evolutionary physiology topics 1. patterns 2. processes

100
Evolutionary physiology topics 1. Patterns 2. Processes

Upload: keven-hughston

Post on 14-Dec-2015

230 views

Category:

Documents


0 download

TRANSCRIPT

Evolutionary physiologytopics

1. Patterns

2. Processes

1. Patterns

• How and why of particular transitions

How and why did endothermic vertebrates evolve from ectothermic ancestors?

Evolutionary physiologytopics

Endothermy versus ectothermy

scala naturae

Endothermy versus ectothermy

Endothermy versus ectothermy

Advantages of endothermy:

• Stenothermy

• Aerobic metabolism

• Independent of environment

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energetic requirements

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mammals

Passerine birds

reptiles

metabolism (Wg-1day-1)

0.1g 10g 1kg 100kg 1000kg

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats

Mt Chappell Island

Flinders Island

Cape Barren Island

Chappell Island tiger snake(Notechis ater serventyi)

Short-tailed shearwater(Puffinus tenuirostris)

Gila monster (Heloderma suspectum)

Western banded gecko (Coleonyx variegatus)

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

body length

surface/volume

mammals: >20 g

lizards: 8% spp. < 1 g 80% spp. < 20 g

salamanders: 20% spp. < 1 g90% spp. < 20 g

Dwarf chameleon

Monte Iberia EleuthDwarf gecko

Kitti’s hog-nosed bat

Etruscan shrewW: 1.5-2.5 gFR: 4xW/dayHR: 835 b/minRR: 661 p/min

L: 29-33 mm

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions Elongate body forms

0

5

10

0 10 20 30 40 50

height/diameter

surface/volume

diameter

height

weasel (Mustela nivalis) wood rat (Neotoma sp.)

energy loss: x2

Afrocaecilia taitana Desmognathus ochrophaeus

Bipes bipes Anguis fragilis

Opheodrys aestivus

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions Elongate body forms Low water habitats

Sauromalus obesus

Scaphiopus couchii

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions Elongate body forms Low water habitats Low oxygen habitats

Amblyrhynchus cristatus

Iguana iguana

Neoseps reynoldsi

Scincus mitranus

Dilong paradoxus Xu et al. 2004. Nature 431: 680-684.

Dimetrodon (Pelycosauria)

Moschops (Therapsida)

Synapsida (mammal-like reptiles)

Endothermy in Mammalia:

1.RM x5

2.Tb > Ta, 28°C < Tb < 40°C

3. Tcore < 1-2°C

4.Maero x5

• Thermoregulation first physiological version

Synapsida evolve from small ectotherms

increase in size(30-100 kg)

become inertial homeotherms

evolve insulation

Tb constant,physiological benefits

decrease in size

increased metabolismimproved insulation

McNab 1978. Am. Nat. 112: 1-21.

• Thermoregulation first brain version

Synapsida evolvefrom small ectotherms

increase in sizeincrease in size(30-100 kg)(30-100 kg)

become inertial become inertial homeotherms homeotherms

evolve evolve insulationinsulation

Tb constant,physiological benefits

evolve larger, morecomplex brains

Hulbert 1980.

• Thermoregulation first ecological version

Synapsida evolvefrom small ectotherms

increase in sizeincrease in size(30-100 kg)(30-100 kg)

become inertial become inertial homeothermshomeotherms

evolve evolve insulationinsulation

Tb constant,physiological advantages

evolve nocturnalhabits

Crompton et al. 1978. Nature 272: 333-336.

• Aerobic capacity first sustained ativity version

Ruben 1995 Ann. Rev. Physiol. 57: 69-95.

small change inbasal metabolic rate

minimal effect on thermoregulatory capacity

large effect onmaximal aerobic metabolic rate

• Aerobic capacity first parental care version

Koteja 2000 Proc. R. Soc. Lond. 267: 479-484

small change in basal metabolic rate

minieme verandering inthermoregulatie-capaciteit

large effect onmaximal aerobic metabolic rate

necessary for locomotor costs related to parental care

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive

Evolutionary physiologytopics

Dicerandra linearifolia

Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

• leaf length• leaf thickness• density of stomata

winter summer

Leaf

leng

th (

mm

)

5

10

15

20

25

30

35

winter summer

Lea

f thi

ckne

ss (

mm

)

0.140

0.145

0.150

0.155

0.160

0.165

winter summer

Den

sity

of s

tom

ata

(m

m-2

)

76

78

80

82

84

86

88

90

92

94

96

Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

winter summer

Se

lect

ion

gra

dië

nt f

or

lea

ve le

ng

th

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

winter summer

Se

lect

ion

gra

dië

nt f

or

leav

e th

ickn

ess

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

winter summer

Se

lect

ion

gra

dië

nt f

or

stom

ata

de

nsity

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

Beneficial acclimation hypothesis

Beneficial acclimation hypothesis

Colder is better Hotter is better

Beneficial acclimation hypothesis

Deleterious acclimation hypothesis

Beneficial acclimation hypothesis

Escherichia coli

Leroi et al. 1994.Proc. Natl. Acad. Sci. USA 91: 1917-1921.

Beneficial acclimation hypothesis

Escherichia coli

37°

32°

32°

competition

41.5°

41.5°

>

>

Leroi et al. 1994.Proc. Natl. Acad. Sci. USA 91: 1917-1921.

32°

41.5°

acclimation

Beneficial acclimation hypothesis

Bicyclus anynana Geister T.L. & Fischer 2007. Behav. Ecol. 18: 658-664.

Beneficial acclimation hypothesis

20°

27°

developmentlarvae

20,20°

20,27°

27,27°

27,20°

20,20°

20,27°

27,27°

27,20°

20°

27°

27°

20°

acclimation

Beneficial acclimation hypothesis

Oribatida Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

10°

acclimation7 days

15°

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

Locomotor tests -5° up to 35°

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

deleterious acclimation

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

deleterious acclimation

beneficial acclimation

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

colder is better

deleterious acclimation

beneficial acclimation

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti geen plasticiteit

geen plasticiteit

colder is better

deleterious acclimation

beneficial acclimation

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive phenotypic plasticity ~ environmental variability

Evolutionary physiologytopics

Rana temporaria Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

• 14 small islands• 10 clutches < 20-50 eggs• depth pools• variability drying / island• lab: 4 tadpoles / container• 2 regimes: Constant & Drying

• developmental time ~ regime (D<C)• developmental time ~ island• phenotypic plasticity ~ variability island

Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

constant

drying

developmental time

28

17

island 1(homo)

plasticity=11

28

10

island 2(hetero)

plasticity=18

• devolopmental time ~ regime (D<C)• developmental time ~ island• phenotypic plasticity ~ variability island

Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive phenotypic plasticity ~ environmental variability a jack-of-all-trades is a master of none

Evolutionary physiologytopics

0

5

10

15

20

25

30

35

40

6 8 10 14 18 22 26 30 34 38

sprint speed‘specialist’

‘generalist’

lichaamstemperatuur

sprint speed

0

2

4

6

8

10

12

18 22 26 30 34 38 42

Laudakia stellio

lichaamstemperatuur

rank

Huey R.B. & Hertz P.E. 1984. Evolution 38:441-444.

Huey R.B. & Hertz P.E. 1984. Evolution 38:441-444.

Amoeba

0

1

2

3

4

5

10 15 20 25 30 38lichaamstemperatuur

rank

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-active

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeC > P in constant and fluctuating environments

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeR > P in some fluctuating and constant environments

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeB > P in fluctuating environments, but not in 7.8

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeA > P in constant, not in fluctuating environments

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

(1) adaptation to cycling pH, randomly changing pH and constante pH follows different patterns

(2) in variable environments generalists evolve, in constant environments specialists evolve;

(3) in variable environments the ‘cycling’ lines have a higher fitness than the ‘random changes’ lines;

(4) an acclimation benefit (BAH) was not always detected.

Goodman et al. 2007. Evol. Ecol. Res. 9: 527-546.

• 18 Lygosominae• sprinting, jumping, clinging, climbing

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive phenotypic plasticity ~ environmental variability a jack-of-all-traits is a master of none symmorphosis: design satisfies need

Evolutionary physiologytopics

Evolutionary physiologytopics

Evolutionary physiologytopics

king pin

one half rule

V02max

mitochondriain muscle cells

capillary design(volume, surface)

hematocrite

heartstroke volume

surface pulmonary vesiclesdiffusion capacity membrane

Weibel et al. 1991. Proc.Natl. Acad. Sci. USA 88: 10357-10361

1. Patterns

2. Processes• natural selection

Evolutionary physiologytopics

performancevariation

fitnessvariation

design variation

geneticvariation ???? ??

performance gradient fitness gradient

quantitativegenetics

physiologymorphologybiochemistrykinematics

biomechanics

ecologybehavioral biology

LeGalliard et al. 2004. Nature 432: 502-505.

Zootoca vivipara

juvenile survival

initial endurance

limited food supply

abundant food supply

1. Patterns

2. Processes• natural selection• sexual selection

• intrasexual selection (male-male combat)• intersexual selection (female choice)

Evolutionary physiologytopics

deCarvalho et al. 2004. Anim. Behav. 68: 473-482.

Neriene litigiosa

deCarvalho et al. 2004. Anim. Behav. 68: 473-482.Neriene litigiosa

Time (min)

Join

t m

ale

en

erg

y u

se (

EW

)

1200

1200

800

600

400

200

00 1 2 3 4 5 6 7 8

Phase 1

Phase 2

Phase 3 Locomotion

X 3.5

X 7.4

X 11.5

Necora puber Uca lactea

Thorpe et al. 1995. Anim. Behav. 50: 1657-1666

Matsuma & Murai 1995. Anim. Behav. 69: 569-577

anaerobic respiration

Agkistrodon contortix

Schuett & Grober 2000 Physiol & Behav 71: 335-341.

Agkistrodon contortix

Schuett & Grober 2000 Physiol & Behav 71: 335-341.

Anolis sagrei

Evolutionary physiologyimplications

Evolutionary physiologyimplications

Evolutionary physiologyimplications

Evolutionary physiologyimplications

http://www.sfecologie.org/blog/2011/09/30/evolrescueonline-topic-1/