extended drucker prager modeling-tunnel

Upload: kamal-gm

Post on 09-Oct-2015

72 views

Category:

Documents


4 download

DESCRIPTION

extended dp

TRANSCRIPT

Material 2 fi=35 deg c=1.0 t/m2 fi0=30 degtb,edp,2,1,2,LYFUN tbdata,1,1.41833,2.02558tb,edp,2,1,2,LFPOT tbdata,1,1.20,2.02558Material 4 fi=33 deg c=1.0 t/m2 fi0=30 degtb,edp,4,1,2,LYFUN tbdata,1,1.3309,2.0494tb,edp,4,1,2,LFPOT tbdata,1,1.20,2.0494 ___________________________________________________________________to deletetbde,edp,2tbde,edp,4___________________________________________________________________Example3.11:Classic Drucker-PragerMP,EX,1,5000MP,NUXY,1,0.27TB,DP,1TBDATA,1,2.9,32,0 ! Cohesion = 2.9 (use consistent units), ! Angle of internal friction = 32 degrees, ! Dilatancy angle = 0 degrees___________________________________________________________________Example3.12:EDP -- Linear Yield Criterion and Flow Potential/prep7!!! Define linear elasticity constantsmp,ex,1,2.1e4mp,nuxy,1,0.45! Extended Drucker-Prager Material Model Definition! Linear Yield Functiontb,edp,1,1,2,LYFUN tbdata,1,2.2526,7.894657! Linear Plastic Flow Potentialtb,edp,1,1,2,LFPOT tbdata,1,0.566206,7.894657___________________________________________________________________Example3.13:EDP -- Power Law Yield Criterion and Flow Potential/prep7!!! Define linear elasticity constantsmp,ex,1,2.1e4mp,nuxy,1,0.45! Extended Drucker-Prager Material Model Definition! Power Law Yield Functiontb,edp,1,1,3,PYFUNtbdata,1,8.33,1.5! Power Law Plastic Flow Potentialtb,edp,1,1,2,PFPOTtbdata,1,8.33,1.5___________________________________________________________________Example3.14:EDP -- Hyperbolic Yield Criterion and Flow Potential/prep7!!! Define linear elasticity constantsmp,ex,1,2.1e4mp,nuxy,1,0.45! Extended Drucker-Prager Material Model Definition! Hyperbolic Yield Functiontb,edp,1,1,3,HYFUNtbdata,1,1.0,1.75,7.89! Hyperbolic Plastic Flow Potentialtb,edp,1,1,2,HFPOTtbdata,1,1.0,1.75___________________________________________________________________Example3.15:EDP Cap Model Material Constant Input /prep7! Define linear elasticity constantsmp,ex ,1,14e3mp,nuxy,1,0.0! Cap yield functiontb,edp ,1,1,,cyfuntbdata,1,2 ! Rc tbdata,2,1.5 ! Rt tbdata,3,-80 ! Xi tbdata,4,10 ! SIGMA tbdata,5,0.001 ! B tbdata,6,2 ! A tbdata,7,0.05 ! ALPHA tbdata,8,0.9 ! PSI ! Define hardening for cap-compaction portiontbdata,9,0.6 ! W1ctbdata,10,3.0/1000 ! D1ctbdata,11,0.0 ! D2c! Cap plastic flow potential functiontb,edp ,1,1,,cfpottbdata,1,2 ! RCtbdata,2,1.5 ! RTtbdata,3,0.001 ! Btbdata,4,0.05 ! ALPHAThe classic Drucker-Prager model [10] is applicable to granular (frictional) material such as soils, rock, and concrete and uses the outer cone approximation to the Mohr-Coulomb law. The input consists of only three constants:Cohesion value (> 0)Angle of internal frictionDilatancy angleThe amount of dilatancy (the increase in material volume due to yielding) can be controlled via the dilatancy angle. If the dilatancy angle is equal to the friction angle, the flow rule is associative. If the dilatancy angle is zero (or less than the friction angle), there is no (or less of an) increase in material volume when yielding and the flow rule is non-associated.The dilatancy angle (the input dilatancy constant). When dilatancy angle = friction angle, the flow rule is associated and plastic straining occurs normal to the yield surface and there will be a volumetric expansion of the material with plastic strains. If dilatancy angle is less than friction angle there will be less volumetric expansion and if dilatancy angle is zero, there will be no volumetric expansion.