example 04(thermal stress).pdf

Upload: huayaney-espinoza-luis-alberto

Post on 08-Jan-2016

15 views

Category:

Documents


0 download

TRANSCRIPT

  • COMPOSITE STRUCTURESEXAMPLE #4

    THERMAL STRESS ANALYSIS OF COMPOSITE LAMINATE

    Problem Description

    Initial Temp = 130 C, Final Temp = 25 C

    One-ply thickness = 1.0 mm

    Stacking sequence = [0/90]T

    E11 = 380 GPa, E22 = E33 = 8.2 GPa, 12 = 13 = 0.28, 23 = 0.47, G12 = G13 = 4.5 GPa, G23 = 4.5 GPa

    11 = -0.5e-6, 22 = 25e-6

    x

    yz

    500 mm

    One point fixed

  • Step 1. Create Geometry & Mesh with CQUAD4 Elements

    1010 mesh

    Step 2. Create Constraints

    a. Loads/BCs : Create / Displacement / Nodal

    b. Select on New Set Name and enter displ_1

    c. Select Input Data

    d. Enter , for Translations and Rotations

    e. OK

    f. Click on Select Application Region

    g. Select FEM for Geometry Filter

    h. Select on the centre node

    i. Add

    j. OK

    k. Apply

  • Step 3. Create Temperature Conditions

    a. Loads/BCs : Create / Initial Temperature / Nodal

    b. Select on New Set Name and enter ini_temp

    c. Select Input Data

    d. Enter 130 (C) for Initial Temperaturee. OK

    f. Click on Select Application Region

    g. Select Geometry for Geometry Filter

    h. Pick the Surface or Face icon

    i. Select on the surface

    j. Add

    k. OK

    l. Apply

    Step 3. Create Temperature Conditions (Contd)

    a. Loads/BCs : Create / Temperature / Nodal

    b. Select on New Set Name and enter temp

    c. Select Input Data

    d. Enter 25 (C) for Temperaturee. OK

    f. Click on Select Application Region

    g. Select Geometry for Geometry Filter

    h. Pick the Surface or Face icon

    i. Select on the surface

    j. Add

    k. OK

    l. Apply

  • Step 3. Create Temperature Conditions (Cont.)

    a. Select on Iso3 viewfrom the tool bar. Your model should look like the following.

    Step 4. Define Material Properties MAT8

    a. Materials : Create / 2d Orthotropic / manual Input

    b. Select on Material Name and enter prepreg

    c. Select Input Properties

    d. Enter : Fill in properties

    e. OK

    f. Apply

  • Step 5. Define Failure Criteria

    a. Click on prepreg in Existing Materials

    b. Select Const. Model : Failure Failure Limits : Stress Comp Fail : Tsai-Wu

    c. Enter : Fill in properties

    d. OK

    e. Apply

    Step 6. Define Laminate PCOMP

    a. Materials : Create / Composite / Laminate

    b. Select prepreg in Existing Materials two times

    c. Stacking Sequence Convention : Total

    d. Fill in Stacking Sequence Definition Thickness : 1.0 mm Orientation : [0/90]

    e. Select on New Material Nameand enter laminate

    f. Apply

  • Step 7. Check [A], [B], and [D] Matrices

    Step 8. Define Element Properties - PCOMP

    a. Properties : Create / 2D / Shell

    b. Select on Property Set Name and enter p_comp

    c. Options : Laminate / Standard Formulation

    d. Select Input Properties

    e. Enter : Fill in properties

    f. OK

    g. Select on Application Region and pick to include all geometry as shown in the figure

    h. Add

    i. Apply

  • Step 9. Check Loads and Constraints

    a. Load Cases : Modify

    b. Select Default in Existing Load Cases

    c. Make sure that all Loads and BCs are selected

    d. Cancel

    Step 10. Create NASTRAN Input File

    a. Analysis : Analyze / Entire Model / Analysis Deck

    b. Select Translation Parameters

    c. Data Output : OP2

    d. Bulk Data Format Sorted Bulk Data : No Card Format : small

    e. OK

  • Step 10. Create NASTRAN Input File (Contd)

    a. Select Solution Type

    b. Choose LINEAR STATIC for Solution Type

    c. OK

    Step 10. Create NASTRAN Input File (Contd)

    a. Select Output Requests in Subcases

    b. Form Type : Advanced

    c. Select STRESS(SORT1, ) in Output Requests

    d. OptionsComposite Plate Opt : Ply & Elem. Stresses

    e. OK

    f. Apply Cancelg. Apply

  • Step 11. Read in OP2 File

    a. Analysis : Access Results / Read Output2 / Result Entities

    b. Click on Select Results File

    c. Select thermal_analysis.op2

    d. OK

    e. Apply

    Step 12. Results - Deformation

    a. Results : Create / Deformation

    b. Select Displacements, Translational under Select Deformation Result

    c. Apply

  • Step 13. Results - Stress

    a. Results : Create / Fringe

    b. Select Stress Tensorunder Select Fringe Result

    c. Position : Layer 1Quantity : X Component

    d. Apply

    .

    Step 13. Results Stress (contd)

    a. Results : Create / Fringe

    b. Select Stress Tensorunder Select Fringe Result

    c. Position : Layer 2Quantity : Y Component

    d. Apply

  • Step 14. Results Failure Index

    a. Results : Create / Fringe

    b. Select Failure Indices, Ply Indices under Select Fringe Result

    c. Position : Layer 1

    d. Apply

    Step 14. Results Failure Index (Contd)

    a. Results : Create / Fringe

    b. Select Failure Indices, Ply Indices under Select Fringe Result

    c. Position : Layer 2

    d. Apply

  • Exercise 1

    Initial Temp = 130 C, Final Temp = 25 C One-ply Thickness = 1.0 mm Stacking Sequence = [02]T E11 = 380 GPa, E22 = E33 = 8.2 GPa, 12 = 13 = 0.28, 23 = 0.47,

    G12 = G13 = 4.5 GPa, G23 = 4.5 GPa

    11= -0.5e-6, 22= 25e-6

    x

    yz

    500 mm

    One point fixed

    Exercise 2

    x

    yz

    500 mm

    clamped

    clamped

    Initial Temp = 130 C, Final Temp = 25 C One-ply Thickness = 1.0 mm Stacking Sequence = [02]T E11 = 380 GPa, E22 = E33 = 8.2 GPa, 12 = 13 = 0.28, 23 = 0.47,

    G12 = G13 = 4.2 GPa, G23 = 4.2 GPa

    11= -0.5e-6, 22= 25e-6