exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · exchange bias and...

19
Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universit ¨ at Duisburg-Essen, Germany Contents: exchange bias: introduction domain state model: results from MC simulations mean field approach for Ising AFM: coercivity and exchange bias generalisation to local vector spin models: dynamical consequences conclusions Coworkers: U. Nowak, A. Misra, B. Beckmann, R. Stamps

Upload: vuongthien

Post on 27-Apr-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Exchange bias and coercivity

of ferromagnetic/antiferromagnetic multilayers

Klaus D. Usadel

Universitat Duisburg-Essen, Germany

Contents:

• exchange bias: introduction

• domain state model: results from MC simulations

• mean field approach for Ising AFM: coercivity and exchange bias

• generalisation to local vector spin models: dynamical consequences

• conclusions

Coworkers:

• U. Nowak, A. Misra, B. Beckmann, R. Stamps

Page 2: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Exchange bias

• exchange bias (EB) = shifted hysteresis

loop

• first observation in Co/CoO partic-

les (Meiklejohn and Bean, Phys. Rev.

102,1413 (1956))

• typical for FM/AFM compounds like

multilayers, nanoparticles

• initial procedure: cooling the system in

an external field from above to below

Neel temperature of the AFM

• loop is shifted upwards and asymme-

tric; enhancement of the coercivity

TN

FCB

Hyst.

T

Page 3: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Applications: sensors

H1 < 0H = 0H2 < H1

Sx

F(S

x)

-1 0 1

0

F(Sx) = −DS2x − BSx

The fields B− and B+ at which the magnetizati-

on of the FM switches are obtained from F ′ = 0

at Sx = 1 and Sx = −1, respectively:

B− = −2D,

B+ = 2D.

-1 -0.5 0 0.5 1external field

-1

-0.5

0

0.5

1

mag

netiz

atio

n

Page 4: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Understanding EB: problems

• external field and exchange field of the FM interface layer polarizes the AFM interface layer

• why is the polarisation stable during a hysteresis cycle? why is the symmetry broken?

perfect interface

uncompensated compensated

rough interface

Domain wall formation

Page 5: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Solution: domain walls in the AFM

• breaking the symmetry necessary for EB by introducing frozen domains

• perpendicular domain walls in the AFM due

to interface roughness

(Malozemoff, Phys. Rev. B 35, 3679 (1987))

• but: domain wall formation unlikely for large AFM thicknesses

• idea: introducing defects in the AFM to stabilize domains: d omain state model

(Miltenyi, Gierlings, Keller, Beschoten, Guntherodt,

Nowak, and Usadel, PRL 84, 4224 (2000))

Page 6: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Experiments with diluted AFM

• Idea: generate defects in AFM:

– CoO → Co1−xMgxO

– interface layer without defects

– vary bulk dilution

FM: Co

AFM: CoO

CoMgO

⇒ bulk dilution enhances ex-

change bias(EB)

⇒ associated with EB is an en-

hancement of the coercivity

• see also:

Mewes et al., APL 76, 1057 (2000)

Shi et al., JAP 91, 7763 (2002)

Miltenyi, Gierlings, Keller, Beschoten, Guntherodt,

Nowak, Usadel, PRL 84, 4224 (2000)

Page 7: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Local spin model

AFM

FM

x

zy

B

EB

M

H = HF + HAF + Hint

HF = −JF

〈i,j〉

−→Si ·

−→Sj −

i

(

DS2ix + SixB

)

HAF = JAF

〈i,j〉

ǫiǫjσiσj −∑

i

ǫiσiB

Hint = −Jint

i∈(int)

ǫiSixσi,

• D > 0; JAF = −JF/2;

Jint = +/ − JAF;

• Monte Carlo simulation, system

size up to 128 × 128 × (9 + 1)

up to 136000 MCS per hysteresis,

average over up to 10 runs

• local mean field theory

Page 8: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Hysteresis of FM and AFM interface: MC simulations

• system cooled in a field

Bc = 0.25JF down to

kBT = 0.1JF

• AFM frozen in a domain

state with interface magne-

tization

• its irreversible part leads to

exchange bias

• BEB ≈ 0.03Jint

• D = 0.1JF

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

B

-0.1

0

0.1

m (

AFM

Int

erfa

ce)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-1

-0.5

0

0.5

1

m (

FM)

B+

B_

mI

Page 9: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Structure of the AFM domains

TN

FCB

Hyst.

T

Staggered AFM magnetization after field cooling

above: large dilution, p = 0.5, small domains, below: small dilution, p = 0.3, larger domains.

Page 10: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Magnetization reversal of the FM layer

θ = 8◦4

3

2

1

Magnetization mz

Magnet

ization

my

10-1

1

0

-1

• coherent rotation of the FM magnetization

• no asymmetry for θ → 0

• local FM spins−→S i =

−→S replaced by a

macro spin

F(Sx) = −NlDS2x − NlBSx − kBT Tr e−β(HAF+Hint)

F ′(Sx) = −2NlDSx − NlB − Jint

i∈int

〈σi〉

F ′′(Sx) = −2NlD − βJ2int

(

i∈int

(σi − 〈σi〉))2

• mint =∑

i∈int〈σi〉

• l number of FM monolayers

• N spins per FM monolayer

Page 11: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Switching fields

H1 < 0H = 0H2 < H1

Sx

F(S

x)

-1 0 1

0

F ′(Sx) = −2NlDSx − NlB − Jintmint

Fields B− and B+ for magnetization switching

from F ′ = 0 at Sx = 1 and Sx = −1,

respectively:

B− = −2D − Jintmint

(

B−, Sx = 1)

/l,

B+ = 2D − Jintmint

(

B+, Sx = −1)

/l,

HH

1

�1

m0m0 � �(1)Jintm0 + �(1)Jintmint = m0 + mrev

mrev = χ(1)AFJintSx + χ

(2)AFB

Page 12: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Hysteresis of FM and AFM interface: MC simulations

• system cooled in a field

Bc = 0.25JF down to

kBT = 0.1JF

• AFM frozen in a domain

state with interface magne-

tization

• its irreversible part leads to

exchange bias

• BEB ≈ 0.03Jint

• D = 0.1JF

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

B

-0.1

0

0.1

m (

AFM

Int

erfa

ce)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-1

-0.5

0

0.5

1

m (

FM)

B+

B_

mI

Page 13: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Linear approximation

mint(B, Sx = ±1): AFM interface magnetization determines coercivity and EB

B± = ±2D−Jintmint(B±, Sx = ∓1)/l

mint = m0 + mrev

mrev = χ(1)AFJintSx + χ

(2)AFB

B± =±2D−Jintm0/l±J2

intχ(1)

AF/l

1+Jintχ(2)AF

/l

Beb = 12(B+ + B−) =

−Jintm0/l

1+Jintχ(2)

AF/l

Bc = 12(B+ − B−) =

2D+J2intχ

(1)

AF/l

1+Jintχ(2)

AF/l

0 0.5 1 1.5 2T/TN

(1)

0.02

0.06

0.10

0.14

Hc/J

AF

Hclin

Hcnum

⇒ dependence on the sign of JINT mean field approach

Page 14: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

MF approximation; no dilution

〈σi〉 = mi = tanh

(

β(

− JAF

j mj + JintSx + B)

)

0 0.5 1 1.5 2T/TN

(1)

0.02

0.06

0.10

0.14

0.18

Hc/J

AF

L=1L=2L=3L=8

(a)

0 0.5 1 1.5 2T/TN

(1)

0.02

0.06

0.10

0.14

0.18

Hc/J

AF

L=1L=2L=3L=8

(b)

Coercive field as function of reduced temperature for different AFM layer thicknesses l.

left: Jint = −JAF right: Jint = JAF D/JF = 0.005

⇒ large increase of the coercivity in the vicinity of the Neel t emperature TN

(Scholten, Usadel, Nowak, Phys. Rev. B 71, 64413 (2005))

Page 15: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Diluted systems

Local mean field equations:

mi = ǫitanh

(

β(

− JAF

j

ǫjmj + JintSx + B)

)

Cooling : Iteration at a fixed temperature until a (metastable) self-consistent solution is

obtained, then reducing temperature in small steps.

Page 16: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Coercivity and bias fields: different AFM dilution p

0.02

0.06

0.10

0.14

0.18

Hc/J

AF

p=0.p=0.1p=0.3p=0.6

0 0.5 1 1.5 2T/TN

(1,0)

0

0.01

0.02

0.03

0.04

0.05

Heb

/JA

F

l = 3 and Jint = −JAF

0.02

0.06

0.10

0.14

0.18

Hc/J

AF

p=0.p=0.1p=0.3p=0.6

0 0.5 1 1.5 2T/TN

(1,0)

0

0.01

0.02

0.03

0.04

0.05

Heb

/JA

F

l = 3 and JInt = JAF

• maximum of the coercivity independent of dilution: χmax = x/TN (x); x concentration of magnetic sites

Page 17: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Generalization to AFM vector spins

Ho = −

i

BSx(i) − D∑

i

Sx(i)2 + Hex

hα(i) = −∂

∂Sα(i)Ho + Jintσα(i)

hα(i) = −∂

∂Sα(i)Ho + Jintmα(i)

mα(i) = χ(1)αβ

Bβ + Jintχ(2)αβ

Sβ(i) + m0,α(i)

• separation of time scales and/or slow

variation in space: thermal average re-

stricted to the AFM

• AFM eqilibrium susceptibilities χ(1)αβ

and χ(2)αβ as response to external field

and exchange field

• Effective (free) energy of the FM layer:

F = Ho − Jint

i

Sα(i)χ(1)αβ

Bβ −1

2J2int

i

Sα(i)χ(2)αβ

Sβ(i) −∑

i

Sα(i)m0,α(i)

• enhanced moment; enhanced anisotropy

Page 18: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

F = Ho − Jint

i

Sα(i)χ(1)αβ

Bβ −1

2J2int

i

Sα(i)χ(2)αβ

Sβ(i) −∑

i

Sα(i)m0,α(i)

⇒ maximum lowering of symmetry occurs when only one component of the susceptibility tensor, χx,x,

is nonzero: Ising antiferromagnet

Ho = −

i

BSx(i) −∑

i

DS2x(i) + Hex −

i

Sα(i)m0,α(i)

• B = B[1 + (Jint/l)χ]

• D = D + [J2int/(2l)]χ = Bc/2

• strong dependence on temperature

• relatively weak anisotropy in the ferromagnet:

maximum value of hc/Jint ∼ 0.1 for

2D/Jint = 0.02. This corresponds to

(B/B)max ≈ 1.1 and (D/D)max ≈ 5.

Dynamical consequences:

⇒ domain wall width ∆ and domain wall

energy EDW :

(∆)max ≈

J/D;

(EDW )max ≈

JD

wall velocity vDW : vDW ∼ B∆.

Stamps, Usadel,Europhys. Lett., 74, 512 (2006)

Page 19: Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers · Exchange bias and coercivity of ferromagnetic/antiferromagnetic multilayers Klaus D. Usadel Universitat

Conclusions

• Domain state model explains exchange bias and many effects associated with it without

explicitely assuming some net AFM interface magnetization

• frozen AFM interface magnetization leads to EB

• reversible part of the AFM interface magnetization leads to enhanced coercivity providing

the AFM is anisotropic

• for slow FM dynamics and slow spatial variation of its magnetization an effective FM

energy can be obtained after integrating out the AFM degrees of freedom