exoskeletons & physical human-robot interaction controls · 2019. 5. 8. · interaction control...

45
Exoskeletons & Physical Human-Robot Interaction Controls May 6, 2019 Seminar Relator: Domenico Chiaradia, PhD Human-Robot Interaction Area Email: [email protected]

Upload: others

Post on 21-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

Exoskeletons & Physical Human-Robot Interaction Controls

May 6, 2019

Seminar

Relator: Domenico Chiaradia, PhD

Human-Robot Interaction Area

Email: [email protected]

Page 2: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Outline

Soft

pHRI

T-op

Exos

Demo

01 • Applications

• Interactions

• Mechanical aspects

Exoskeletons

03 • Interaction Limits

• Time Domain Passivity Approach

• Interaction with remote environment

• Delay and Passivity for Bilateral Teleoperation

Passivity and Teleoperation

05Call for Thesis

Exosuit Demo

02• Interaction Control Taxonomy

• Force Control

• Interaction with a Virtual Environment

P-HRI Controls

04• Design and Control of a Soft Elbow Exosuit

Soft Exosuit for Assistance

Page 3: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Exoskeletons

Page 4: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Exo…what?

Exoskeleton is a robot that can be worn and behaves like an external skeleton.

It transmits forces to the wearer through its structure.

Exoskeletons try to replicate human body kinematics.

Hardiman, Mosher, 1965

Page 5: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Applications

ALEx, Percro, Pisa Lopes, Twente Univ.

•Healthcare

•Rehabilitation (post-stroke

and spinal cord injury

patients);

•Assistance;

Elbow Exosuit,

Heidelberg University & Percro

Maxx, ETH

Page 6: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Applications

•Healthcare

•Rehabilitation (Post-stroke

and spinal cord injury

patients);

•Assistance;

• Industrial/Military/Rescue

•Power Augmentation

•Assistance

•Remote Operation

H-Wex, Hyundai MATE, Comau

(Passive)

Body Extender, Percro

Page 7: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Applications and Interactions

• Rehabilitation →

• Remote Operation →

• Assistance →

Robot interacts with user and virtual

environment

Robot interacts with user and real remote environment

Robot interacts with user

Page 8: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Mechanical aspects: from Rigid to Soft

Page 9: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

From Rigid to Soft

• Introducing compliance in the actuation stage

•Series elastic actuators (SEA)[1];

•Variable stiffness actuators (VSA)[2];

•Variable impedance actuators (VIA)[3];

•Soft materials → safe and gentle interaction[4].

[1] G. A. Pratt and M. M. Williamson, “Series elastic actuators”, IEEE/RSJ International Conference on, 1995

[2] G. Tonietti, R. Schiavi, and A. Bicchi, “Design and control of a variable stiffness actuator for safe and fast

physical human/robot interaction”, in Robotics and Automation, ICRA, 2005

[3] B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger,

W. Friedl, G. Ganesh et al., “Variable impedance actuators: A review”, Robotics and autonomous systems, 2013.

[4] A. T. Asbeck, S. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, smarter, softer: next-generation

wearable robots”, IEEE Robotics & Automation Magazine, 2014.

Page 10: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

P-HRI Controls

Page 11: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Theoretical tools

Device

Environment

k

Device

Environment

k

b

m

Environment

Device 𝜃

𝜏𝑒

𝜏𝑚

+

_ Environment

Device 𝜃

𝜏𝑒

𝜏𝑟

+

_Force

control

𝜏𝑚

Stiffness Impedance

Back-drivability Non Back-drivability

𝒇𝒆 = 𝒈(𝒙, ሶ𝒙, ሷ𝒙) 𝒌 =𝝏𝒈(𝒙, ሶ𝒙, ሷ𝒙)

𝝏𝒙|𝒙𝟎 𝒁(𝒔) =

𝑭𝒆(𝒔)

𝑱𝑿(𝒔)

Page 12: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction Control Taxonomy[5]

Interaction

control

Passive Active

Position

control

Direct force

control

Indirect force

control

Impedance

control

Admittance

control

[5] A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance

robots”, IEEE/ASME Transactions on Mechatronics, 2016.

Page 13: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction Controls

Environment

Device 𝜃

𝜏𝑒+

Force

control

_𝜏𝑟

+ _

Direct Force/Torque Control

Exos

JOINT 1

JOINT 2

JOINT 3

JOINT 4

JOINT

5

F/T

SENSOR• Serial Kinematics

• 5 DOF: 4 Actuated

• Transmission Ratio (1:100) → Not backdrivable

• 3 Joint Torque Sensors

• 6 axis Force/Torque Sensor at e.e.

• 150 N at the e.e. in every point of workspace

The Rehab-Exos

Page 14: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction Controls

Environment

Device 𝜃

𝜏𝑒+

Force

control

_

𝜏𝑟

+ _ Impedance

𝜃𝑟

+ _+

Impedance Control (Explicit)

Impedance Control (Implicit)

Environment

Device 𝜃

𝜏𝑒+ _ Impedance

𝜃𝑟

+ _

+

Feed-forward

terms

Page 15: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

WRES: Wrist Exoskeleton

• Low weight

• Optimal mass distribution

• High torque/mass ratio

Page 16: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction with VE

Page 17: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Impedance Control in HapticsAutomotive Gearshift Simulator

Page 18: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction Controls

Environment

Device 𝜃

𝜏𝑒𝜃𝑟

+

_Position

control +

_

_

𝜏𝑟

+

_

Admittance

Admittance Control (Explicit)

Exos

Used for:

Further details later!

Page 19: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Passivity and Teleoperation

Page 20: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction Control Limits

• It is not possible to render and infinite stiffness

• Each device is characterized by a critical stiffness

Page 21: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Theoretical toolsPassivity

A system is passive if it absorbs more energy than the one returned

If we define Positive the input power (P),

𝑷 = 𝑭 ∗ ሶ𝒙

A system is passive if:

𝑷 = 𝑭 ∗ ሶ𝒙 =𝒅𝑬𝒔𝒕𝒐𝒓𝒆

𝒅𝒕+ 𝑷𝒅𝒊𝒔𝒔

where

𝑬𝒔𝒕𝒐𝒓𝒆 > 𝑬𝒎𝒊𝒏, 𝑬𝒔𝒕𝒐𝒓𝒆 is a storing energy function

𝑷𝒅𝒊𝒔𝒔 > 𝟎, 𝑷𝒅𝒊𝒔𝒔 is a dissipative power function

1. In a passive system the energy is stored or dissipated

2. The passive system cannot generate energy and can only return the stored energy

3. The energy returned by the system is limited by the stored energy

System

ሶ𝒙

+

𝐹

Page 22: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Theoretical toolsPassivity – Effect of Quantization

Consider the energy stored in a spring with stiffness K

𝑭 = 𝑲 ∗ 𝒙 (Hook’s law)

System

ሶ𝒙

+

𝐹

𝐸 =1

2𝑘𝑥2

F

x

x

F

Press phase

x

F

Release phase

If we consider quantization

If we consider a constant

velocity and a sample time

of T, the system generate

an amount of energy:

𝑘 ሶ𝑥2𝑇2

Page 23: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Time Domain Passivity Approach

Human

Operator

Haptic

Interface

Virtual

Environment𝜶

ሶ𝑥ℎ

𝑓ℎ

𝑓𝑐 𝑓𝑣𝑒

ሶ𝑥𝑐 ሶ𝑥𝑣𝑒

+

+

+

−𝑓𝑃𝐶

[6] B. Hannaford and J.-H. Ryu, “Time-domain passivity control of haptic interfaces”, IEEE Transactions on Robotics and

Automation, 2002.

Page 24: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna24

Interaction with remote env.

Page 25: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Interaction with remote env.

CENTAURO – Robust Mobility and Dexterous Manipulation in

Disaster Response by Fullbody Telepresence in a Centaur-like Robot

Commands

Feedbacks

Page 26: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Theoretical tools

𝑍ℎ

Environment

Interface 𝑍𝑒

Operator

𝑍𝑖 𝑍𝑒

𝐹ℎ 𝐹𝑒

+

𝑉ℎ

+

𝑉𝑒

Transparency

𝑭𝒆 = 𝒁𝒆 ∗ 𝑽𝒆

𝑭𝒉 = 𝒁𝒊 ∗ 𝑽𝒉

Environment force

Human force

The interface is transparent if [14]

𝒁𝒊 = 𝒁𝒆

[14] D. A. Lawrence, “Stability and transparency in bilateral teleoperation”, IEEE transactions on robotics and

automation, 1993

Page 27: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Transparency and Teleoperation

MASTER

SLAVE

EE Velocities

EE Measured Forces

With Position - Measured Force Control Schema

Page 28: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Effect of delay

80ms communication delay &

NO Passivity Controller

80ms communication delay &

Passivity Controller ON

Unstable interaction with remote

environment

Stable interaction with remote

environment

BUT, Loss of transparency!

Page 29: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Soft Exosuit for Assistance

Page 30: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

• No rigid structures → no misalignment between the robot’s and

user’s joints → no discomfort

Neurological musculoskeletal disorders (WMSD)

• On the complementary way of robotic rehabilitation based onexercising workstation, and rigid exoskeleton, the Exosuit strategyemphasize portability and ergonomics for the following applications:

– Stroke/SCI assistance in activities of daily living

– Walking support/stabilization

Why a soft structure?

Page 31: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Exosuits, HarvardPolyglove, SNU

SuperFlex, SRI

Page 32: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

• Exosuits have been proven to be successful in:

– Reducing the metabolic cost of human walking in both

stroke patients [7] and healthy subjects [8];

– Lowering the muscular effort required for:

• Upper limb movements;

• Sit-to-stand transitions;

– Aiding extension and flexion of the fingers in stroke and

spinal cord injury patients [9].

[7] L. N. Awad et al., “A soft robotic exosuit improves walking in patients after stroke,” Sci. Transl. Med., 2017.

[8] B. T. Quinlivan et al., “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft

exosuit,” Sci. Robot., 2017.

Exosuit Effectiveness

[9] H. In and K.-j. Cho, “Exo-Glove : Soft wearable robot for the hand using soft tendon routing system,” IEEE Robot.

Autom., 2015.

Page 33: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Design & Control of a Soft ElbowExosuit

Objectives:

• Design of a soft elbow exosuit for assistance in ADL tasks:

– Arm’s load relieving;

– Muscular effort reduction in moving and sustaining externalloads;

• The assistive exosuit should not affect the human kinematicsand has to be comfortable;

• Develop an untethered control architecture:

– Embeddable in a box, simple to wear;

– Robust and safe.

Page 34: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Suit’s Design

Page 35: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Suit’s Design

Page 36: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Control Strategy

Page 37: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Control Stategy

Assistive Torque Estimator

Page 38: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Control Stategy

𝝉𝒈

Desired velocity computation

Page 39: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Validation - ExperimentsProtocol

Page 40: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Validation - ResultsJoint Angles and Torques

Page 41: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Validation - Results

Page 42: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Call for Thesis

Page 43: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Call for Thesis

• Topic #1: Development and Intelligent Control Strategies of an Assistive Soft Exosuit for the upper-body

– Use of EMG signals for control

• Topic #2: Development and Control Strategies for an Assistive

Soft Glove

• Topic #3: Development of Soft Robotic Hand

Control Strategies for Telemanipulation and Telerehabilitation

Page 44: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Call for Thesis

• Topic #5: Control of robots for maintenance

and inspections

• UGV

• Vision-based control

• Topic #6: Development of a Driving Co-Pilot for assistance and

driving style evaluation

• Topic #4: Control Strategies for an Assistive Leg Exoskeleton

Page 45: Exoskeletons & Physical Human-Robot Interaction Controls · 2019. 5. 8. · Interaction Control Taxonomy[5] Interaction control Passive Active Position control Direct force control

© 2019 Scuola Superiore Sant’Anna

Thank youfor the attention!

Domenico ChiaradiaEmail: [email protected]