

^^ r-i

139

0000

4200

vo vo 1 1

vo o vo r-i VO r-i r-i ro

t r t r r-i t-i

as ,H t r r-i vo cn l O l O

ro ro

o » o o o ro r^ c^ r^

l O LO

o o ro OJ as Tr Ol o t r ro

ro vo CM OJ

cri o

r-i rM

tn V: 0

• I M C tn 0 0 cn u 0 C C CI M © m U 4-> 0

• H O l 4J -IJ s: -ri C ri 4J J-l - H rH

U 0 Ju

e cn a V4 J 2 O 0 P 0 X

U_l CO 4J 4J

-^ CM

Page 152: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

140 ing

Carry

^

dges

site E

0 cu Ol

ong 0

r H

<

TJ

Fixe

cn 0 • -P TJ fd fd

rH 0 Cu i J

U TJ (d 0

r H 4-)

3 3 cn.Q C -ri fd >H 4-> 4-1 u cn 0 H ttJ Q

• H r H

a e 0 U U 0 4-) IJH 0 -H cn c: H D

(a)

H )—1

M

1

cn < CJ

CO 1

O rH X

CO

>1 X

oa

CO 1

o r-i

X <N

oa

CN 1

o i H

CN

X oa

CM 1

o r-i X

r-«

X oa

j -

1

o r-i

X CM

a

J -1

o r-i

X f^

a

CQ fd

i n 0 0 r H O

o

t r r^ CSs t r

o

r CSs

vo r-i

o

o t r 0 0 r-i

o

r-i ro r-i t r o

o

r-i t r t r o

o

CM

o

r H

i n 0 0

o o

vo o CS\

o r-i

ro r^i CX3

ro

o

o t r CM t r

o

o t r CSs

o CM

O

O CO CM CM

O

ro

o

>s

I

. 1 -^

- )

- )

- )

"1

^ > N

—T'

1

V-

o i n O I CM

o

t r CSs r-i CSS

r-i

O l

r--r-vo

o

o t r

vo r-

o

o o O l vo vo

o

o o 0 0 CM

r

t r

o

EO

o ro i n t r

o

o 0 0

r^ CSs

OJ

i n t r i n o r-i

O O O O I

r-i

O r-i CM r^

vo

r H

o o C3 r

r-i

i n

o

H "ysy^ 0

»H i ^ CN

0

- / T \

O V ^ V. V V

s •v s,

, 1

O VO 0 0

r« o

vo t r OJ OJ

t r

ro r-i r-i i n

r^

o o t r r~

r-i

o O I CSs O I ro

ro

o o O l f ^

ro

vo

O

-

o

o o ro CM

r-i

r^

t r o vo

i n

vo vo t r

o

OJ

o o 0 0 ro

CN

o t r ro t r r-i

vo

o o o CSs

vo

r-

o

m K

o o o o r-i r-i 00 i n

r-i CM

00 ro VO vo vo r o in

r^ CO

r^ ro o t r vo lO vo ro

CM r o

o o o o r^ t r r-i CSs

ro ro

o o vo CO o t r l O r-i t r r^

o vo r H r-i

o o o o o o 0 0 cri

r-i 0 0 r^ r^

CO CSs

o o

o o ro ro

ro

o CTi CSs

o

o r^

0 0 I ^ CM r-i

t r

o o vo CO

t r

o ro CSs

vo t r

LO CM

O O O 0 0

CO CM

O

t-i

ro •

O

II

P

o o vo OJ

t r

t ^ CM O l VD

r-i t-i

t ^ r-i CO CSs

t r

o o r«-CO

LO

o ro r r H ro

t ^ ro

O O O O

CM t r

r-i

r H

Q

J-

fd cr a II

5

o o r H ro

i n

o ro ro r-i

ro r-i

CM VO r-i as

i n

o o 0 0 CSS

VD

O

ro o ro CSs

CM LO

o o o t r

cr» l O

CM

r-i

r

r

\

O O i n t r

vo

i n r-i O I

vo

t r r-i

vo r-i

ro CSs

vo

o o r-r^

CO

o i n 0 0 t r

o

ro r

o o o r-r-i CO

ro

r-i

C X

ca

C X

s

o o CS\ vo

r

i n O l CO

o

vo r H

O I CO CN O

CO

O O vo t r

CSs

o i n CSs

r-t r

0 0

cr>

o o o o

o r-i r-i

t r

r-i

CN

fd cr

^^

c

o o r H

o

CSS

vo O r H i n

r r-i

ro vo o O I

cri

o o o CO

o r-i

o o vo CSs

o

o ro rA

o o o o t r t r t-i

i n

t-i

> i

ca s / -

II

C

o o o t r

o r-i

r-i

ro o cn

CO r^

o vo vo t r

o r-i

o o o ro

O l r H

O O O l t r 0 0

CO

vo r H

o o o o

vo 0 0 r H

VO

r-i

> 1

X ^ .

— S / -

c' > 1

X

o o o cn

r-i r-i

o i n i n CM

o OJ

o 0 0

o CO

r-i r-i

o o o cn ro r-i

o o CN CM

r LO r H CM

o o O O

VO

ro CM

r

r-i

.. tn 0 4-)

0

z..

o o o o o o l O r-i

ro i n r-i ,-i

as o ro i n vo Ol i n 0 0

r-i OJ O I OJ

O l CM Ol cn ro ro CM r^

ro t r r-i r H

o o o o o o l O CM

i n r^ r H r-i

t

o o o o r-i r-i r-i i n CO CM

r-i CO

p^ ro CM ro

o o o o o o o o

vo r en vo CM r o

CO cn

f - l r-i

1 cn •H VJ

C 0 ^ • U-i

tn Q)

re of

cknes

t n r

O O o CO

vo r-i

00 LO ro o

t r CM

r^

cn CM ro

VD r-i

o o o r-i

cn r-i

o o VD t r O l

vo r-i t r

o o o o

o l O t r

o

O l

C 0

C •

© cn 0

(d - H O l 4J 4J X H

tn 4-> V4 0 U 4J e cn <d 0 Q

r-i U ^ Cu y*-i U)

^-^ ^-» H O l

c fd • H r H 0 0.1

0 0 /z 4J 4-)

Page 153: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

141

50

10

1.0

o o

M| 10

2 ' " 0 1 ; ^ «•_ V . I

• 2 0 o o o 1 I

.01

.003

• -

II u

/ n

/

i J

1

s.

\ .

^

, ^ ^

r^ ^ '

<

x^

° '/

2 S

/ ^

JZ-

^^ ^

-**»?

*

n I w I I I u q

1 z ' s ' ® iiiH

- ^ ^

f J

1

•T B/4

a 1

y B

V = 0.3 W = a q a ^ / D

< My W ^y I "-V"xyJ 1, ^xyj

^xy<" Poi nt 3

0.0 0 2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 Ratio B/a

CASE - I I I ( a )

Page 154: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

142

tn c

•ri > 1 U u fd u

cn 0

TJ

u 0

4-> • H cn O 04 O tn c o

TJ 0 X

- H

cn 0 4-> . fd TJ

rH fd a< o

1^ u fd TJ

rH 0

Cn fd C n fd +) -p C u 0 0 o

O

o u •ri ChrH o fd u u -p +j o c CO 0 M u

XJ

I o r-i X

CM > 1 X oa

CO

I O r-i X

s ca"

X oa

X

m fd

t r 00

in vo ro cn

o o

o <n CM

o o in o

o o

00

o o t r in

• CM

I

O O cn cn

• OI I

o o o o r-i t r CN OI

• • ro ro I I

o o CM

ro I

o o cn

o o cn

CO i n

OI I

Ol I

o o ro Ol

• CM

I

O O t r 00

o o t r t r

o o ro o

o i n OJ CN vo CM

o o ro CM

o I

o I

C N r o v o r o c n r o o o r ^ c M v o < T > i H o o t r r o c n r o i n r H i n t r o t r o o r o r H i n . t r o o i r H O O r O r ^ r H t r V O O O O r H

tr ro CM OI

ro cn cn OI

rH ( in ro

cn cn cn ro

cn o ro tr

Ol r 00 r-CM in CM tr LO vo r r*-tr tr tr tr

rH CM CN ro ro ro ro

o o c N C N C M r ^ - r ^ c o r o c M i o t r v o r o c N i o c n r ^ o o v o c n r o r o r o f o o o o o c n i n o ~ r ^ i n r o o v o t r c n r o v o c n r H r o i n r ^ c n

i n c N r ^ i n c n r o r ^ i H r H c n r ^ r ^ o o c M r ^ i n r ^ r o o ^ ^ t r c N o ^ ^ ^ o c M t r i o r ^ - c n Q C M

CN ro ro i n i n i n i n i n v o v o v o v o v o v o

CO r^ cn ro in CM o cn o tr O rH

r^ o tr

cn in ro cn rH ro rH o cn OI

tr vo

O r H C N r H i n m r o t r o t r i n r o r H r o c N t r i ^ r H t r r o t r o i n o O N C N O O t r o o c n r o c n ' ^ v o r H c o O O O V O O ^ C O L O r H l O O i n C M O

r H C M r o i n v o c n r H L n 00 CM rH CM CM

ro ro

o r tr tr

vo in vo CO in vo r 00

c M r o t r i n v o r ^ o o c n o

O O O O O O O O r H

c M r o t r i n v o r ^ c s D c n o

r - i r - i r - i r - i r - i r - i t - i r - i C < t

M

Ui <

u

^ V

»

,

O

-•-m^

CM fd

ro CU • C

o a

:> ^

04

/ "^ X

c c c X > i > i

ca ca X ca , II

-A , V -

c X

s s sr

C

s

c X

cn 0 4J

o 2

V4H

o 0 U fd tn 0 4J fd

r H

a,

— r tn tn 0 C

u •ri

x: 4-»

e u o

VM • H C

I 9 0 U 4J

c C H o a 4J

a, V4 4 J u tn tn XI 3

U 0

CO U-i

cn 0 4J fd

a 0 x: 4J

c o

CM

Page 155: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

143

t7» C

•ri

>i

U u fd u

Idge

s

w 0 4J •ri

cn 0 a 04

o

0 rH <

TJ 0 X •H EM

cn 0

lat

P4 • 'd

u fd fd o rH ^ ^ cn cn C C fd -H -P >i u U 0 fd

a > O >i -H r-i CUB O H

M o 4J m 0 H cn c M D

u

H H M

1

w cn < o

CO

1

o r-i

X CO

>.

X oa

CO f

o r-i X IN >1

ca

CM 1

o t-i

X CM

oa

CN 1

o r-i

X i-H

X ca

J-1

o r-i

X • — •

a

1

PQ fd

vo CN 00 O

O

1

r* cn o ro o

cn r^

o r-i

O

o r-i

r r-i

<Z3

in r-i tr

o o

CM

o

cr 1

1/ K y 1 h /I n Q

tr r-i 00 CN

O

1

r-* ro cn vo o

r-i in OJ OI

o

o vo r ro O

cn tr

o OI

o

ro

o

1

in

r* vo vo o 1

in

vo r-i OJ

r-i

cn 00 00

ro o

o cn ro vo

o

tn in CM vo

o

tr

o

II

\

\ N

> N N

>

r* 00

r« OJ

t-i

1

in in

vo 00

r-i

r-in 00 in

o

o ro in

cn

o

ro r vo tr

r-i

in

o

•u

>

*i col

0 r^^

'1

^ o>.

^ T ^C" *

r m m r-i

OJ

1

OI OJ OJ

vo Ol

OJ

vo o CO

o

o o o ro H

ro OJ r-i <SS

OI

vo

o

*', V >* < ^

>.

\ •v

•^ \

in

r ro OI

ro

1

vo cn in tr

ro

OJ r-i tr

o r-i

O

o r vo rH

r-i VO tr rH

in

r->

o

1

o

ro cn tr cn 00 in in r-i

tr vo

1 1

tr CO vo Ol tr LO ro OJ

tr in

ro t-i CM Ol 00 CM OJ in

r-i r-i

o o o o vo tr o tr

CN CM

in o tr tr tr vo ro vo

00 CM r-i

00 cn

o o

K

•r ro tr

cn r 1

in

ro in r-i

vo

o in in

r-r-i

O

o r-i 00

CM

r^ CO

ro CM

00 rH

O

r-i

Q \ J-

ro •

o II

• >

fd cr c

a II

c 5

o r^ r-i

cn cn 1

tr CO OJ

o r~»

tr vo r-» cn r^i

o o vo r^

ro

o ro r r-i

in CM

r-i

r-i

r c X

^oa

(

X v^

vo r^ in r-i ro cn O CM

CM tr r-i r^ 1 1

cn CM Ol t^ vo tr 00 vo

r^ CO

ro cn ro ro CO r^ r^ ro

CM CN

O O O O cn cn tr r~*

ro ro

tr rH r-i tr

in ro in tr

ro ro ro tr

OI ro

r-i r-i

CN

fd

cr"

i/N

c > 1

ca N/ II ^

c >1

s V

ro CN in vo

vo r-i \

r-i in r ro cn

OJ

r tr in

CM

o O i

r-o tr

<-i (

ro vo 00

tr in

tr

r-i

^ Ci > i

X °^ /

c' >1

X s

tr vo cn o

cn r-i 1

in

ro ^ O •

o r-i

H r^

o r rM

o o 'M no

•r

-o vO DO 30

r-^

in

r-i

• • tn 0 4-> 0 2

00 CM O VO

r-i CM 1

VO r^ in vo o r-i

o OJ tr CO

OJ

o o in in

tr

cn 00 in tr

CM 00

vo

r-i

IM 0

0 U fd

tn 0 4-1 fd

r-i

Cu

-» r-i

r-i ^ LO ,-i

tr CM 1

OJ O O OI

r-i r-i

00 tr

vo cn OI

o o tr

r tr

ro tr 00

vo 00

cn

r-

r-i

cn cn 0 1 C 0 M u u •H c X 4J 4J

a e-H u u 0 u u-i tn •H X) c d 3 cn

Ol

in in ro r>» vo CM 1

00 r-i

cn vo rH r-i

in Ol

ro o ro

o o CM

cn tr

o LO ro tr

vo r-i r-i

00

r-i

C

0 -M C •H

O

lO tr ro ro

cn CM i

ro cn CM r-i

OJ r-i

lO VO VO r-i

ro

o o r o lO

o r-r-i CO

in

ro r-i

cn

r-i

cn 0 4-> fd

OU rH

o 4J

cn u 0 U-l

a 0

x: 4->

C 0

CN rH tr cn r-i

ro 1

tr vo r-i in

OI r-i

cn t^ tr Ol

ro

h

o o rH OJ

in

o in 00

r-VD in r-i

o

CN

Page 156: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

144

TJ 0

•P

U 0 Cu a :3 cn

u 0 c u 0 u

• TJ TJ c fd fd 0

1 0 cnTJ TJ 0 W 4-)

3 0 .Q C -H

O u 4-) &> cn C -H O Q rH < >i

rH

ixed

form

|JL| •ri

c CO D 0 •P tn fd c

r-i -ri

VJ U U fd fd rH U :3 cn -C 0 fd cn 4J -d u W 0 p 0

-P

opic

posi

VJ a -P o 0 cn 4-> M fd

^^ fd

> M

1

M cn <

"

CM 1

o rH X

J-

>1

X ca

CN

O r-i

X in

X oa

^H

o r-i

X CO

X oa

"1 o r-i

X •-* >1

oa

CO 1

o r-i

X CN a

CO 1

o t-i

X •-H

a

CQ fd

in 00 r tr

o

in OI ro CM

O

1

r 00 cn r-i

o 1

vo r-i as o

o

in CX) CN r-i

O

CX) r-i cn rH

O

OI

o

or —t

-i

*-r

CM in CM H

rH

00 ro 00 cn

r-i

r ro in ro vo o CN o

o o

1 1

cn r in vo O r-i tr vo

o o 1 1

in cn ro t-i tr ro in in

O t-i

vo vo tr ro in c in ro

O rH

r-i O

cn cn r-i cn 00 cn

O r-i

ro tr

o o

il i

>

N

>

00 in in cn

OI

CM ro tr in

o

+

cn CO cn r

o 1

ro CO o cn

CM

cn cn o in

CN

in o 00 in

ro

in

o

L -^-^ M

CN

• * ^ >o J ) d

K

• * / -

f^ —

T • 1

r-v TT 00 r in tr cn cn

ro tr

vo cn vo LO o ro ro CM

r-i Ol

+ +

LO VO o vo lO 00 cn o

O ,-i 1 1

OI r-vo tr CN O tr cn

tr in

vto r^ r-i O ro vo CO OJ

ro LO

cn ro ro vo r-i O

ro o

in r

vo r

o o

>1

>

'

1

o

tr OJ vo in o ro cn 00

in vo

tr tr CO r O r-i ro in

ro tr

+

tr o in r-i CM 00 OI ro

r-i r-i

1 1

tr o o r~-vo r-CM tr

r>- CO

vo ro tr in o ro CO in

vo 00

vo vo in cn vo vo in cn

00 cn

00 cn

O (

<

o

cn CO ro r

r*

ro OJ vo 00

in

CM CN VO in

r-i

1

r-i

cn vo in

cn

cn rH vo in

o r-i

CM tr ro OI

r^ r-i

O

r-i

in ro CM VO

00

CN tr tr ro

r

00 ro r-r r^

1

r-i

O VO in

o r-i

cn CM r-i

O

ro t-i

in tr 00 ro

Ol r-i

t-i

t-i

Q V. J

ro •

o II

7>

fd cr c

a II

r: 5

r ro cn tr

cn

vo ro vo cn

CO

r-i

CO r-i

o

Ol 1

CM OJ r tr

r-i r-i

in vo OJ o

VD r^

r tr tr tr

ro r^

CN

r-i

tr ro in ro

o r-i

r-i r-i

CM r

o r-i

O

VO cn OJ

Ol 1

cn ro OI ro

Ol rH

cn cn tr t

cn r-i

<n in ro tr

tr r-i

ro

rH

f

c X

ca

r

V

vo in o CM

r-i r-i

cn vo r-i

VO

Ol ,-i

vo r o vo

CM 1

ro cn CM r-i

ro r-i

CM r-ro ro

tr CM

en ro r ro

in r-i

tr

r-i

N fd cr jf^

c > i

ca

C X

«

\ II

C > i

z

OJ CM in o

Ol r-i

o r-i

in vo

tr r-i

in CM in cn

CM 1

cn CO cn 00

ro r-i

00 o in cn

cn OI

in o o-CM

vo r-i

LO

rH

>1

X ca

C

X tr"

VO O tr ro cn ro 00 r~-

Ol ro ,-i r-i

CM in tr in OI ro CO r-i

vo cn r-i ,-i

O r-i ro o o tr ro r

ro ro 1 1

tr Ol o cn tr LO VD ro

tr LO r-i rH

ro ro OJ rH VD LO r^ cn

vo tr ro tr

r~ in tr CM ro r-r-i cn

r-i r-i

VO r^

r-

\

;

I

H r-i

UH 0

0 u fd

tn 0 4J

•• (T3 tn r-i

0 cu 4-) 0 — 2 ^

f^ rH o tr r- o in tr

tr in r-i rH

vo ro vo vo 00 r^ in r*-

r^ tr

CM CM

VO ,-i r^ tr

00 lO r-i vo

tr tr 1 i

o tr r^ r--vo tr o r-

vo vo rH r-i

L_

tr lo CM ro r-i tr

r- CM

tr vo lO vo

lo tr o o cn cn r~ lo 00 cn r-i r-i

00 cn

• tn tn u. tn 0 Q) UH C C 0 0 .y u u c •H c

x: © 4-) 4-) ai4J

V4 VJ H

nifo

ubsc

o po

3 cn 4J

_ ^ j

lO vo ro Ol

vo r-i

o lO o cn

VD CM

o r lO r-i

LO 1

o OJ CN tr

r r-i

CO 00 lO t cn r

LO VO r~-ro

OJ

O

tn 0 xi fd

a 0 x: 4J

Page 157: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

145

^ J 0 1 3 c «d VJ 0 CJ •—1 U

tr fd c: c-ri fd > i

VJ 0 'd \j\>

T I W > i

r-i

0 ^ c ft O 0

MH CT-H C C O D

r H

< cn C

73 -H 0 >) X 5H

-H VI P4 fd

U cn 0 --P 0 fd cn

rH TJ cu w

Vt 0 fd -P

r-i -ri :3 cn cn 0 C cu fd cu 4-) o u 0 -P a fd

O TJ

Isotropi

Supporte

£

ASE -

U

CN

O r-i

X J-

> 1

X oa

CM 1

o r-i X

m

X oa

CN 1

o f H X

CN

> 1 oa

J-1

o r-i

0-*

a

PQ fd

o o t r Ol CN CM ro vo

o o

-o o vo o t r cn r-> r^

O r-i

1

o < i n 1 o ro '

o <

o vo t r vo

o

CN

o

1

o r--z> s)

o

o o ^ ^

r-i

ro

o

>*

1 cr '

[^

7 . •/ ] s

1 ' \* CO?

^ N '—r-

)

o r-i

ro cn

o

o o Ol r r-i

1

o t r 0 0 0 0

o

o o i n vo

CM

t r

o

(S

T -5l CO 1

o o o o in r CM i n

H r-i

o o O O 00 i n ro r-i

Ol ro

1 1

o o o o r-i CO r-i OI

r-i rH

o o a o i n in t r o

ro t r

i n vo

o o

,1

— C

f< li ) )

1

0

i

•*

o o o cn r-i

o o o o

t r

1

o cr r-i t r

r-i

o o OJ i n

t r

r-

o

•M X

o o i n CM

O I

o o cn CO

t r

1

o o CM in

r-i

o o r-0 0

t r

0 0

o

o o o o r-i 00 vo cn

CN CM

o o o o OI vo 00 [^

in vo

1 1

o o o o o vo vo vo r-i r-i

o o o o t r i n r-i cn

in in

en o

O r-i

ro o

II

• >

o o vo ro

ro

o o o r-

r-> 1

o o ,-i p^

r-i

O O r-i i n

i n

r-i

r-i

Q

J-

fd

cr a II

c 5

o o t r

r

ro

o o t r

vo CO

1

o o t t

r r H

o o CM

vo in

O l

r-i

^

o o ro r-i

t r

o o r*< in

cn 1

o o r r-* r H

o o r-i

r-in

ro

r-i

C X

cd

n

c X

o o ro in

t r

o o o in

o t-i 1

o o o 0 0

r-i

o o r-t->-

i n

t r

r-i

CN

fd XT

^ .

c > 1

ca

II , » •

c > l

2 — v ^

o o ro cn

t r

o o o t r

r-i r-i 1

o o CM 0 0

,-i

O O OJ 0 0

i n

i n

r-i

O O

ro ro i n

o o o ro

OJ r-i 1

o o ro 00

r-i

o o i n CO

i n

vo

r H

c' >> X

^ ,

c' >^ X

2 /

o o o o ro ro r - r-i

in vo

o o o o o o OJ o

ro t r r-i r-i 1 1

o o o o in vo 00 CO

r-i r-i

o o o o r cn CO CO

i n i n

r - 00

r-i r-i

m

tn in 0

IJH M

re o

thic

fd

tn u 0 0 4J U-i

tn rH c

4-1

0 — 2 - t

o o o o - ^ t r LO cn

vo vo

o o o o o o cn r t r i n r-i rH 1 1

o o o o [^ 00 00' CO

r-i r-i

o o o o O r-i cn cn i n i n

cn o

r-i Ol

tn VJ 0

IJH C 0 0 Vi

C C

© tn 4J Q) a - u 4J

•H c fd

u 0 a tn a, ,Q 0 D 0 n cn -p 4J

"" CM

Page 158: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

146 o

ng

H

ng

ed A

•H

Idge

an

d

Lo

ad

.

TJ 0 0 C! +J

>ng

0

:rib

u

U 4J

r-i cn < •ri

Q TJ 0 >i X r-i •H g |J4 Vl

0 cn ijH

0 -H -P c fd D rH 04 tn

c: Vl -H <d >i rH Vl 3 Vl cn fd C L) fd 4J -

O 0 0 tj> 0^ TJ u o -H 0

04-P

0 -H VJ tn -P 0 0 O4 cn O4 H 0

' " » •

fd

>

1

u cn

u

CO 1

0 r-i X J->1

X oa

CM 1

0 r-i

X CO

X oa

CO 1

0 rH

X •-H

>1 oa

CN 1

0 r-i

X H

X oa

J-' 0 r-i X

CM

a

J-' 0 I-H X *—*

a

pq fd

vo CN r** 0 ro r-i r-i in

0 0 tr 0 CN as in r-i

0 r^i

1 1

ro rH 00 00

r-i cn 00 r*

0 r-i

tr r^ CN tr 00 ro

CN vo

0 0

r- 0 c\ cr c

c

vo tr 00 0

0

CM

0

cn \ r^ » tr

0

00 00 CN tr

0

ro 0

X

tr

r in r-i

r-i

0 0 0 r-i

CM

1

CM VO in ,-i

cn

cn tr CN r-i

r-i

0 0

ro in

r-i

00 CM-in ro r-i

tr

0

.1 ^

-*

->

->

-)

\ \ \ N N \

V S

"-T- CO*;

• •

CM

i '

0 J n 1

1 ^

vo cn 00 0 00 r-i

0 ro CN ro

0 0 0 0 tr r-i OJ vo

ro tr

1 1

tr 00

r*- in tr 00 00 p-

tr vo

cn CM 00 in tj • 0 r* in

r-i CM

0

c 10 r>

m

CN cn 00 CN

ro

in

0

1

,

^ '

0 0

cn c

r--

r-i in en t^

vo

vo 0

,

0

,*^ 'cn 01 00

tr

0 0 0 og

vo

1

0 CM CO 00

00

tr tr

en ro

ro

0 0 0 in

tr r-i

vo r-i vo in

CM r-i

r 0

_ ^ ^

tr 0 OJ vo vo

0 0 cn cn r-

1

tr r in 0

r-i r-i

LO r r-i tr

tr

0 0 0 r

tr OJ

tr r-i OJ tr

rH OJ

00

0

CM 0 00 VO

00

0 0 0 0

0 r-i I

VO cn tr CM

ro r-i

CO 10 r LO

in

0 0 0 tr

cn ro

rH OJ in ro tr ro

cn 0

ro •

0

II

p

vo ro r-i 00

00 cn cn tr

0 ro r-i r-i

0 0 0 0 0 0 CM VO

OJ tr ,-i r-i 1 1

0 0 00 cn 0 cn tr tr

in r>-r-i rH

tr CN 0 01 r 0 00 ro

vo 00

0 0 0 0 0 0 0 vo

0 r--VO CO

r^ CM LO 0 r^ vo tr 0

01 c^ in p"-

0 r-i

rH r-i

Q \ J-

fd cr C

a II

c 5

0 r 0 OJ

vo r-i

0 0 0 01

r-r-i 1

00 ro cn tr

cn r-i

00 r-i r 00

cn

0 0 0 0

tr OJ rH

0 in n-i in

en 0 ,-i

CM

rH

r

c X , ^

f

c X

I

r^ in OJ vo 00 0 0 rH

cn CM r-i CN

0 0 0 0 0 0 0 cn

0 CN 01 CM 1 1

in vo in cn t^ CM ro r-i

r-i cn OJ OJ

0 ro 0 r-00 01 in tr

r-i cn rH r-i

0 0 0 0 0 0 0 0

0 00 r^ CN r-i 01

0 0 tr rH cn cn ro ro

rH tr in 0 r-i CM

ro "^

r-i iH

CM

fd

cr

y»\.

c > 1

0 cn in 01

in OJ

0 0 0 0

vo OJ 1

00 00 tr r

tr CM

r-i tr r-i tr

in r-i

0 < 0 i 0 < 0 <

0 1 0 ( ro (

0 tr CM in

CO OJ

0 0 0 tr

en OJ 1

vo r CM CN

VO CM

0 r-i tr LO

r r-i

a 0 0 0

• 30 •n

0 0 CM tr tr CM ro 01

0 r-i r^ in CM ro

10 vo

r-i r-i

> 1

X ca ca

• V

II • ^ .

C > i

X ^ ^

^ ;

• •

tn 0 4-J 0 2

^ CM VO vo 00 ro 00 ro

r-i 10 ro ro

0 0 0 0 0 0 cn vo

01 vo ro ro 1 1

0 ro tr tr vo 10 in r^

r^ CO OJ OJ

00 r-i r~ vo 0 r-i CO CN

cn CM r-i OJ

0 0 0 0 0 0 0 0

CM r^ cn r-i tr vo

0 0 r-i VO

tr 0-r-i m

cn vo tr vo tr in

r^ CO

r-i r-i

t cn •H Vl C 0 ^ . VM

tn Qj ijH cn Vl

0 0

0 M Vl U 4J

0 VO as [*v in tr 00 tr

00 01 ro tr

0 0 0 0 0 0 in vo

0 tr tr tr 1 1

cn 0 0 ro 0 0 00 r^

en 0 01 ro

cn CO tr tr vo in r^ tr

tr t CM OJ

k

0 0 0 0 0 0 0 0

tr r» vo ro p^ cn

0 0 cn 00 en LO CM tr

LO 00 0 vo r-* CO

cn 0 r-i CM

C 0

© tn 0

fd -H a 4 J 4J x: H

cn 4-) Vl 0 CJ •*-* G cn fd C XI rH 0 3 Ol «4H cn

^ - — r-i CN

c fd •H rH 0 a a

0 0 X 4J 4J

Page 159: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

147

Cn

c o n-i <

Hinged

and

ne Edge

Load.

O cn

c -r-i 0 >,

r-i U < fd

> 'd 0 > i X r-i

"•"I p fa u

o cn i+H 0 -H H-J c: fd D

,-i cu tn

c VJ - H

cd > i rH VJ :3 Vl Cn fd C CJ fd •p •. O 0 0 Cn « TJ

w u

•H 0 O 4 - P 0 - H Vl cn -P 0

0 a cn a M 0

.. XI * — •

>

1

pa cn <

CO 1

0 r^ X

> 1 X

oa

CO 1

0 r-i X

CO

> 1 oa

CM 1

0 r-i

X CM

X oa

CM

1

0 r-i X

^H

X oa

J -1

0 r-i X

I - H

a

1 OQ fd

1

1

L

CD

r-" t^ CM

0

t r r-i i n

0

0

r-00 t r

0

1

0 rH 00 CM

0

00 ro 00 0

0

CN

0

0

as i n 00

0 0 ro r-i

r-i

0 0 i n 0

r-i

1

0 cn en in

0

in t r 0 t r

0

ro

0

^

1 a- '

V v V J ^ 4 ^ /I H ^ 1 *• csli

0 0 ro CO

r-i

0 0 in cn

H

0 0 00

r r-i

1

0 00 cn cn

0

0 t r 0 CN

n-i

t r

0

di

0 0 r-i CN

ro

0 0 CN cn

OJ

0 0 in vo

CN

1

0 0 in t r

,-i

cn vo t r p«»

CN

i n

0

. 1 ^

tt

CM

" Q

n.

r0

^f

,

. 1 " »

0 0 r-i 0

in

0 0 cn cn

ro

0 0 ,-i vo

ro

1

0 0 CM cn

r-i

VO 00 00 CM

LO

VO

0

~

0

0 0 r-i 01

r

0 0 0 r-i

10

0 0 VO VO

t r

1

0 0 cn ro

01

vo r»-t r 0

en

r^

0

0 0 00

r cn

0 0 cn rH

vo

0 0

r r--10

1

0 0 t r 00

CN

0 01 cn r-i

t r r-i

CO

0

0 0 0

c OJ r-i

0 0 t r 01

r

0 0 CN cn

vo

1

0 0 vo CM

ro

in CO ro 00

0 CM

cn

0

0 0 0 00

in r-i

0 0 OJ CN

00

0 0 00 0

00

1

0 0 t r vo

ro

r« en i n 0

cn OJ

0

r-i

cn t

0

II

p

0 0 0 OJ

CSs H

0 0 OJ r-i

cn

0 0 vo CM

0^

1

0 0 00 cn

ro

t r ro cn CO

00 ro

r-i

r-i

a \ a-fd cr

c a II

c 5

0 0 0 r CN 01

0 0 CM cn

cn

0 0 0 t r

0 r-i 1

0 0 CO 0 1

t r

r 01 in ro

0 in

CM

r-i

r

0 0 0 t r

vo CM

0 0 0 VO

0 r-i

0 0 0 VO

r^ r-i 1

0 0 t r in

t r

00 t r ro t r

ro vo

ro

rH

0 0 0 0 1

0 ro

0 0 0 ro

r-i r-i

0 0 0 00

OJ rH 1

0 0 l^ r t r

rH in 01 r^

00 r

t r

r-i

CM

c X

, C Q

t~~

G X

V

Id

cr

c > i

ca • ~ s / —

II ^

C

s — V '

0 0 0 0 0 0 r-i 0

t r ro ro ro

0 0 0 0 0 0 00 ro

r-i CN r-i r-i

0 0 0 0 0 0 cn 0

ro in r^ r-i 1 1

0 0 0 0 vo CM cn r-i

t r i n

ro 0 vo vo 0 i n t r CM

t r 01 cn r-i

r-i

LO vo

rH r-i

c' > 1

X ^ .

c* > l

X J

• tf:

a 4-c 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rH

CN VO 0 t r tr tr in in

0 0 0 0 0 0 0 0 0 0 0 0 1^ 0 ro vo

CN ro ro ro r-i r-i r-i r-i

0 0 0 0 0 0 0 0 0 0 0 0 rH CN ro t r

vo r^ CO cn r-i r-i r-i r-i 1 1 1 1 i 1 i 1

0 0 0 0 0 0 c \ 0 vo t^ r^ in CM ro t r LO

10 10 LO i n

0 0 0 0 in 0 in ro i n CO rH t r vo in 0 cn

rH CM i n 00 ro in r» cn r-i r-i r-i ,-i

r^ 00 cn 0

r-i r-i n-i C<t

. tn tn VJ tn Qj 0 MH C C 0 0

MH .X Vl 0 u C

•H C 0 x : ® tn Vl 4-1 4-1 0 Id a -u 4-1

g H c fd tn VJ M -H rH 0 0 u 0 a 4-1 MH tn Ol fd H Xl 0

rH c 3 0 x : cu 3 cn 4J 4J

^ ^ ^ - v

rH CN

Page 160: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

148

• ti fd 0

1 - ^

73 0

Vl 4J 0 3 C Xi U -ri ^\ 1 • O VJ U -P

CO TJ -H C Q fd

> i 0 r-i

tn e TJ u W 0

MH 0 -H c c O P

cn cn c c 0 -H

rH > 1 < VJ

Vl TJ cd 0 u tn c •>

•ri 0 ffi cn

TJ

0 u 4J fd 0

rH 4-1 CU - H

CO VJ 0 fd O4

r-i Ot 3 0 Cn c 0 «d x: +J 4J 0 0 -p a fd

0 TJ

ropi

orte

•p O4 0 O4 CO 0

M cn

Id 1—1 >

1 1

CASE

y-4 1 1

0 rH X

CO

> l

X oa

f - i

1

0 rH X

CM

X oa

^H 1

0 r-i X

t-*

> 1 oa

CN

1

0 rH X

(-« a

PQ fd

00

ro CM CN

0

r-00 t r 0

0

0 1 CM ro r-i

0

ro i n vo r-i

0

CM

0

00 0 ro ro 0

cn vo 0 ,-i

0

0 r-r* CM

0

CM r*» ro ro

0

ro

0

> s

i

.

- 1

- i

-^

- )

—T- ^

1

'

OI

r» ro t r

0

H in 00 r-i

0

r-i m t r t r

0

i n 0 ro i n

0

t r

0

0 0

CM

0

t r ro ro 0 t r in in vo

0 0

CM vo in cn 00 0 CM t r

0 0

CM 00 0 r« r^ VO VO r-

0 0

cn ro ro vo 01 0 r«- cn

0 0

in vo

0 0

^ C

f O

~

)

A\

,

0

'

cn r^ i n t^

0

0 0 vo m

0

t r CM rH cn

0

t r ro r>-0

r-i

r-

0

• X

t r in vo i n vo r* 00 cn

0 0

i n rH rH r-i cn t r r^ cn

0 0

OJ 00 t r t r t r vo 0 r-i

r-i r-i

0 in r^ r-o j vo OI ro

r-i r-i

00 cn

0 0

1

OJ i n 00 0

r-i

VO r-i

r» r-i

r-i

0 1 VO r^ CM

r-i

i n r^ cn t r

r-i

0

rH

ro •

0

II

p

t r i n cn r-i

r-i

VO 00 01 t r

r-i

i n 0 00 ro

r-i

i n cn r-i vo r-i

rH

rH

Q \ •J-

fd

cr ^

Ii

c 5

cn i n 0 ro

r-i

r r-i rH r

r-i

cn cn r-t r

rH

01 i n ro r-r-i

0 1

r-i

/~—

00 00 vo r>» r-i CM t r in

r-i r-i

r-i CN r^ in OJ i n 0 ro

CM CM

CO CM ro in r~ vo in vo

r-i r-i

r-i cn vo ro t r i n 00 cn

rH r-i

cn t r

r-i r-i

CN

fd

tr A

c c X >i jCd ca

r~

X \^

> •

II

c c X > i

s ^

0 cn ro vo

,-i

CN tn r-i r~»

01

r-i t r in r* r-i

r* r^ i n 0

CM

i n

r-i

c > 1

X oa

C > X

s

CN ro r>-0 rH 01 i n vo r*» r^ 00 cn

r-i r-i r-i

0 00 i n 0 0 vo 0 rH t r rH in cn

ro ro ro

o-r—

tJ

) 0 00 1 r - r-i

CM r-i 00 cn 0

r-

C

1 rH OJ

> r- ro 0 0 0 vc ) vo vo rH OJ ro

CN 1 01 CM

vo r» 00

r-

S

>

S

i

i t-i r-i

• CO cn

00 0 ro 0 00 i n 0 cn

01 t-i

0 r« r-« CM 0 cn t r 00

t r t r

vo cn i n 00

cn r 0 r-i

OJ 01

k

0 vo cn vo i n LO t r i n

CM 01

cn 0

r-i CM

cn VJ

0 0 MH C C

IM X

re 0

thic

fd

cn Vl 0 0 4-) MH

•• fd -H cn rH c 0 CU :3 +J 0 ' -2 r-i

0 0 U

C

0 tn 4J 0 O4-P 4J

•H c fd Vl -H rH u 0 a cn Ol XJ 0 D 0 x : cn 4J 4J

- OJ

Page 161: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

149

Vl 0 c VJ O U

-d c

TJ fd o

cn c •ri > 1 Vl fd

fd >

0 > i Cn rH

TJ S w u

O 0 MH a -H o c

D tn C cn O C

r-i -ri < > 1

VJ TJ Vl 0 fd CnU C!

•H ^ m 0

cn CO TJ 0 W •P fd 0

rH 4J CU •ri

cn VJ O fd O4

r-i O4 ^ O cn C 0 fd x : +J 4-> o 0 +J « Id U TJ

•H 0 O4-P O Vl

CN I

o r-i X

oa

CO

X

CM I

o r-i X

oa

CN

> 1

CM I

O ,-i X

ca X

CN

o r-i X

0 0 0 0 0 0 0 0 0 0 r o r o o o o o o o o o t r t ^ c M c n r ^ v o v o v o r ^ o o v o o ^ r o v o o t r o o c M v o o

0 0 0 o o :J) o rH ro LO cn ro

0 0 0 0 0 0 t r vo r^ r-- rH 10

0 0 0 0 0 0 cn o 01 cn t r CO

OJ CM CN ro ro lO 10 vo VD

VO

ro vo

10 O

00 tr 00 ro

tr 01 ro vo

01

00

vo o tr en

vo rH ro o

vo in cn o

vo 0 tr r-i

tr 01

r r-i

r-i in

cn rH

00 r-i r-i 01

C^ tr 01 OJ

ro tr

ro OJ

in OJ tr CM

0 0 in 01

C M C M C N C N O I C M C M C N C M C M

VO

2564

01

r>

2627

01

r*

2690

01

rH 00 CM in ro ro vo in o CM in cn

01 tr

OJ

vo in ro vo

o CO vo cn

vo OJ

tr tr r-i in

cn

OJ vo o cn

tr ro in o

in tr

OJ

vo tr in ro

tr o OJ tr

o tr

tr

ro

r-i in

ro CM in in

CO in

C M C M C M C N r o r o r ^ r o r o r o r o r o r o

o o o o tn r vo r^

o o

vo

o o ro ro

O O OJ 00

o o vo

o o o tr

o o in

o o cn vo

o o

o o CN 00

o o vo 00

o o 00 00

o o o cn

o o

o o

cn cn

o o OJ cn

o Q 01 en

o o OJ cn

CM ro tr in in in in in LO LO IT: in in in in LO 10

CN

I

o r-i

X a

o o in o 00 ro 00 r^

o o CO cn

o o o en

o o

o o o vo

o o o vo

o o o 1^

o o o cn

o o o CM

o o o

o o o

o o o vo

o o o

o o o in

o o o o

o o o o

o o o o

o o o o

CM tr vo CM cn rH CN OJ

00 ro tr

CO in

cn CM vo CO

in cn

10 CM

01 cn tr 10

VJ 4-> O cn

O O* O4 :3

m fd C M r o t r i o v o r ^ o o c n o

O O O O O O O O r H

c N r o t r i o v o r - ^ o o c n o

r - i r - i r - i r - i r - i r - i r - i r - i C ^

Hi— VJ 0

M-I C 0 O H cn

x>

w cn < u

cr I

I n

fd cr

ro

o

fd cr

c a

X oa

C C > i > i X

ca oa - ^ 1

X

c > i X

— V '

MH

o 0 Vl fd

cn 0 4J

•• fd tn r-i 0 cu -ul

O —

cn tn 0 c u

• H

x: 4J

e Vl O

MH • H

c 3

© 4J a4->

•H C Vl u tn

XI

in

OJ

tn 0 -kJ

fd H r-i o a, a,

o O X 4-1 4J

Page 162: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

150

>i

r-1

0 iw

Uni

cn c:

•ri

Vl Vl fd

u cn 0

lat

04

v< 0 >

ile

xi

ar Can

rH 3 tn • G TJ Id fd •P o o ^ 0 «-d

pic

bute

O-H VJ VI 4J 4J 0 cn CO •ri

M Q

_,_ fd

H M >

1

u cn < u

CN 1

o r—1

X CO

X oa

CM

o r-i

X >1

ca

o r-i

X

>1

oa

1

o r-i

X CN

X oa

CM

o rH X a

CQ fd

.0185

o 1

OI

o r-i VO

O

1

r in in

o o

tr ro O OI

o 1

r-i

o CN O

O

CM

O

cr —X.

-^

• ^

-

'—r

o o r-i ^

CX) r-i

O CM

O O

1 1

cn o vo en 00 00 ro tr

r-i OI

1 1

tr vo 00 OI 00 o o tr o o

tr OJ CM o vo ro tr 00

o o 1 1

r-i cn CN tr O CM r-i cn

o o

ro tr

o o

1 1

N V

V

N? s

V

1 i d

G„+ .

)

o C)

cn tr

o 1

ro cn r-i

cn

ro

1

vo r* in ro r-i

tr vo o ro

t-i

1

o in

en r o

in

o

- — J 3

(

o o in o tr in r^ ,-i

O rH

1 1

Ol o cn CN r* r vo r-*

in r

1 1

r ro cn o 00 vo o in

ro in

o vo ro o cn cn 00 in

rH OI

1 1

r^ O OJ VO in vo vo o

r-i ro

vo r-~

o o

f

)

1

o

'-•-'X

o o tr

vo r-i

1

OI

cn cn r-i

o r-i 1

VO r-i

cn vo 00

cn cn cn ro

ro

t

o cn ro CM

in

00

o

o. o r-i OI

OJ

1

o tr vo cn

CM rH 1

tr tr ro r-i

OI r^i

in r-i CN ro

tr

1

o ro o tr

CO

cn

o

o o in 00

CN

1

^

en. «Q} O

VO rH 1

o r vo 00

in ,-i

in vo in ro

in

1

in in OI 00

OJ r-i

O

r-i

cn

o

II

p

o o vo in

ro

1

o in rH in

cn rH 1

o o tr t^

cn rH

n-i in o in

vo

1

tr OI o 00

00 r-i

r^

r-i

n J-

fd rr r

a

II

o o CM ro

^

1

O in o ro

ro OI 1

o o vo in

ro CN

ro CO vo r

r

1

o CO vo vo vo CN

CM

r-i

r

V

r

c 5 s

O O CN r-i

in

1

r-i cn cn cn

Ol 1

o r 00 CN

r-OI

tr tr tr r-i

cn

1

o 00 r r vo ro

ro

r-i

X V)

C X

o o vo cn

in

1

rH in

o cn

r-i cn 1

in vo ro 00

o ro

r in ro vo

o r-i 1

ro vo ro in

cn tr

tr

r-i

CM

fd XT

_^/v.

o O ro CO

vo

1

vo vo r^

vo ro 1

r-i OJ

r r-i

tr ro

o cn ro OJ

CM r-i 1

r OJ r-ro in

vo

in

r-i

c >>

ca — V

II

o o OJ

r-o-

1

Ol vo vo 00

r-i tr i

in CM in OJ

r ro

o in in cn

ro rH 1

VO r-i tr

r--tr 00

vo

r-i

c' >1

X ca

C > •

S

c' >1 X

S

o o r-i VO

CO

1

o r vo ro

tr 1

CM en in o

o tr

o cn 00

in r-i 1

o cn 00 rH

CO

o r-i

r r-i

• • tn 0 4J 0 2

o o o o o o in tr

cn o r-i

1 1

O r-i VO Ol 00 "^ r-i cn

cn cn in in 1 1

in in tr vo CN O vo cn

OI tr tr tr

r-« r CO o CM 00

(*» cn rH r-i 1 1

o o vo vo tr tr r-i OJ

vo en ro vo r-i r-i

CO cn

r-i r-i

• tn cn Vl tn 0 0 MH C 0

U-i .X Vl

0 u •H C 0 x:

Vl 4J 4J

o o o OI

r-i r-i 1

CM VO r-i 00

in vo 1

ro CO 00 en

vo tr

r-00 'ro cn

r-i Ol

o r-i r-i O

CO O Ol

O

CM

c o c • © cn

0 fd a p -n

g H c fd tn V4 Vl

0 0 u 4J 44 tn Id H XI

rH C 3 cu 3 cn —^ ^^ r-i OJ

•H rH

0 a cu 0 0 X 4-1 4J

Page 163: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

151

TJ

Loa

4-) c •H 0 (ll

0 rH

tn •H cn >T>

•ri

>\ u VJ fd U

cn 0 -P

Pla

ver

0 r-i •H 4-> •

lar Can

ee Edge

:3 VJ CnP4 c: fd MH 4-) O o

c Re

oint

ropi

id-P

•p S 0 cn HJ M fd

S ^ • ^ ^

M

>

1

CSSE

CN 1

o r-i X

CO

>i X

ca

1

o ,-i X

CM

>1

oa

1

o r-i X CN X

oa

1

o r-i X

r-4

>1 oa

1

o rH X

•—«

a

CQ fd

a.

o CM CM r-i

O

00

vo cn tr

r-i

1

cn 00

cn tr

o 1

ro on cn tr

CM

o o ro r-i

O

r^ r-i

cn in

rH

1

vo o ro in

o 1

in ro o tr

ro

O

ro ro r-i

o

tr

r^ tr

r^ r-i 1

in Ol CO in

o 1

cn vo in cn

ro

o rH cn ro CN r»> vo in o^ O rH CN

o o o

o o o

- »

> j i

> > \ > >

>

>

>

1 . «

)

•1

CO

O O o tr ro Ol r-i r-i

o o

ro in tr cn vo r-i cn CM

r-i CM

1 1

00 00 tr en in ro vo r

o o 1 1

00 ro vo in tr tr ro VD

tr tr

O

r^ r-i r-i

o

CO

cn cn tr

Ol

1

ro ro ro 00

o 1

o tr 00 00

tr

r^ CM o CN 00 vo CM tr cn in 00 OJ

O O rH

in vo r

o o o

o *1

i-O . "

1

) •

'

.

o

_

o o r-i r-i

O

r-i

r en r OJ 1

tr OI

ro cn o 1

CO

cn r-o in

cn r 00 CO

r-i

00

o

X

o ro o r-i

O

r vo o r-i

m 1

vo LO

ro o r-i 1

ro ro tr CM

in

o LO tr vo CN

cn

o

tr

vo cn o o

r lO CM tr

ro 1

cn rH

<r r-i

rH 1

VO

o 00

ro in

ro cn 00 in

ro

o

r-i

00 vo cn ro 00 00

o o o o

vo O r-i cn in 00

r o ro tr 1 1

in o O r-i in vo OI ro

r-i r-i I 1

00 vo

r^ vo cn cn tr in

in in

O 00 CM in tr CM r^ rH

TT VO

,-i CM

rH rH

Q

CM

Id cn Cu

C o a

II II

c

vo [

r o o

tr

r ,-i tr

tr 1

in CM

r^ tr

r-i 1

00

o CO

vo in

CO

o vo r-r-

ro

,-i

r

cn r-i

r o o

CO tr in

r-tr 1

cn tr 00 in

r-i 1

ro CM in

r-in

CM

o r« vo cn

tr

t-i

in vo vo o o

r-i tr en o in 1

o CO

cn vo r^ 1

00 CM r-i 00

in

ro vo r 00

r-i t-i

LO

cu

C X

oa

r—

• *

C >i

ca

1 v

X >i

V. ^

ro r-i

vo o o

O tr ro tr

lO 1

ro r-i r-i 00

r-i

cn ro vo CO

LO

C^

cn cn ro tr r-i

vo

C >i

X ca

t:

lO VD lO c o

o> vo in rH t^ ro in tr tr

o o o o o o

r>- tr lo CM vo vo vo tr i^ iH in en

r IT 1

• rH tr r^

vo VD vo 1 1 1

VO 00 Ol r» LO CO CM tr CM ro in vo en o rH OJ

iH OI CM Ol 1 1 1 1

r^ 00 00 in vo CM CN » 00

o tr r~ cn cn o^ cn cn LO LO LO LO

in vo tr o o tr vo r-r^ cn o rH CN tr rH rH

rH CM CN CM

1

\

*

\

X

r~» CX) cn o

. cn tn Vl tn 0 <D MH c

C 0 0 ^ M u 0 u c

•H C 0 x: © cn VJ 4-» 4-1 0 fd a4-i 4J

g -H c (d tn V4 Vl H rM 0 0 u o cu 4J MH tn 0^

.. (d H X! 0 in rH c 3 0 X OJ Ol 3 cn 4-1 4-1 4J

2 rH Ol

Page 164: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

152

cn TJ fd 0 J

4->

c 0 P4

rH Id :3 cr M

cn r* •H

VJ VJ (d U

0 4J fd rH CL

ever ]

ntil

fd

u Vl

ngula

ners.

Recta

e Cor

0 o u

•ri EM

a

Otro

the

cn 4J M fd

(c)

t-i I—I

>

1

u

CAS

CO 1

o ,-i

X J-

X oa

CN 1

o r-i X

X ca

1

o ,-i X

CN

>1 oa

J-1

o r-i

X CN a

J-1

o rH X

3

CQ fd

a.

a.

o o vo o

ro 1

o o r* tr

r-i 1

in tr Ol

r o 1

o in r o o

o o in vo

r-i

OI

o

o o CM tr

ro 1

o o ro tr

r-i 1

VO in r-i o CM 1

tn r-i vo r o

o o tr

ro

o

1 'L \ \

N

N

">

> CO

o o o in

ro 1

o o r ro r-i 1

r vo tr OJ

ro 1

o cn o r-OI

o o in 00

vo

o

CO

"T

o o o o vo 00 tr ro

ro ro 1 1

o o o o o tr ro CM

r-i r-i 1 1

,-i o vo iO. vo O o in

tr tr 1 1

vo o in in o vo tr CM

vo OJ r-i

o o o o o o ro vo

r-i r-»

r-i r-i

in vo

o o

—H

^ #

"( )

1

O

) F • y •

O

o o ro

ro i

o o cn r-i

r-i 1

o 00

r vo tr 1

tr r-i cn vo o CM

o o o CM

vo CM

o

^ K

o o ro OJ

ro 1

o o 00 r-i

r-i 1

tr

ro 00

vo tr 1

ro in 00 o CM ro

o o o vo

ro

CO

o

o o 00 r-i

cn 1

o o cn r-i

r-i 1

ro in

cn in

tr 1

CM

vo in 00

vo tr

o o o CM

Ol in

o o ro r-i

cn 1

o o CM OI

r-i 1

r-i cn vo tr

tr 1

o CO CM tr

in

vo

o o o

o

en o

O r-i

ro o

II

•>

o o o o o r-r-i O

ro ro 1 1

o o o o CO in rsi ro

rH r-i 1 1

tr 00 OJ ro r-i VO ro rH

tr tr 1 1

CM O in tr r-i vo CM vo

00 in 00 rH

r-i

o o o o o o ro o

ro r-i cn CM

r-i

r-i OJ

rH H

Q

fd

cu a II

o o in

o

ro 1

o o ro tr

r-i 1

vo ro OI

o tr 1

o rH

r» r-i

cn tr rH

o o o o

ro LO r-i

cn

r-i

C X ,«^

/-c X

o o o o ro r-i

o o ro 'n 1 1

o o o o ro ro in vo

r-i r-i 1 1

CO o vo in en 00 CO r-

ro ro 1 1

o o vo cn cn r-r-i rH

vo o CO ro rH CM

o o o o o o o o r-i in cn ro r-i CM

tr in

r-i r-i

04

• ^

>1 ca

II X

C

s V

o o cn cn CM 1

o o tr

r* r-i 1

o CO CO vo ro 1

o o ro in

o CO Ol

o o o o LO 00 OI

vo

X ca ,

r' X

J

o o oo cn OI i

o o vo 00

rH 1

ro lO O vo ro 1

O

o lO 00

r-ro ro

o o o o CM tr ro

r

• t/]

a

o o o o o o LO tr rH as as as

CM CM Ol 1 1 1

O o o o o o cn CN vo cn rH OJ

rH OJ Ol 1 1 1

00 o r^ tr vo LO f^ r^ OJ LO tr tr

ro ro ro 1 1 1

o o o rH cn tr lO r-f t^ OJ tr in

CN tr tr

o r in tr tr in

o o o o o o o o o o o o

o cn in tr tr in

00 en o

. tn tn Vl tn 0 (U MH C C 0 0

MH >i Vl

are o

thic

pt n

t ® n

tes.

e - H c fd tn G Vl H rH 0 o u 0 cu 4j vw tn Ou (d H .Q o r-i c a 0 s:

) a. D cr. 4J 4J 4J

0 '- — 2 rH Ol

Page 165: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

153

Cn c: •ri

>1 Vl fd >

r-i

6 vi 0 MH •H C P

cn C

•ri

>i VJ Vl fd U

cn 0 •P fd

r-i

cu Vl 0 > 0

r-i •ri 4-> C fd

VJ fd

r-i

3 tn c fd P u 0 on

u •H Ol

o VJ . P TJ 0 cd cn 0 M i-q

. TJ ^ • ^

H M >

1

CA

SE

CN 1

o r-i

X CO

>1

X ca

CN

1

o r-i

X J-

>1

oa

CM 1

o rH

X m >1

oa

r-4

1

O rH X

CN

X oa

CO 1

o r-i

X r~t

a

pq fd

o ro cn tr r^ cn r-i tr

o o 1 1

o o in in o en r-i OJ

o o

o o o ro ro in tr 00

o o

ro CN r-i r-i

O 1

ro tr tr r-i

o

CN

o

00

o OJ OI

o 1

00 r-i

o vo

o

ro

o

X.

1

CM^

1 L r L

7o / ' >

>

N

N

L-U

cn 00 00 00

o 1

o vo ro in

o

o o ro ro r-i

cn in

ro ro

o 1

o ro ro in

r-i

tr

o

CO

- 0 ^

o

„T~ •^J 1

cn in r-i cn 00 ro OJ vo

r-i rH

1 1

o o o r 00 cn r en

o o

o o o o ro tr 00 ro

rH rM

vo vo OJ r-i LO r^ tr in

o o 1 1

o ro 00 OI cn r-i cn o

OI in

in vo

o o

-H

n J (

,

)

^ '

1

0

'

vo I^ CN

cn r-i

1

o o 00 rH

r-i

O

o r CO

CN

r-i tr

cn vo

o 1

vo cn r LO

r

r

o

•• X

O tr

vo r-i

OI 1

o o ro ro r-i

o o r-i tr

ro

cn cn r-i 00

o 1

r in

o r

o r-i

CO

O

tr 00 tr

ro OJ 1

o o in tr

r-i

o o lO

cn

ro

c

O

cn 00 tr

OI 1

o o in in

r-i

o o o in

tr

1 vo CO 00 tj ' r^ cn o

O ,H 1

C

r-

1

o • o

cn vo ro vo

tr 00 r-i r-i

cn o

O rH

ro t

o II

p>

o LO

cn in

OI 1

o o ro vo

r-i

o o tr

o in

00

<n o OI

,-i 1

o r-i O lO

ro CM

rH

rH

Q J-

fd

ro ro r-vo Ol 1

o o 00

vo r-i

o o cn lO

LO

ro r-i tr

ro r-i

1

cn ro OJ

cn CO Ol

OI

r-i

<—

vo o ro r CM 1

o o ro r r-i

O o ro r-i

vo

VO CM 1^ tr

r-i 1

00

ro ro cn tr ro

ro

r^

C X

,ca cr c

a II

t—

c X

? '

o OJ r r CM 1

o o vo r ,-i

o o vo VD

VO

tr

ro o VD

r-i

1

LO r-i

cn in

,-i tr

tr

rH

CM

fd cr

c >i

ca

II *

C >i

vr-

r r r-i OX O OJ 00 00

Ol CN 1 1

o o o o cn rJ( r*- 00

rH r-i

o o o o cn r-i r-i r->

r^ t^

CM o ro Ol ro vo r-» 00

rH r-i

1 1

VO Ol O r-i CM O r^ LO

CO vo tr LO

lO vo

r-i r-i

>1

X ^ ;

c' >i

X *

tr CO r-» r ro tr 00 CO

Ol OJ 1 1

O o o o ro lo 00 00

r-i r-i

cb o Q. o ro tr CM r 00 00

LO r^ cn lO 00 r-i CSs r-i

r-i CM

1 1

CO o tr CM r- tr 00 00

tr ro vo r^

r^ 00

r-i r-i

• tn cn 0 c

MH M 0 U

•H

0 x: Vl 4J fd

6 tn Vl 0 0 4J UH

• • fd -H U) r-i C 0 CU :3 P 0 — 2 -

CO tr in 00

Ol 1

o o vo 00

r-i

o o tr Ol

cn

tr CK tr CM

Ol 1

lO

ro o tr

ro CO

en

r-i

tn VJ 0 MH C 0 0 Vl

c c

® tn P 0 C1.4J 4-> •H C (d VJ H rH U 0 04 tn a XI 0 3 0 X cn 4-1 4J

CM

Page 166: EXTENDED FINITE STRIP METHOD FOR PRISMATIC PLATE AND SHELL …

154

TJ C fd

r-i fd :3 cr u 0

EH

Cn

•ri

u VJ fd U •

cn cn Vl 0 0 4J C fd Vl

r-i 0 (i4 U

VJ 0 0 0 > VJ 0 CM rH •H 0 p x: G P Id

CJ -P

ular

ads a

tn 0

fd •p P

u c 0 -H ca 0

&4

u

ropi

site

•P 0 0 O4 cn O4 H 0

.

0 — M IH

>

1

cn

u

CO

1

0 r-i

X JO >1

X oa

CO 1

0 t-i

X J-

>1

oa

CN

1

0 r^i

X CO

X oa

J-1

0 r-i X CM

>\ oa

CO 1

0 ,-i X

F-l

a

,

PQ «d

OJ 0 VO CM r- r-i OJ r-i

0 r-i 1 1

0 0 0 0 0- in ro 0

OJ ro 1 t

0 0 0 0 vo tr tr tr

r-i rH

1 1

r r* vo 0 LO CM vo 00

0 r-i CM CM 1 1

CM P» LO en vo vo r-i cn

0 0

0 0

>*

• !• 4- ^ \

N

V

^ n V.

\

r tr r-i 0

OJ 1

0 0 cn ro

ro 1

0 0 CM tr

r-i 1

VD ro r-i

cn

r rH 1

VO 0 tr vo

0

0

eO

0

"T

^

00 in tr

r-CM 1

0 0 tr in

ro 1

0 0 01 tr

rH 1

tr cn tr CM

ro r-i 1

CM tr in cn

0

.

in

0

H

PM

-(

7/

i

)

^ 1

CM

cn 00 OJ

ro 1

0 0 0 vo

ro 1

0 0 CM tr

rH 1

in CO vo ro

cn

1

00 0 en CN

rH

VO

0

"

0

00 vo 00 vo

ro 1

0 0 CM vo

ro 1

0 0 ro tr

rH 1

0 tr cn tr

vo

1

in 00 ro vo

rH

r 0

- K

en 0 00 CSS

cn 1

0 0 r-i VO

ro 1

0 0 ro tr

rH 1

vo in in tr

tr

1

tr r-i cn cn

rH

00

0

c t-i 0 CM

tr 1

0 0 0 vo

ro i

0 0 ro tr

rH 1

in 00 ro 0

ro

1

r« vo tr

r 01

r-i 0 r ro

tr 1

0 0 CO in

ro 1

0 0 ro tr

r-i

i

00 ro vo 0

CM

1

cn OJ 0

OJ

en 0

0 rH

ro •

0

II

r-i 0 0 LO

tr 1

0 0 vo LO

ro 1

0 0 ro tr

r-i

1

ro r cn ro rH

1

VD

cn in 0

ro

rH

r-i

0 \ CM

fd

00 r-i 0 VO

tr 1

0 0 tr Ln

ro 1

0 0 ro tr

r-i

1

r-i

cn tr

cn 0

1

VD VO rH tr

ro

CM

r^

r~

V

Cu

a f-

II

c ^ \.

cn r^

CX3 VD

tr 1

0 0 01 in

ro 1

0 0 OJ tr

r^

1

00 tr ro vo 0

'

vo ro

ro

ro

rH

C X

oa

r-i LO tr

r* tr 1

0 0 cn tr

ro 1

0 0 01 tr

r^

1

r-vo Ol tr

0

1

vo 0 ro r-i

tr

tr

r-i

Cu

>^

vo 10 cn [

tr 1

0 0

r*-tr

ro 1

0 0 01 tr

r-i

1

0 VO CO CN

0

1

r r 00 tr

tr

10

C > i

ca

II

00 in ro 00

tr 1

0 0 10 tr

ro 1

0 0 r-i tr

rH 1

10 rH cn rH

0

1

r tr tr OG

tr

0 CO 00 ro vo cn 00 00

tr tr 1 1

0 0 0 0 ro r-i tr tr

ro ro 1 1

0 0 0 0 0 0 tr tr

r-i r-i 1 1

cn r^ x> 10 CM 00 r-i 0

0 0

1 1

00 CO r-i CO r-i 10 01 LO

lO 10

vo r^ 00

C > i

X ^ .

c' >i X

2 S . —^-r- /

• tn tn 0 c

re of

thick

fd P

tn VJ

0 0 P MH •• fd 'H

cn rH c 0 fl. 3 P 0 — 2 ^

in r-i tr r^ r-i m cn en

tr tr 1 1

0 0 0 0 cn vo ro ro

ro ro 1 1

0 0 0 0 cn en ro ro

r-i r-i 1 1

lo cn vo , r LO 1^ 0 0

0 0

1 1 1 1

0 cn VD CM r-i r^ cn CM

cn 0

cn VJ 0 MH C 0 0 Vl c

c ® tn

4-1 0 0. 4J 4J •H c fd VJ H rH u 0 a cn Ol SI 0 a 0 x: cn 4J 4J

-— Ol